code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def snake_case ( A__ ): if n == 1 or not isinstance(_a ,_a ): return 0 elif n == 2: return 1 else: UpperCAmelCase_ : Union[str, Any] = [0, 1] for i in range(2 ,n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case ( A__ ): UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Any = 2 while digits < n: index += 1 UpperCAmelCase_ : Any = len(str(fibonacci(_a ) ) ) return index def snake_case ( A__ = 10_00 ): return fibonacci_digits_index(_a ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
268
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCAmelCase_ ( __snake_case ): '''simple docstring''' __A : Tuple = "trocr" __A : Optional[Any] = ["past_key_values"] __A : List[str] = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , __A=5_0265 , __A=1024 , __A=12 , __A=16 , __A=4096 , __A="gelu" , __A=512 , __A=0.1 , __A=0.0 , __A=0.0 , __A=2 , __A=0.02 , __A=0.0 , __A=True , __A=False , __A=True , __A=True , __A=1 , __A=0 , __A=2 , **__A , ): """simple docstring""" lowerCamelCase : List[str] = vocab_size lowerCamelCase : Union[str, Any] = d_model lowerCamelCase : Tuple = decoder_layers lowerCamelCase : List[str] = decoder_attention_heads lowerCamelCase : Optional[Any] = decoder_ffn_dim lowerCamelCase : Union[str, Any] = activation_function lowerCamelCase : List[str] = max_position_embeddings lowerCamelCase : List[str] = dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : List[Any] = activation_dropout lowerCamelCase : Tuple = init_std lowerCamelCase : List[Any] = decoder_layerdrop lowerCamelCase : Optional[int] = use_cache lowerCamelCase : Union[str, Any] = scale_embedding lowerCamelCase : Any = use_learned_position_embeddings lowerCamelCase : int = layernorm_embedding super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
283
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = 1 UpperCamelCase = 3 UpperCamelCase = (32, 32) UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCamelCase_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" def extract(*lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ): class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] ): """simple docstring""" UpperCamelCase = torch.ones([0] ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : str ): """simple docstring""" self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) UpperCamelCase = output.images UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert isinstance(pipe.scheduler , lowerCamelCase_ ) assert pipe.safety_checker is None UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.dummy_cond_unet UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCamelCase = self.dummy_vae UpperCamelCase = self.dummy_text_encoder UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCamelCase = unet.half() UpperCamelCase = vae.half() UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase = StableDiffusionPipeline( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ ) UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCamelCase = 40_0366_0346 UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ ) UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCamelCase = 27_3497_1755 UpperCamelCase = 7 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCamelCase = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCamelCase = 10_4435_5234 UpperCamelCase = 12 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCamelCase = torch.manual_seed(lowerCamelCase_ ) UpperCamelCase = sd_pipe( [prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase = output.images UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
343
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class a ( __snake_case ): __lowerCAmelCase : Optional[Any] = "swinv2" __lowerCAmelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :List[str] ,__lowercase :List[str]=2_2_4 ,__lowercase :List[str]=4 ,__lowercase :List[Any]=3 ,__lowercase :Optional[Any]=9_6 ,__lowercase :Any=[2, 2, 6, 2] ,__lowercase :Dict=[3, 6, 1_2, 2_4] ,__lowercase :str=7 ,__lowercase :Optional[Any]=4.0 ,__lowercase :Tuple=True ,__lowercase :List[str]=0.0 ,__lowercase :Optional[int]=0.0 ,__lowercase :List[str]=0.1 ,__lowercase :str="gelu" ,__lowercase :str=False ,__lowercase :Dict=0.02 ,__lowercase :Union[str, Any]=1e-5 ,__lowercase :str=3_2 ,**__lowercase :List[str] ,): super().__init__(**lowerCamelCase_ ) snake_case__ : Tuple = image_size snake_case__ : Tuple = patch_size snake_case__ : Dict = num_channels snake_case__ : List[Any] = embed_dim snake_case__ : Dict = depths snake_case__ : Dict = len(lowerCamelCase_ ) snake_case__ : str = num_heads snake_case__ : Tuple = window_size snake_case__ : int = mlp_ratio snake_case__ : str = qkv_bias snake_case__ : Any = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : int = drop_path_rate snake_case__ : Optional[Any] = hidden_act snake_case__ : List[str] = use_absolute_embeddings snake_case__ : Dict = layer_norm_eps snake_case__ : int = initializer_range snake_case__ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) snake_case__ : Any = (0, 0, 0, 0)
230
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Tuple: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> int: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: requires_backends(self , ["""sentencepiece"""] ) class _lowerCAmelCase ( metaclass=__snake_case ): """simple docstring""" lowerCamelCase = ["sentencepiece"] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str: requires_backends(self , ["""sentencepiece"""] )
344
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
"""simple docstring""" import datasets from .evaluate import evaluate _UpperCamelCase : Dict = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _UpperCamelCase : str = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _UpperCamelCase : List[str] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_ ) return score
220
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Dict =logging.get_logger('transformers.models.encodec') SCREAMING_SNAKE_CASE_: Optional[int] ={ 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } SCREAMING_SNAKE_CASE_: str ={ 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } SCREAMING_SNAKE_CASE_: int ={ 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } SCREAMING_SNAKE_CASE_: List[str] ={ 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } SCREAMING_SNAKE_CASE_: List[Any] ={ 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } SCREAMING_SNAKE_CASE_: int ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } SCREAMING_SNAKE_CASE_: Tuple ={ **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } SCREAMING_SNAKE_CASE_: Any =[] SCREAMING_SNAKE_CASE_: Any =[] def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : str ) -> Dict: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(_a , _a ) if weight_type is not None: UpperCAmelCase_ = getattr(_a , _a ).shape else: UpperCAmelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value elif weight_type == "running_mean": UpperCAmelCase_ = value elif weight_type == "running_var": UpperCAmelCase_ = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ = value elif weight_type == "weight_ih_l0": UpperCAmelCase_ = value elif weight_type == "weight_hh_l0": UpperCAmelCase_ = value elif weight_type == "bias_ih_l0": UpperCAmelCase_ = value elif weight_type == "bias_hh_l0": UpperCAmelCase_ = value elif weight_type == "weight_ih_l1": UpperCAmelCase_ = value elif weight_type == "weight_hh_l1": UpperCAmelCase_ = value elif weight_type == "bias_ih_l1": UpperCAmelCase_ = value elif weight_type == "bias_hh_l1": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase_ = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = [] if model_name == "encodec_24khz" or "encodec_32khz": UpperCAmelCase_ = MAPPING_24K elif model_name == "encodec_48khz": UpperCAmelCase_ = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_a , _a ): logger.info(f"""{name} was ignored""" ) continue UpperCAmelCase_ = False for key, mapped_key in MAPPING.items(): if "*" in key: UpperCAmelCase_ = key.split(".*." ) if prefix in name and suffix in name: UpperCAmelCase_ = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(_a )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , _a ) if "weight_g" in name: UpperCAmelCase_ = """weight_g""" elif "weight_v" in name: UpperCAmelCase_ = """weight_v""" elif "weight_ih_l0" in name: UpperCAmelCase_ = """weight_ih_l0""" elif "weight_hh_l0" in name: UpperCAmelCase_ = """weight_hh_l0""" elif "bias_ih_l0" in name: UpperCAmelCase_ = """bias_ih_l0""" elif "bias_hh_l0" in name: UpperCAmelCase_ = """bias_hh_l0""" elif "weight_ih_l1" in name: UpperCAmelCase_ = """weight_ih_l1""" elif "weight_hh_l1" in name: UpperCAmelCase_ = """weight_hh_l1""" elif "bias_ih_l1" in name: UpperCAmelCase_ = """bias_ih_l1""" elif "bias_hh_l1" in name: UpperCAmelCase_ = """bias_hh_l1""" elif "bias" in name: UpperCAmelCase_ = """bias""" elif "weight" in name: UpperCAmelCase_ = """weight""" elif "running_mean" in name: UpperCAmelCase_ = """running_mean""" elif "running_var" in name: UpperCAmelCase_ = """running_var""" elif "num_batches_tracked" in name: UpperCAmelCase_ = """num_batches_tracked""" else: UpperCAmelCase_ = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : int=None , snake_case_ : Optional[int]=None , ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = EncodecConfig.from_pretrained(_a ) else: UpperCAmelCase_ = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": UpperCAmelCase_ = [8, 5, 4, 4] UpperCAmelCase_ = [2.2] UpperCAmelCase_ = 64 UpperCAmelCase_ = 3_20_00 UpperCAmelCase_ = 20_48 UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False elif model_name == "encodec_48khz": UpperCAmelCase_ = [8, 5, 4, 2] UpperCAmelCase_ = [3.0, 6.0, 12.0, 24.0] UpperCAmelCase_ = 4_80_00 UpperCAmelCase_ = 2 UpperCAmelCase_ = False UpperCAmelCase_ = """time_group_norm""" UpperCAmelCase_ = True UpperCAmelCase_ = 1.0 UpperCAmelCase_ = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) UpperCAmelCase_ = EncodecModel(_a ) UpperCAmelCase_ = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_a ) UpperCAmelCase_ = torch.load(_a ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights UpperCAmelCase_ = original_checkpoint["""best_state"""] recursively_load_weights(_a , _a , _a ) model.save_pretrained(_a ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Tuple =argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) SCREAMING_SNAKE_CASE_: str =parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
1
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A ={ 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class _a ( __snake_case ): __a : List[Any] = "albert" def __init__( self : Optional[int] , lowercase : Optional[int]=30_000 , lowercase : Optional[int]=128 , lowercase : List[str]=4_096 , lowercase : int=12 , lowercase : Optional[Any]=1 , lowercase : Dict=64 , lowercase : List[Any]=16_384 , lowercase : int=1 , lowercase : Union[str, Any]="gelu_new" , lowercase : Optional[int]=0 , lowercase : Any=0 , lowercase : int=512 , lowercase : Any=2 , lowercase : str=0.02 , lowercase : List[str]=1E-12 , lowercase : Optional[int]=0.1 , lowercase : str="absolute" , lowercase : str=0 , lowercase : Tuple=2 , lowercase : Optional[int]=3 , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = embedding_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_hidden_groups UpperCAmelCase = num_attention_heads UpperCAmelCase = inner_group_num UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = position_embedding_type class _a ( __snake_case ): @property def A ( self : Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
34
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Optional[Any] = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off _lowercase : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] _lowercase : Optional[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] class __magic_name__ ( __snake_case): UpperCamelCase__ = "whisper" UpperCamelCase__ = ["past_key_values"] UpperCamelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , lowercase_ : Optional[int]=51865 , lowercase_ : str=80 , lowercase_ : Tuple=6 , lowercase_ : Tuple=4 , lowercase_ : int=6 , lowercase_ : Tuple=4 , lowercase_ : Dict=1536 , lowercase_ : Tuple=1536 , lowercase_ : str=0.0 , lowercase_ : Dict=0.0 , lowercase_ : str=50257 , lowercase_ : List[Any]=True , lowercase_ : int=True , lowercase_ : Tuple="gelu" , lowercase_ : Any=256 , lowercase_ : str=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.02 , lowercase_ : Optional[int]=False , lowercase_ : List[str]=1500 , lowercase_ : Dict=448 , lowercase_ : List[Any]=50256 , lowercase_ : Optional[Any]=50256 , lowercase_ : Optional[Any]=50256 , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=[220, 50256] , lowercase_ : str=False , lowercase_ : List[Any]=256 , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=0.05 , lowercase_ : List[str]=10 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Any=10 , lowercase_ : Dict=0 , lowercase_ : str=7 , **lowercase_ : int , ): lowercase_ : str = vocab_size lowercase_ : str = num_mel_bins lowercase_ : Any = d_model lowercase_ : List[str] = encoder_layers lowercase_ : Optional[Any] = encoder_attention_heads lowercase_ : List[str] = decoder_layers lowercase_ : Dict = decoder_attention_heads lowercase_ : Optional[int] = decoder_ffn_dim lowercase_ : int = encoder_ffn_dim lowercase_ : Tuple = dropout lowercase_ : Any = attention_dropout lowercase_ : Optional[int] = activation_dropout lowercase_ : Optional[int] = activation_function lowercase_ : List[str] = init_std lowercase_ : List[Any] = encoder_layerdrop lowercase_ : List[str] = decoder_layerdrop lowercase_ : Any = use_cache lowercase_ : Optional[int] = encoder_layers lowercase_ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : List[str] = max_source_positions lowercase_ : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowercase_ : Tuple = classifier_proj_size lowercase_ : List[str] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ : Optional[Any] = apply_spec_augment lowercase_ : Union[str, Any] = mask_time_prob lowercase_ : List[Any] = mask_time_length lowercase_ : int = mask_time_min_masks lowercase_ : Union[str, Any] = mask_feature_prob lowercase_ : Optional[Any] = mask_feature_length lowercase_ : List[Any] = mask_feature_min_masks lowercase_ : Optional[int] = median_filter_width super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , ) class __magic_name__ ( __snake_case): @property def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = OrderedDict( [ ("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}), ] ) if self.use_past: lowercase_ : Optional[int] = {0: """batch"""} else: lowercase_ : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ): lowercase_ : Tuple = OrderedDict() lowercase_ : Any = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , ) lowercase_ : Tuple = encoder_inputs["""input_features"""].shape[2] lowercase_ : str = encoder_sequence_length // 2 if self.use_past else seq_length lowercase_ : int = super().generate_dummy_inputs( preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase_ : List[Any] = encoder_inputs.pop("""input_features""" ) lowercase_ : Any = decoder_inputs.pop("""decoder_input_ids""" ) if "past_key_values" in decoder_inputs: lowercase_ : Any = decoder_inputs.pop("""past_key_values""" ) return dummy_inputs @property def SCREAMING_SNAKE_CASE_ ( self : int ): return 1E-3
239
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Optional[int] = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class _a (__snake_case ): '''simple docstring''' UpperCAmelCase__: List[str] = "markuplm" def __init__( self , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=3072 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=2 , A__=0.0_2 , A__=1e-12 , A__=0 , A__=0 , A__=2 , A__=256 , A__=1024 , A__=216 , A__=1001 , A__=32 , A__=50 , A__="absolute" , A__=True , A__=None , **A__ , ): super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) A__ : List[str] = vocab_size A__ : List[str] = hidden_size A__ : int = num_hidden_layers A__ : Dict = num_attention_heads A__ : int = hidden_act A__ : Union[str, Any] = intermediate_size A__ : int = hidden_dropout_prob A__ : List[str] = attention_probs_dropout_prob A__ : List[Any] = max_position_embeddings A__ : str = type_vocab_size A__ : Optional[Any] = initializer_range A__ : Dict = layer_norm_eps A__ : Optional[Any] = position_embedding_type A__ : List[Any] = use_cache A__ : int = classifier_dropout # additional properties A__ : Tuple = max_depth A__ : Union[str, Any] = max_xpath_tag_unit_embeddings A__ : str = max_xpath_subs_unit_embeddings A__ : Optional[int] = tag_pad_id A__ : Tuple = subs_pad_id A__ : Union[str, Any] = xpath_unit_hidden_size
192
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __snake_case ( __snake_case , unittest.TestCase ): _a : Optional[int]= BertJapaneseTokenizer _a : Any= False _a : Optional[Any]= True def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] lowercase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。""" lowercase : Optional[Any] = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : str = self.get_input_output_texts(lowerCamelCase_ ) lowercase : Tuple = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ) lowercase : List[str] = tokenizer.decode(lowerCamelCase_ ,clean_up_tokenization_spaces=lowerCamelCase_ ) return text, ids def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.tokenizer_class(self.vocab_file ) lowercase : Any = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""mecab""" ) self.assertIsNotNone(lowerCamelCase_ ) lowercase : Optional[int] = """こんにちは、世界。\nこんばんは、世界。""" lowercase : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : str = os.path.join(self.tmpdirname ,"""tokenizer.bin""" ) with open(lowerCamelCase_ ,"""wb""" ) as handle: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) with open(lowerCamelCase_ ,"""rb""" ) as handle: lowercase : Optional[int] = pickle.load(lowerCamelCase_ ) lowercase : Dict = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: lowercase : List[str] = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: lowercase : Any = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = MecabTokenizer(do_lower_case=lowerCamelCase_ ,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' try: lowercase : List[str] = MecabTokenizer( do_lower_case=lowerCamelCase_ ,normalize_text=lowerCamelCase_ ,mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = MecabTokenizer(normalize_text=lowerCamelCase_ ,mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] ,) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(lowerCamelCase_ ) lowercase : List[str] = """こんにちは、世界。\nこんばんは、世界。""" lowercase : Optional[Any] = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : str = os.path.join(self.tmpdirname ,"""tokenizer.bin""" ) with open(lowerCamelCase_ ,"""wb""" ) as handle: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) with open(lowerCamelCase_ ,"""rb""" ) as handle: lowercase : int = pickle.load(lowerCamelCase_ ) lowercase : Tuple = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] ,) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国人""", """参政権"""] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国人参政権"""] ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = SudachiTokenizer(do_lower_case=lowerCamelCase_ ,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] ,) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = SudachiTokenizer(normalize_text=lowerCamelCase_ ,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] ,) @require_sudachi def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = SudachiTokenizer(trim_whitespace=lowerCamelCase_ ,sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(lowerCamelCase_ ) lowercase : Any = """こんにちは、世界。\nこんばんは、世界。""" lowercase : List[str] = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowercase : Optional[int] = os.path.join(self.tmpdirname ,"""tokenizer.bin""" ) with open(lowerCamelCase_ ,"""wb""" ) as handle: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) with open(lowerCamelCase_ ,"""rb""" ) as handle: lowercase : Optional[int] = pickle.load(lowerCamelCase_ ) lowercase : Optional[Any] = tokenizer_new.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = JumanppTokenizer(do_lower_case=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = JumanppTokenizer(normalize_text=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = JumanppTokenizer(trim_whitespace=lowerCamelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] ,) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) ,["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] lowercase : Optional[Any] = {} for i, token in enumerate(lowerCamelCase_ ): lowercase : Optional[int] = i lowercase : int = WordpieceTokenizer(vocab=lowerCamelCase_ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) ,["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) ,["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) ,["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) lowercase : Optional[Any] = tokenizer.subword_tokenizer lowercase : Optional[Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(lowerCamelCase_ ,["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) lowercase : str = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(lowerCamelCase_ ,["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) lowercase : Union[str, Any] = tokenizer.encode("""ありがとう。""" ,add_special_tokens=lowerCamelCase_ ) lowercase : List[str] = tokenizer.encode("""どういたしまして。""" ,add_special_tokens=lowerCamelCase_ ) lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowercase : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __snake_case ( __snake_case , unittest.TestCase ): _a : Union[str, Any]= BertJapaneseTokenizer _a : str= False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().setUp() lowercase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type="""character""" ,**lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[Any] = """こんにちは、世界。 \nこんばんは、世界。""" lowercase : int = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type="""character""" ) lowercase : int = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( lowerCamelCase_ ,["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowercase : Optional[int] = {} for i, token in enumerate(lowerCamelCase_ ): lowercase : Dict = i lowercase : Tuple = CharacterTokenizer(vocab=lowerCamelCase_ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) ,["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) ,["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) lowercase : Any = tokenizer.encode("""ありがとう。""" ,add_special_tokens=lowerCamelCase_ ) lowercase : Optional[Any] = tokenizer.encode("""どういたしまして。""" ,add_special_tokens=lowerCamelCase_ ) lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) lowercase : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = """cl-tohoku/bert-base-japanese""" lowercase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ ) class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" ,level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) lowercase : Optional[Any] = """bert-base-cased""" with self.assertLogs("""transformers""" ,level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCamelCase_ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
20
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''▁''' lowerCamelCase_ = {'''vocab_file''': '''prophetnet.tokenizer'''} lowerCamelCase_ = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } lowerCamelCase_ = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } lowerCamelCase_ = { '''microsoft/xprophetnet-large-wiki100-cased''': 512, } def snake_case ( A__ ): UpperCAmelCase_ : Tuple = collections.OrderedDict() with open(_a ,"r" ,encoding="utf-8" ) as reader: UpperCAmelCase_ : Dict = reader.readlines() for index, token in enumerate(_a ): UpperCAmelCase_ : str = token.rstrip("\n" ) UpperCAmelCase_ : int = index return vocab class UpperCamelCase_ (__snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : List[Any]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[PAD]" , lowerCAmelCase_ : str="[CLS]" , lowerCAmelCase_ : Optional[Any]="[MASK]" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : List[Any] , ) -> None: UpperCAmelCase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise UpperCAmelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) UpperCAmelCase_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab UpperCAmelCase_ : str = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): UpperCAmelCase_ : Union[str, Any] = f"""[unused{i}]""" UpperCAmelCase_ : Optional[int] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase_ ) def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : str = self.__dict__.copy() UpperCAmelCase_ : Union[str, Any] = None return state def __setstate__( self : int , lowerCAmelCase_ : Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return ([0] * len(lowerCamelCase_ )) + [1] return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Tuple = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : str ) -> str: return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : int = self.sp_model.PieceToId(lowerCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int ) -> int: UpperCAmelCase_ : Union[str, Any] = """""".join(lowerCamelCase_ ).replace(lowerCamelCase_ , " " ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Optional[int] = os.path.join( lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , "wb" ) as fi: UpperCAmelCase_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
268
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowerCamelCase : str = coefficient_matrix.shape lowerCamelCase : int = constant_matrix.shape if rowsa != colsa: lowerCamelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_a ) if colsa != 1: lowerCamelCase : str = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_a ) if rowsa != rowsa: lowerCamelCase : str = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_a ) if len(_a ) != rowsa: lowerCamelCase : Dict = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(_a )} and {rowsa}""" ) raise ValueError(_a ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) lowerCamelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase : Optional[int] = table.shape strictly_diagonally_dominant(_a ) # Iterates the whole matrix for given number of times for _ in range(_a ): lowerCamelCase : Optional[Any] = [] for row in range(_a ): lowerCamelCase : int = 0 for col in range(_a ): if col == row: lowerCamelCase : Tuple = table[row][col] elif col == cols - 1: lowerCamelCase : Optional[int] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase : List[str] = (temp + val) / denom new_val.append(_a ) lowerCamelCase : List[str] = new_val return [float(_a ) for i in new_val] def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[Any] = table.shape lowerCamelCase : Dict = True for i in range(0 , _a ): lowerCamelCase : Optional[int] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
283
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
0
from collections import defaultdict def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = first_str.lower().strip() UpperCamelCase = second_str.lower().strip() # Remove whitespace UpperCamelCase = first_str.replace(""" """ , """""" ) UpperCamelCase = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(_a ) != len(_a ): return False # Default values for count should be 0 UpperCamelCase = defaultdict(_a ) # For each character in input strings, # increment count in the corresponding for i in range(len(_a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _SCREAMING_SNAKE_CASE = input("""Enter the first string """).strip() _SCREAMING_SNAKE_CASE = input("""Enter the second string """).strip() _SCREAMING_SNAKE_CASE = check_anagrams(input_a, input_b) print(F'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
343
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class a : def __init__( self :List[str] ,__lowercase :Tuple ,__lowercase :List[Any]=1_3 ,__lowercase :Union[str, Any]=7 ,__lowercase :List[str]=True ,__lowercase :Optional[Any]=True ,__lowercase :Dict=True ,__lowercase :List[Any]=True ,__lowercase :List[str]=9_9 ,__lowercase :str=3_2 ,__lowercase :List[str]=5 ,__lowercase :int=4 ,__lowercase :Dict=3_7 ,__lowercase :Tuple="gelu" ,__lowercase :Optional[Any]=0.1 ,__lowercase :List[Any]=0.1 ,__lowercase :Optional[Any]=1_2_8 ,__lowercase :List[str]=3_2 ,__lowercase :int=1_6 ,__lowercase :Any=2 ,__lowercase :int=0.02 ,__lowercase :Optional[int]=3 ,__lowercase :Dict=4 ,__lowercase :List[Any]=None ,): snake_case__ : List[str] = parent snake_case__ : str = batch_size snake_case__ : str = seq_length snake_case__ : List[str] = is_training snake_case__ : Optional[int] = use_input_mask snake_case__ : Union[str, Any] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : int = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : Any = intermediate_size snake_case__ : Optional[int] = hidden_act snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : Optional[Any] = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Union[str, Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : Dict = num_choices snake_case__ : int = scope def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : Any = None if self.use_input_mask: snake_case__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Dict = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : List[str] = None snake_case__ : Tuple = None snake_case__ : List[str] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Optional[int] ): return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def __lowerCamelCase ( self :Any ): ( snake_case__ ) : Tuple = self.prepare_config_and_inputs() snake_case__ : Tuple = True snake_case__ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCamelCase ( self :Any ,__lowercase :List[str] ,__lowercase :Dict ,__lowercase :str ,__lowercase :str ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :List[Any] ): snake_case__ : Optional[Any] = NezhaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) snake_case__ : Any = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) snake_case__ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self :int ,__lowercase :Any ,__lowercase :str ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Tuple ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Tuple ,__lowercase :Optional[int] ,): snake_case__ : Union[str, Any] = True snake_case__ : str = NezhaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : Tuple = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,encoder_attention_mask=lowerCamelCase_ ,) snake_case__ : Optional[Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,) snake_case__ : Union[str, Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self :str ,__lowercase :List[str] ,__lowercase :int ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :Optional[Any] ,__lowercase :int ): snake_case__ : Tuple = NezhaForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : int = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self :List[Any] ,__lowercase :int ,__lowercase :str ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :List[Any] ,__lowercase :int ,__lowercase :Union[str, Any] ): snake_case__ : List[str] = NezhaForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def __lowerCamelCase ( self :int ,__lowercase :List[Any] ,__lowercase :str ,__lowercase :Any ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Any ,__lowercase :Optional[int] ): snake_case__ : Tuple = NezhaForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :int ,__lowercase :Optional[int] ,__lowercase :Optional[int] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Any ): snake_case__ : List[Any] = NezhaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Dict ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :int ,__lowercase :Union[str, Any] ,__lowercase :Any ,__lowercase :Optional[Any] ): snake_case__ : str = self.num_labels snake_case__ : List[Any] = NezhaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : str = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ,__lowercase :Optional[int] ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ): snake_case__ : Optional[int] = self.num_labels snake_case__ : Optional[Any] = NezhaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : Tuple = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self :Any ,__lowercase :str ,__lowercase :List[str] ,__lowercase :Any ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :List[str] ): snake_case__ : Union[str, Any] = self.num_choices snake_case__ : Optional[int] = NezhaForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() snake_case__ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() snake_case__ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() ( snake_case__ ) : List[str] = config_and_inputs snake_case__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __lowerCAmelCase : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase : List[str] = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : List[str] = True def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[Any] ,__lowercase :str ,__lowercase :List[Any]=False ): snake_case__ : Tuple = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): snake_case__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) snake_case__ : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def __lowerCamelCase ( self :Dict ): snake_case__ : List[Any] = NezhaModelTester(self ) snake_case__ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=3_7 ) def __lowerCamelCase ( self :Optional[int] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Dict ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ ) def __lowerCamelCase ( self :Dict ): # This regression test was failing with PyTorch < 1.3 ( snake_case__ ) : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : str = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,) def __lowerCamelCase ( self :List[str] ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def __lowerCamelCase ( self :Tuple ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def __lowerCamelCase ( self :Tuple ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCamelCase_ ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def __lowerCamelCase ( self :str ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCamelCase ( self :int ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def __lowerCamelCase ( self :Tuple ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = NezhaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow @require_torch_gpu def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return snake_case__ : Optional[Any] = True snake_case__ : Tuple = model_class(config=lowerCamelCase_ ) snake_case__ : Optional[Any] = self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) snake_case__ : Optional[int] = torch.jit.trace( lowerCamelCase_ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,'''bert.pt''' ) ) snake_case__ : List[str] = torch.jit.load(os.path.join(lowerCamelCase_ ,'''bert.pt''' ) ,map_location=lowerCamelCase_ ) loaded(inputs_dict['''input_ids'''].to(lowerCamelCase_ ) ,inputs_dict['''attention_mask'''].to(lowerCamelCase_ ) ) @require_torch class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) snake_case__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0] snake_case__ : Optional[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape ,lowerCamelCase_ ) snake_case__ : Optional[Any] = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowerCamelCase_ ,atol=1e-4 ) ) @slow def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) snake_case__ : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : int = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0] snake_case__ : List[Any] = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape ,lowerCamelCase_ ) snake_case__ : str = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowerCamelCase_ ,atol=1e-4 ) )
230
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase ( a_ , a_=False ) -> Union[str, Any]: """simple docstring""" try: A_ : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. A_ : Tuple = default else: # KEY is set, convert it to True or False. try: A_ : Union[str, Any] = strtobool(_a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value UpperCamelCase__ : str = parse_flag_from_env('RUN_SLOW', default=False) UpperCamelCase__ : Tuple = parse_flag_from_env('RUN_REMOTE', default=False) UpperCamelCase__ : Tuple = parse_flag_from_env('RUN_LOCAL', default=True) UpperCamelCase__ : str = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression UpperCamelCase__ : Optional[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') UpperCamelCase__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') UpperCamelCase__ : Dict = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio UpperCamelCase__ : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam UpperCamelCase__ : List[Any] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility UpperCamelCase__ : Dict = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows UpperCamelCase__ : Optional[int] = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" try: import faiss # noqa except ImportError: A_ : Tuple = unittest.skip("""test requires faiss""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" try: import regex # noqa except ImportError: A_ : int = unittest.skip("""test requires regex""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> int: """simple docstring""" try: import elasticsearch # noqa except ImportError: A_ : List[str] = unittest.skip("""test requires elasticsearch""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" try: import sqlalchemy # noqa except ImportError: A_ : Optional[Any] = unittest.skip("""test requires sqlalchemy""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if not config.TORCH_AVAILABLE: A_ : Optional[Any] = unittest.skip("""test requires PyTorch""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> int: """simple docstring""" if not config.TF_AVAILABLE: A_ : Union[str, Any] = unittest.skip("""test requires TensorFlow""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" if not config.JAX_AVAILABLE: A_ : Dict = unittest.skip("""test requires JAX""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if not config.PIL_AVAILABLE: A_ : Any = unittest.skip("""test requires Pillow""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(_a ) else: return test_case def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(_a ) else: return test_case def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(_a ) else: return test_case def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" def _require_spacy_model(a_ ): try: import spacy # noqa F401 spacy.load(_a ) except ImportError: return unittest.skip("""test requires spacy""" )(_a ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(_a ) )(_a ) else: return test_case return _require_spacy_model def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(_a ) else: return test_case def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(_a ) else: return test_case def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: A_ : str = unittest.skip("""test is slow""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: A_ : int = unittest.skip("""test is local""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: A_ : Union[str, Any] = unittest.skip("""test is packaged""" )(_a ) return test_case def UpperCAmelCase ( a_ ) -> Optional[Any]: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: A_ : Tuple = unittest.skip("""test requires remote""" )(_a ) return test_case def UpperCAmelCase ( *a_ ) -> List[str]: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_a ) and name.startswith("""test""" ): for decorator in decorators: A_ : int = decorator(_a ) setattr(cls , _a , _a ) return cls return decorate class _lowerCAmelCase ( __snake_case ): """simple docstring""" pass class _lowerCAmelCase ( __snake_case ): """simple docstring""" lowerCamelCase = 0 lowerCamelCase = 1 lowerCamelCase = 2 @contextmanager def UpperCAmelCase ( a_=OfflineSimulationMode.CONNECTION_FAILS , a_=1E-16 ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = requests.Session().request def timeout_request(a_ , a_ , a_ , **a_ ): # Change the url to an invalid url so that the connection hangs A_ : int = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) A_ : Optional[int] = timeout try: return online_request(_a , _a , **_a ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier A_ : Tuple = url A_ : str = e.args[0] A_ : Optional[int] = (max_retry_error.args[0].replace("""10.255.255.1""" , F"OfflineMock[{url}]" ),) A_ : Any = (max_retry_error,) raise def raise_connection_error(a_ , a_ , **a_ ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=_a ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , _a ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , _a ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _a ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def UpperCAmelCase ( *a_ , **a_ ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_a , **_a ) as tmp_dir: try: os.chdir(_a ) yield finally: os.chdir(_a ) @contextmanager def UpperCAmelCase ( ) -> Tuple: """simple docstring""" import gc gc.collect() A_ : List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase ( ) -> str: """simple docstring""" import gc gc.collect() A_ : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" return deepcopy(_a ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_a ).integers(0 , 1_0_0 , 1_0 ).tolist() def UpperCAmelCase ( a_ ) -> int: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(a_ , *a_ , **a_ ): try: return func(*_a , **_a ) except HTTPError as err: if str(_a ).startswith("""500""" ) or str(_a ).startswith("""502""" ): pytest.xfail(str(_a ) ) raise err return decorator.decorator(_wrapper , _a ) class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = returncode A_ : Optional[Any] = stdout A_ : List[Any] = stderr async def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" while True: A_ : Optional[Any] = await stream.readline() if line: callback(_a ) else: break async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> Dict: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(_a ) ) A_ : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) A_ : Optional[Any] = [] A_ : int = [] def tee(a_ , a_ , a_ , a_="" ): A_ : Tuple = line.decode("""utf-8""" ).rstrip() sink.append(_a ) if not quiet: print(_a , _a , file=_a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda a_ : tee(_a , _a , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda a_ : tee(_a , _a , sys.stderr , label="""stderr:""" ) ), ] , timeout=_a , ) return _RunOutput(await p.wait() , _a , _a ) def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> Optional[Any]: """simple docstring""" A_ : Union[str, Any] = asyncio.get_event_loop() A_ : Any = loop.run_until_complete( _stream_subprocess(_a , env=_a , stdin=_a , timeout=_a , quiet=_a , echo=_a ) ) A_ : List[str] = """ """.join(_a ) if result.returncode > 0: A_ : Union[str, Any] = """\n""".join(result.stderr ) raise RuntimeError( F"\'{cmd_str}\' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"\'{cmd_str}\' produced no output." ) return result def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : int = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) A_ : int = re.sub(R"""^gw""" , """""" , _a , 0 , re.M ) return int(_a ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" A_ : Tuple = 2_9_5_0_0 A_ : Union[str, Any] = pytest_xdist_worker_id() return port + uniq_delta
344
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = torch.device('cpu') def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(_a , stream=_a ).raw ) return im def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Tuple , __snake_case : Any ): '''simple docstring''' lowercase = dct.pop(_a ) lowercase = val def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' lowercase = [] for k in state_dict.keys(): lowercase = k if ".pwconv" in k: lowercase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: lowercase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: lowercase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: lowercase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: lowercase = k_new.split('.' ) if ls[2].isdigit(): lowercase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowercase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ): '''simple docstring''' lowercase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase = 10_00 lowercase = """huggingface/label-files""" lowercase = """imagenet-1k-id2label.json""" lowercase = json.load(open(hf_hub_download(_a , _a , repo_type='dataset' ) , 'r' ) ) lowercase = {int(_a ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase = [3, 3, 6, 4] lowercase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase = [3, 3, 9, 6] lowercase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase = [4, 3, 10, 5] lowercase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase = [4, 4, 12, 6] lowercase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): lowercase = torch.hub.load_state_dict_from_url(_a , map_location='cpu' , check_hash=_a ) else: lowercase = torch.load(_a , map_location='cpu' ) lowercase = checkpoint lowercase = create_rename_keys(_a ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_a , _a , _a ) # load HuggingFace model lowercase = SwiftFormerForImageClassification(_a ).eval() hf_model.load_state_dict(_a ) # prepare test inputs lowercase = prepare_img() lowercase = ViTImageProcessor.from_pretrained('preprocessor_config' ) lowercase = processor(images=_a , return_tensors='pt' ) # compare outputs from both models lowercase = get_expected_output(_a ) lowercase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , _a , atol=1e-3 ) Path(_a ).mkdir(exist_ok=_a ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_a ) if __name__ == "__main__": _UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _UpperCamelCase : str = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
220
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version SCREAMING_SNAKE_CASE_: Dict =version.parse(importlib_metadata.version('nltk')) if NLTK_VERSION >= version.Version('3.6.4'): from nltk import word_tokenize SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' SCREAMING_SNAKE_CASE_: List[Any] ='\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' SCREAMING_SNAKE_CASE_: str ='\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[ "https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score", "https://en.wikipedia.org/wiki/METEOR", ] , ) def _lowercase (self : Optional[int] , __a : List[Any] ): import nltk nltk.download("wordnet" ) if NLTK_VERSION >= version.Version("3.6.5" ): nltk.download("punkt" ) if NLTK_VERSION >= version.Version("3.6.6" ): nltk.download("omw-1.4" ) def _lowercase (self : Tuple , __a : Optional[Any] , __a : Any , __a : List[str]=0.9 , __a : Dict=3 , __a : int=0.5 ): if NLTK_VERSION >= version.Version("3.6.5" ): UpperCAmelCase_ = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase_ ) , word_tokenize(lowerCamelCase_ ) , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ) ] else: UpperCAmelCase_ = [ meteor_score.single_meteor_score(lowerCamelCase_ , lowerCamelCase_ , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ ) ] return {"meteor": np.mean(lowerCamelCase_ )}
1
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]: UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : int = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : int = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : int = use_absolute_embeddings UpperCAmelCase_ : Any = patch_norm UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : List[str] = encoder_stride def A__ ( self: Any ) -> int: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Union[str, Any]: return SwinvaConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str: UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : int = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: str ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Tuple = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) A__ : Optional[Any] = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) A__ : List[Any] = False A__ : Tuple = False A__ : int = False A__ : Union[str, Any] = False def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = SwinvaModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ) def A__ ( self: Optional[int] ) -> List[Any]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: Any ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A__ ( self: Tuple ) -> List[str]: pass def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = True for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[Any] = outputs.attentions UpperCAmelCase_ : List[str] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[Any] = config.window_size**2 UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[Any] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) if hasattr(self.model_tester ,"""num_hidden_states_types""" ): UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,) def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : List[str] = outputs.hidden_states UpperCAmelCase_ : Optional[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # Swinv2 has a different seq_length UpperCAmelCase_ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape UpperCAmelCase_ : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCAmelCase_ : Any = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = 3 UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) def A__ ( self: Optional[int] ) -> str: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def A__ ( self: str ) -> Tuple: for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Any ) -> int: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Dict ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A__ ( self: str ) -> List[Any]: UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( lowerCamelCase_ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
345
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') A =logging.getLogger(__name__) @dataclass class _a : __a : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __a : Optional[str] = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) __a : int = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__snake_case , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __a : bool = field( default=__snake_case , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) __a : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __a : Optional[int] = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) __a : Optional[str] = field( default=__snake_case , metadata={"""help""": """A csv or a json file containing the training data."""} ) __a : Optional[str] = field( default=__snake_case , metadata={"""help""": """A csv or a json file containing the validation data."""} ) __a : Optional[str] = field(default=__snake_case , metadata={"""help""": """A csv or a json file containing the test data."""} ) def A ( self : List[str] ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: UpperCAmelCase = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCAmelCase = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _a : __a : str = field( default=__snake_case , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __a : bool = field( default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __a : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a : bool = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def snake_case_ (): UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(_a ) datasets.utils.logging.set_verbosity(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCAmelCase = data_args.train_file.split('''.''' )[-1] UpperCAmelCase = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCAmelCase = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files UpperCAmelCase = load_dataset('''csv''' , data_files=_a , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCAmelCase = load_dataset('''json''' , data_files=_a , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCAmelCase = raw_datasets["""train"""].features["""label"""].names UpperCAmelCase = len(_a ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer UpperCAmelCase = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_a , ) UpperCAmelCase = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCAmelCase = {"""Refused""": 0, """Entailed""": 1} UpperCAmelCase = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_a : Optional[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(_a : Optional[Any] ): UpperCAmelCase = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] UpperCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd UpperCAmelCase = examples["""statement"""] UpperCAmelCase = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) UpperCAmelCase = tokenizer(_a , _a , padding=_a , max_length=_a , truncation=_a ) UpperCAmelCase = examples["""label"""] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): UpperCAmelCase = raw_datasets.map( _a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase = raw_datasets["""train"""] if data_args.max_train_samples is not None: UpperCAmelCase = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: UpperCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) UpperCAmelCase = raw_datasets["""test"""] if data_args.max_predict_samples is not None: UpperCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_a ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_a : EvalPrediction ): UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _a ) else p.predictions UpperCAmelCase = np.argmax(_a , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase = default_data_collator elif training_args.fpaa: UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) else: UpperCAmelCase = None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase = last_checkpoint UpperCAmelCase = trainer.train(resume_from_checkpoint=_a ) UpperCAmelCase = train_result.metrics UpperCAmelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_a ) ) UpperCAmelCase = min(_a , len(_a ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , _a ) trainer.save_metrics('''train''' , _a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate(eval_dataset=_a ) UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_a ) UpperCAmelCase = min(_a , len(_a ) ) trainer.log_metrics('''eval''' , _a ) trainer.save_metrics('''eval''' , _a ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCAmelCase = predict_dataset.remove_columns('''label''' ) UpperCAmelCase = trainer.predict(_a , metric_key_prefix='''predict''' ).predictions UpperCAmelCase = np.argmax(_a , axis=1 ) UpperCAmelCase = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(_a , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(_a ): UpperCAmelCase = label_list[item] writer.write(F"{index}\t{item}\n" ) UpperCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) def snake_case_ (_a : Dict ): main() if __name__ == "__main__": main()
34
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase_ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } UpperCamelCase_ = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : int = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) UpperCAmelCase_ : Dict = bs[:] UpperCAmelCase_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = set() UpperCAmelCase_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Optional[int] = char return pairs class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = VOCAB_FILES_NAMES A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any: UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : int = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle: UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self: List[str] ) -> List[str]: return len(self.encoder ) def A__ ( self: Any ) -> Union[str, Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]: if token in self.cache: return self.cache[token] UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ ) UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = word return word def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]: UpperCAmelCase_ : str = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase_ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) ) return bpe_tokens def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]: return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]: return self.decoder.get(lowerCamelCase_ ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]: UpperCAmelCase_ : str = """""".join(lowerCamelCase_ ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : List[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : List[str] = os.path.join( lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" ) UpperCAmelCase_ : str = 0 with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) UpperCAmelCase_ : Tuple = token_index writer.write(""" """.join(lowerCamelCase_ ) + """\n""" ) index += 1 return vocab_file, merge_file def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]: UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = """ """ + text return (text, kwargs) def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict: UpperCAmelCase_ : Optional[int] = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : str = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
345
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig _lowercase : List[Any] = logging.getLogger(__name__) class __magic_name__ ( __snake_case): UpperCamelCase__ = "masked_bert" def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : List[Any]=12 , lowercase_ : List[Any]=12 , lowercase_ : Tuple=3072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Any=1E-12 , lowercase_ : Optional[Any]=0 , lowercase_ : Dict="topK" , lowercase_ : str="constant" , lowercase_ : Optional[int]=0.0 , **lowercase_ : List[str] , ): super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) lowercase_ : Optional[int] = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Tuple = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Any = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : int = max_position_embeddings lowercase_ : List[str] = type_vocab_size lowercase_ : List[str] = initializer_range lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : int = pruning_method lowercase_ : Optional[Any] = mask_init lowercase_ : Tuple = mask_scale
239
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A__ ( self: List[str] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Optional[Any] = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ ) return image @property def A__ ( self: List[Any] ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : int = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def A__ ( self: str ) -> List[str]: torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) @property def A__ ( self: Tuple ) -> Tuple: def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ): class _snake_case : '''simple docstring''' def __init__( self: List[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = torch.ones([0] ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int: self.pixel_values.to(lowerCamelCase_ ) return self return Out() return extract def A__ ( self: Union[str, Any] ) -> Tuple: UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : str = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : List[Any] = output.images UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Dict = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.dummy_cond_unet UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : str = self.dummy_vae UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : int = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: str ) -> Dict: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ ) assert isinstance(lowerCamelCase_ ,lowerCamelCase_ ) assert isinstance(pipe.scheduler ,lowerCamelCase_ ) assert pipe.safety_checker is None UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : Tuple = self.dummy_cond_unet UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.dummy_vae UpperCAmelCase_ : List[str] = self.dummy_text_encoder UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 UpperCAmelCase_ : Optional[Any] = unet.half() UpperCAmelCase_ : Optional[int] = vae.half() UpperCAmelCase_ : int = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Any = StableDiffusionPipeline( unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,) UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger""" UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ) -> List[Any]: UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : str = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) UpperCAmelCase_ : Optional[int] = 4003660346 UpperCAmelCase_ : int = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Any = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ ) UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" UpperCAmelCase_ : List[Any] = 2734971755 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : Dict = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) UpperCAmelCase_ : Optional[Any] = 1044355234 UpperCAmelCase_ : List[str] = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) UpperCAmelCase_ : Any = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
345
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name A_ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def UpperCamelCase (lowercase_: List[Any] , lowercase_: Tuple , lowercase_: Any=8 ) -> List[str]: A__ : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A__ : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class _a (__snake_case ): '''simple docstring''' def __init__( self , A__ , A__ , A__ , ): super().__init__() self.register_modules( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) A__ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ): if latents is None: A__ : int = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A__ : Tuple = latents.to(lowerCamelCase_ ) A__ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __A ( self , A__=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A__ : Optional[Any] = torch.device(F"""cuda:{gpu_id}""" ) A__ : List[str] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def __A ( self , A__=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) A__ : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A__ : int = None for cpu_offloaded_model in [self.unet, self.movq]: A__ : List[str] = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. A__ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self , A__ , A__ , A__ = 512 , A__ = 512 , A__ = 100 , A__ = 4.0 , A__ = 1 , A__ = None , A__ = None , A__ = "pil" , A__ = True , ): A__ : Any = self._execution_device A__ : List[str] = guidance_scale > 1.0 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ : List[Any] = torch.cat(lowerCamelCase_ , dim=0 ) A__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCamelCase_ , lowerCamelCase_ ): A__ : Dict = torch.cat(lowerCamelCase_ , dim=0 ) if do_classifier_free_guidance: A__ : Union[str, Any] = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) A__ : Any = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) A__ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) A__ : str = self.scheduler.timesteps A__ : List[str] = self.unet.config.in_channels A__ : Dict = downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent A__ : Optional[int] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance A__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Union[str, Any] = {"""image_embeds""": image_embeds} A__ : Union[str, Any] = self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: A__ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) A__ : Dict = noise_pred.chunk(2 ) A__ : Union[str, Any] = variance_pred.chunk(2 ) A__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A__ : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A__ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A__ : Any = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0] # post-processing A__ : Optional[int] = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: A__ : Optional[int] = image * 0.5 + 0.5 A__ : Dict = image.clamp(0 , 1 ) A__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ : List[str] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
192
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
0
import logging import os import threading import time try: import warnings except ImportError: lowercase : Dict = None try: import msvcrt except ImportError: lowercase : Optional[int] = None try: import fcntl except ImportError: lowercase : Dict = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase : int = OSError # Data # ------------------------------------------------ lowercase : Dict = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] lowercase : Optional[int] = """3.0.12""" lowercase : List[Any] = None def _snake_case( ) -> Optional[int]: global _logger lowercase : str = _logger or logging.getLogger(__name__ ) return _logger class __snake_case ( __snake_case ): def __init__( self ,snake_case ): '''simple docstring''' lowercase : Dict = lock_file return None def __str__( self ): '''simple docstring''' lowercase : Union[str, Any] = f"The file lock \'{self.lock_file}\' could not be acquired." return temp class __snake_case : def __init__( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = lock return None def __enter__( self ): '''simple docstring''' return self.lock def __exit__( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' self.lock.release() return None class __snake_case : def __init__( self ,snake_case ,snake_case=-1 ,snake_case=None ): '''simple docstring''' lowercase : Any = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowercase : List[Any] = self.hash_filename_if_too_long(lowerCamelCase_ ,lowerCamelCase_ ) # The path to the lock file. lowercase : Optional[int] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase : Dict = None # The default timeout value. lowercase : Optional[int] = timeout # We use this lock primarily for the lock counter. lowercase : List[str] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase : Optional[Any] = 0 return None @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._lock_file @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._timeout @timeout.setter def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Optional[int] = float(lowerCamelCase_ ) return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' raise NotImplementedError() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' raise NotImplementedError() @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._lock_file_fd is not None def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=0.05 ): '''simple docstring''' if timeout is None: lowercase : Dict = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase : int = id(self ) lowercase : List[str] = self._lock_file lowercase : List[str] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(lowerCamelCase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase : List[Any] = max(0 ,self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _SCREAMING_SNAKE_CASE ( self ,snake_case=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase : Any = id(self ) lowercase : List[Any] = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() lowercase : int = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self ): '''simple docstring''' self.acquire() return self def __exit__( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' self.release() return None def __del__( self ): '''simple docstring''' self.release(force=lowerCamelCase_ ) return None def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = os.path.basename(lowerCamelCase_ ) if len(lowerCamelCase_ ) > max_length and max_length > 0: lowercase : List[Any] = os.path.dirname(lowerCamelCase_ ) lowercase : List[str] = str(hash(lowerCamelCase_ ) ) lowercase : int = filename[: max_length - len(lowerCamelCase_ ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(lowerCamelCase_ ,lowerCamelCase_ ) else: return path class __snake_case ( __snake_case ): def __init__( self ,snake_case ,snake_case=-1 ,snake_case=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase_ ,timeout=lowerCamelCase_ ,max_filename_length=lowerCamelCase_ ) lowercase : str = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase : Union[str, Any] = os.open(self._lock_file ,lowerCamelCase_ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase_ ,msvcrt.LK_NBLCK ,1 ) except OSError: os.close(lowerCamelCase_ ) else: lowercase : Optional[Any] = fd return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self._lock_file_fd lowercase : Dict = None msvcrt.locking(lowerCamelCase_ ,msvcrt.LK_UNLCK ,1 ) os.close(lowerCamelCase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __snake_case ( __snake_case ): def __init__( self ,snake_case ,snake_case=-1 ,snake_case=None ): '''simple docstring''' lowercase : Optional[Any] = os.statvfs(os.path.dirname(lowerCamelCase_ ) ).f_namemax super().__init__(lowerCamelCase_ ,timeout=lowerCamelCase_ ,max_filename_length=lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase : Any = os.open(self._lock_file ,lowerCamelCase_ ) try: fcntl.flock(lowerCamelCase_ ,fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase_ ) else: lowercase : int = fd return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self._lock_file_fd lowercase : str = None fcntl.flock(lowerCamelCase_ ,fcntl.LOCK_UN ) os.close(lowerCamelCase_ ) return None class __snake_case ( __snake_case ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase : List[str] = os.open(self._lock_file ,lowerCamelCase_ ) except OSError: pass else: lowercase : str = fd return None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' os.close(self._lock_file_fd ) lowercase : Dict = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowercase : Optional[Any] = None if msvcrt: lowercase : List[Any] = WindowsFileLock elif fcntl: lowercase : Dict = UnixFileLock else: lowercase : Union[str, Any] = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
20
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: str ) -> int: UpperCAmelCase_ : List[Any] = """ylacombe/bark-small""" UpperCAmelCase_ : Tuple = tempfile.mkdtemp() UpperCAmelCase_ : Union[str, Any] = """en_speaker_1""" UpperCAmelCase_ : Optional[Any] = """This is a test string""" UpperCAmelCase_ : int = """speaker_embeddings_path.json""" UpperCAmelCase_ : Any = """speaker_embeddings""" def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ ) def A__ ( self: str ) -> Union[str, Any]: shutil.rmtree(self.tmpdirname ) def A__ ( self: List[Any] ) -> int: UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) UpperCAmelCase_ : Optional[int] = 35 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Dict = 8 UpperCAmelCase_ : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" ) np.savez(lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ ) UpperCAmelCase_ : int = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def A__ ( self: Dict ) -> Tuple: UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ) UpperCAmelCase_ : str = tokenizer( self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
345
0
"""simple docstring""" import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : str = checkpoint UpperCAmelCase_ : Any = {} UpperCAmelCase_ : Optional[Any] = vae_state_dict["""encoder.conv_in.weight"""] UpperCAmelCase_ : Optional[Any] = vae_state_dict["""encoder.conv_in.bias"""] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["""encoder.conv_out.weight"""] UpperCAmelCase_ : List[Any] = vae_state_dict["""encoder.conv_out.bias"""] UpperCAmelCase_ : Tuple = vae_state_dict["""encoder.norm_out.weight"""] UpperCAmelCase_ : Tuple = vae_state_dict["""encoder.norm_out.bias"""] UpperCAmelCase_ : Optional[int] = vae_state_dict["""decoder.conv_in.weight"""] UpperCAmelCase_ : Optional[Any] = vae_state_dict["""decoder.conv_in.bias"""] UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.conv_out.weight"""] UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.conv_out.bias"""] UpperCAmelCase_ : Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""] UpperCAmelCase_ : str = vae_state_dict["""decoder.norm_out.bias"""] UpperCAmelCase_ : Dict = vae_state_dict["""quant_conv.weight"""] UpperCAmelCase_ : Union[str, Any] = vae_state_dict["""quant_conv.bias"""] UpperCAmelCase_ : Tuple = vae_state_dict["""post_quant_conv.weight"""] UpperCAmelCase_ : List[str] = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ : List[str] = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(_a ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ : List[str] = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(_a ) } for i in range(_a ): UpperCAmelCase_ : Optional[int] = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Optional[Any] = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ : Any = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ : Optional[Any] = renew_vae_resnet_paths(_a ) UpperCAmelCase_ : Tuple = {"""old""": F"""down.{i}.block""", """new""": F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a ) UpperCAmelCase_ : List[Any] = [key for key in vae_state_dict if """encoder.mid.block""" in key] UpperCAmelCase_ : Tuple = 2 for i in range(1 ,num_mid_res_blocks + 1 ): UpperCAmelCase_ : Any = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ : Union[str, Any] = renew_vae_resnet_paths(_a ) UpperCAmelCase_ : Any = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a ) UpperCAmelCase_ : int = [key for key in vae_state_dict if """encoder.mid.attn""" in key] UpperCAmelCase_ : str = renew_vae_attention_paths(_a ) UpperCAmelCase_ : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a ) conv_attn_to_linear(_a ) for i in range(_a ): UpperCAmelCase_ : Optional[Any] = num_up_blocks - 1 - i UpperCAmelCase_ : List[Any] = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ : Optional[int] = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ : Optional[Any] = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ : str = renew_vae_resnet_paths(_a ) UpperCAmelCase_ : Optional[int] = {"""old""": F"""up.{block_id}.block""", """new""": F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a ) UpperCAmelCase_ : Dict = [key for key in vae_state_dict if """decoder.mid.block""" in key] UpperCAmelCase_ : Dict = 2 for i in range(1 ,num_mid_res_blocks + 1 ): UpperCAmelCase_ : int = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ : Union[str, Any] = renew_vae_resnet_paths(_a ) UpperCAmelCase_ : int = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a ) UpperCAmelCase_ : Union[str, Any] = [key for key in vae_state_dict if """decoder.mid.attn""" in key] UpperCAmelCase_ : Dict = renew_vae_attention_paths(_a ) UpperCAmelCase_ : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a ) conv_attn_to_linear(_a ) return new_checkpoint def snake_case ( A__ ,A__ ,): UpperCAmelCase_ : List[str] = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ : Union[str, Any] = io.BytesIO(r.content ) UpperCAmelCase_ : str = OmegaConf.load(_a ) UpperCAmelCase_ : Union[str, Any] = 5_12 UpperCAmelCase_ : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ : int = {} with safe_open(_a ,framework="pt" ,device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ : Tuple = f.get_tensor(_a ) else: UpperCAmelCase_ : Dict = torch.load(_a ,map_location=_a )["""state_dict"""] # Convert the VAE model. UpperCAmelCase_ : Optional[int] = create_vae_diffusers_config(_a ,image_size=_a ) UpperCAmelCase_ : List[Any] = custom_convert_ldm_vae_checkpoint(_a ,_a ) UpperCAmelCase_ : Any = AutoencoderKL(**_a ) vae.load_state_dict(_a ) vae.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase_ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
268
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Any: UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = -1 UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : Optional[int] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Dict ) -> Optional[Any]: UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() UpperCAmelCase_ : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[Any] ) -> Dict: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = -1 UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ) UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase_ : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: str ) -> str: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" ) UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Any = -1 UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n" UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) ) def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = -1 UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 ) UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = """""" for new_text in streamer: streamer_text += new_text
345
0
_snake_case = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
283
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _SCREAMING_SNAKE_CASE = """\ """ _SCREAMING_SNAKE_CASE = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ _SCREAMING_SNAKE_CASE = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to \'cuda\' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id=\'gpt2\', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=\'\'] >>> results = perplexity.compute(model_id=\'gpt2\', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) [\'perplexities\', \'mean_perplexity\'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int = 16 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Any=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase = """cuda""" else: UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCamelCase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model.to(lowerCamelCase_ ) UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(lowerCamelCase_ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase = model.config.max_length - 1 else: UpperCamelCase = model.config.max_length UpperCamelCase = tokenizer( lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors="""pt""" , return_attention_mask=lowerCamelCase_ , ).to(lowerCamelCase_ ) UpperCamelCase = encodings["""input_ids"""] UpperCamelCase = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase = [] UpperCamelCase = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ) ): UpperCamelCase = min(start_index + batch_size , len(lowerCamelCase_ ) ) UpperCamelCase = encoded_texts[start_index:end_index] UpperCamelCase = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase_ ) UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCamelCase_ ), attn_mask] , dim=1 ) UpperCamelCase = encoded_batch with torch.no_grad(): UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).logits UpperCamelCase = out_logits[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = attn_mask[..., 1:].contiguous() UpperCamelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , lowerCamelCase_ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase_ )}
343
def lowerCamelCase_ ( _a : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [0] * len(_a ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: UpperCAmelCase_ : List[str] = queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print("""Cycle exists""" ) else: print(_a ) # Adjacency List of Graph UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
345
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "swinv2" A__ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple: super().__init__(**lowerCamelCase_ ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Tuple = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Dict = depths UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : Tuple = window_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = use_absolute_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
345
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
344
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: int ) -> str: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : List[str] = mock.Mock() UpperCAmelCase_ : List[Any] = 500 UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A__ ( self: str ) -> int: # A mock response for an HTTP head request to emulate server down UpperCAmelCase_ : str = mock.Mock() UpperCAmelCase_ : Optional[int] = 500 UpperCAmelCase_ : int = {} UpperCAmelCase_ : Union[str, Any] = HTTPError UpperCAmelCase_ : List[Any] = {} # Download this model to make sure it's in the cache. UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head: UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self: str ) -> Dict: # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase_ : Any = tempfile.mktemp() with open(lowerCamelCase_ ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ ) finally: os.remove(lowerCamelCase_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def A__ ( self: List[str] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _snake_case ( unittest.TestCase ): '''simple docstring''' A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A__ ( cls: Dict ) -> Optional[int]: UpperCAmelCase_ : List[str] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def A__ ( cls: Optional[Any] ) -> List[str]: try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def A__ ( self: Any ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def A__ ( self: Optional[int] ) -> Any: with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token ) UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def A__ ( self: Optional[int] ) -> Optional[Any]: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" ) with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ ) bert_tokenizer.save_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[Any] ) -> Any: UpperCAmelCase_ : Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def A__ ( self: Tuple ) -> Optional[int]: UpperCAmelCase_ : str = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ : Dict = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def A__ ( self: Union[str, Any] ) -> int: UpperCAmelCase_ : List[str] = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def A__ ( self: int ) -> List[str]: UpperCAmelCase_ : int = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def A__ ( self: List[Any] ) -> Any: # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase_ : Tuple = Trie() UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
345
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' if "img_encoder.pos_embed" in name: lowercase = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' ) if "img_encoder.patch_embed.proj" in name: lowercase = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' ) if "img_encoder.patch_embed.norm" in name: lowercase = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' ) if "img_encoder.layers" in name: lowercase = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' ) if "blocks" in name and "res" not in name: lowercase = name.replace('blocks' , 'layers' ) if "attn" in name and "pre_assign" not in name: lowercase = name.replace('attn' , 'self_attn' ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase = name.replace('proj' , 'out_proj' ) if "pre_assign_attn.attn.proj" in name: lowercase = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' ) if "norm1" in name: lowercase = name.replace('norm1' , 'layer_norm1' ) if "norm2" in name and "pre_assign" not in name: lowercase = name.replace('norm2' , 'layer_norm2' ) if "img_encoder.norm" in name: lowercase = name.replace('img_encoder.norm' , 'vision_model.layernorm' ) # text encoder if "text_encoder.token_embedding" in name: lowercase = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' ) if "text_encoder.positional_embedding" in name: lowercase = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "text_encoder.transformer.resblocks." in name: lowercase = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' ) if "ln_1" in name: lowercase = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowercase = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowercase = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowercase = name.replace('c_proj' , 'fc2' ) if "text_encoder" in name: lowercase = name.replace('text_encoder' , 'text_model' ) if "ln_final" in name: lowercase = name.replace('ln_final' , 'final_layer_norm' ) # projection layers if "img_projector.linear_hidden." in name: lowercase = name.replace('img_projector.linear_hidden.' , 'visual_projection.' ) if "img_projector.linear_out." in name: lowercase = name.replace('img_projector.linear_out.' , 'visual_projection.3.' ) if "text_projector.linear_hidden" in name: lowercase = name.replace('text_projector.linear_hidden' , 'text_projection' ) if "text_projector.linear_out" in name: lowercase = name.replace('text_projector.linear_out' , 'text_projection.3' ) return name def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : Dict ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(_a ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split('.' ) lowercase = int(key_split[2] ), int(key_split[4] ) lowercase = config.vision_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase = key.split('.' ) lowercase = int(key_split[3] ) lowercase = config.text_config.hidden_size if "weight" in key: lowercase = val[:dim, :] lowercase = val[ dim : dim * 2, : ] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = rename_key(_a ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase = val.squeeze_() else: lowercase = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str]="groupvit-gcc-yfcc" , __snake_case : Tuple=False ): '''simple docstring''' lowercase = GroupViTConfig() lowercase = GroupViTModel(_a ).eval() lowercase = torch.load(_a , map_location='cpu' )["""model"""] lowercase = convert_state_dict(_a , _a ) lowercase = model.load_state_dict(_a , strict=_a ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_a ) == 0) # verify result lowercase = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' ) lowercase = prepare_img() lowercase = processor(text=['a photo of a cat', 'a photo of a dog'] , images=_a , padding=_a , return_tensors='pt' ) with torch.no_grad(): lowercase = model(**_a ) if model_name == "groupvit-gcc-yfcc": lowercase = torch.tensor([[13.35_23, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase = torch.tensor([[16.18_73, 8.6230]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _a , atol=1e-3 ) processor.save_pretrained(_a ) model.save_pretrained(_a ) print('Successfully saved processor and model to' , _a ) if push_to_hub: print('Pushing to the hub...' ) processor.push_to_hub(_a , organization='nielsr' ) model.push_to_hub(_a , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) _UpperCamelCase : List[Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
220
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Any = ["flax"] def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Dict = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[str] = ["flax"] def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : int = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : List[Any] = ["flax"] def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : str = ["flax"] def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Union[str, Any] = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Tuple = ["flax"] def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[Any] = ["flax"] def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int: requires_backends(cls ,["""flax"""] ) class _snake_case ( metaclass=__snake_case ): '''simple docstring''' A__ : Optional[int] = ["flax"] def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]: requires_backends(cls ,["""flax"""] )
345
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Any ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __A ( __snake_case ): a__ : Tuple = "dpr" def __init__(self : List[str] , __a : Tuple=30522 , __a : Union[str, Any]=768 , __a : Any=12 , __a : Optional[Any]=12 , __a : Optional[Any]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : Union[str, Any]=0.1 , __a : str=512 , __a : Optional[int]=2 , __a : int=0.02 , __a : List[Any]=1E-12 , __a : Tuple=0 , __a : Dict="absolute" , __a : int = 0 , **__a : List[str] , ): super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = projection_dim UpperCAmelCase_ = position_embedding_type
1
import random from typing import Any def lowerCamelCase_ ( _a : list ): '''simple docstring''' for _ in range(len(_a ) ): UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a] return data if __name__ == "__main__": UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7] UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
345
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( __snake_case ): __a : Union[str, Any] = ["image_processor", "tokenizer"] __a : Union[str, Any] = "ViTImageProcessor" __a : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[Any] , lowercase : Dict=None , lowercase : int=None , **lowercase : str ): '''simple docstring''' UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase_ , ) UpperCAmelCase = kwargs.pop('''feature_extractor''' ) UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : Union[str, Any] , lowercase : Dict=None , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=None , **lowercase : str ): '''simple docstring''' if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: UpperCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None: UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None and images is not None: UpperCAmelCase = { """pixel_values""": image_features.pixel_values, """conditional_pixel_values""": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: UpperCAmelCase = { """conditional_pixel_values""": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def A ( self : Tuple , *lowercase : Optional[Any] , **lowercase : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def A ( self : Union[str, Any] , *lowercase : List[str] , **lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def A ( self : Any ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase_ , ) return self.image_processor_class @property def A ( self : Tuple ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase_ , ) return self.image_processor
34
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Tuple = attentions if self.add_downsample: UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> int: UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Dict = FlaxResnetBlockaD( in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any: UpperCAmelCase_ : Union[str, Any] = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = True A__ : bool = False A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: str ) -> Any: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[str] = [] for i in range(self.num_layers ): UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : List[str] = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1] UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : int A__ : int A__ : float = 0.0 A__ : int = 1 A__ : bool = True A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> Dict: UpperCAmelCase_ : Any = [] for i in range(self.num_layers ): UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : str = resnets if self.add_upsample: UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1] UpperCAmelCase_ : str = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) if self.add_upsample: UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class _snake_case ( nn.Module ): '''simple docstring''' A__ : int A__ : float = 0.0 A__ : int = 1 A__ : int = 1 A__ : bool = False A__ : bool = False A__ : jnp.dtype = jnp.floataa def A__ ( self: Dict ) -> List[str]: # there is always at least one resnet UpperCAmelCase_ : List[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : Any = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(lowerCamelCase_ ) UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(lowerCamelCase_ ) UpperCAmelCase_ : Dict = resnets UpperCAmelCase_ : Any = attentions def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ ) return hidden_states
345
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[Any] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Tuple = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowercase_ : Dict = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Dict = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowercase_ : List[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): # pass variant but use the non-variant filenames lowercase_ : Union[str, Any] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] lowercase_ : Union[str, Any] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : List[str] = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Optional[Any] = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] lowercase_ : Optional[int] = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] lowercase_ : Any = """fp16""" self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Dict = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] lowercase_ : Any = """fp16""" self.assertFalse(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
239
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : '''simple docstring''' def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]: UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : str = bp_numa UpperCAmelCase_ : List[Any] = bp_numa UpperCAmelCase_ : Optional[int] = conva_get[:2] UpperCAmelCase_ : List[Any] = conva_get[2] UpperCAmelCase_ : str = size_pa UpperCAmelCase_ : Optional[int] = rate_w UpperCAmelCase_ : Dict = rate_t UpperCAmelCase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 ) UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1 UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1 UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple: # save model dict with pickle UpperCAmelCase_ : Dict = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(lowerCamelCase_ ,"""wb""" ) as f: pickle.dump(lowerCamelCase_ ,lowerCamelCase_ ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]: # read saved model with open(lowerCamelCase_ ,"""rb""" ) as f: UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" ) UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" ) UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" ) UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" ) UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" ) UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" ) # create model instance UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # modify model parameter UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" ) UpperCAmelCase_ : int = model_dic.get("""wkj""" ) UpperCAmelCase_ : int = model_dic.get("""vji""" ) UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" ) UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" ) UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" ) return conv_ins def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple: return 1 / (1 + np.exp(-1 * x )) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: return round(lowerCamelCase_ ,3 ) def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any: # convolution process UpperCAmelCase_ : Optional[Any] = convs[0] UpperCAmelCase_ : int = convs[1] UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus UpperCAmelCase_ : Dict = [] for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ): UpperCAmelCase_ : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = [] for i_focus in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = ( np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ ,lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion UpperCAmelCase_ : Optional[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]: # pooling process UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] ) UpperCAmelCase_ : Any = int(size_map / size_pooling ) UpperCAmelCase_ : Optional[int] = [] for i_map in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Any = featuremaps[i_map] UpperCAmelCase_ : Tuple = [] for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]: # expanding three dimension data to one dimension list UpperCAmelCase_ : List[Any] = [] for i in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : Tuple = np.shape(data[i] ) UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] ) UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ ) return data_expanded def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]: # expanding matrix to one dimension list UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : str = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] ) return data_expanded def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = 0 for i_map in range(lowerCamelCase_ ): UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) ) for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ): UpperCAmelCase_ : Any = pd_pool[ i_pool ] UpperCAmelCase_ : List[str] = i_pool + 1 UpperCAmelCase_ : Optional[Any] = np.multiply( lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]: # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = 10000 while rp < n_repeat and mse >= error_accuracy: UpperCAmelCase_ : List[str] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCAmelCase_ : str = np.asmatrix(datas_train[p] ) UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : int = np.shape(lowerCamelCase_ ) UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = data_bp_input UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa UpperCAmelCase_ : int = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCAmelCase_ : List[str] = np.multiply( (data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : List[Any] = np.multiply( np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) ) UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji ) UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist() UpperCAmelCase_ : str = self._calculate_gradient_from_pool( lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] ) UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCAmelCase_ : str = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCAmelCase_ : int = rp + 1 UpperCAmelCase_ : Any = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ ,"""+-""" ) plt.plot(lowerCamelCase_ ,"""r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase_ ,alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple: # model predict UpperCAmelCase_ : Union[str, Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): UpperCAmelCase_ : int = np.asmatrix(datas_test[p] ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga ) UpperCAmelCase_ : str = self._expand(lowerCamelCase_ ) UpperCAmelCase_ : str = data_bp_input UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple: # return the data of image after convoluting process so we can check it out UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute( lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,) UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
345
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
192
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Union[str, Any] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __snake_case ( __snake_case ): _a : Optional[int]= "donut-swin" _a : Union[str, Any]= { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self ,snake_case=224 ,snake_case=4 ,snake_case=3 ,snake_case=96 ,snake_case=[2, 2, 6, 2] ,snake_case=[3, 6, 12, 24] ,snake_case=7 ,snake_case=4.0 ,snake_case=True ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case="gelu" ,snake_case=False ,snake_case=0.02 ,snake_case=1e-5 ,**snake_case ,): '''simple docstring''' super().__init__(**lowerCamelCase_ ) lowercase : Any = image_size lowercase : Optional[Any] = patch_size lowercase : Union[str, Any] = num_channels lowercase : List[Any] = embed_dim lowercase : Dict = depths lowercase : List[Any] = len(lowerCamelCase_ ) lowercase : Optional[Any] = num_heads lowercase : Optional[Any] = window_size lowercase : Optional[Any] = mlp_ratio lowercase : Any = qkv_bias lowercase : Union[str, Any] = hidden_dropout_prob lowercase : Dict = attention_probs_dropout_prob lowercase : str = drop_path_rate lowercase : Dict = hidden_act lowercase : List[Any] = use_absolute_embeddings lowercase : Optional[int] = layer_norm_eps lowercase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : Any = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
20
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=13 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[str]=32 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int=512 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : List[Any]="last" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=0 , ) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : List[Any] = use_token_type_ids UpperCAmelCase_ : str = use_labels UpperCAmelCase_ : str = gelu_activation UpperCAmelCase_ : Tuple = sinusoidal_embeddings UpperCAmelCase_ : Any = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[str] = n_langs UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Dict = n_special UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : Dict = num_choices UpperCAmelCase_ : Optional[int] = summary_type UpperCAmelCase_ : Any = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _SCREAMING_SNAKE_CASE ( self : str ) -> int: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : int = None if self.use_input_lengths: UpperCAmelCase_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , ) -> Optional[int]: UpperCAmelCase_ : List[str] = XLMModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ , lengths=lowerCamelCase_ , langs=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ , langs=lowerCamelCase_ ) UpperCAmelCase_ : str = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> str: UpperCAmelCase_ : List[Any] = XLMWithLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , ) -> List[str]: UpperCAmelCase_ : Tuple = XLMForQuestionAnsweringSimple(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Any = model(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , p_mask=lowerCamelCase_ , ) UpperCAmelCase_ : int = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , ) (UpperCAmelCase_ ) : Optional[int] = result_with_labels.to_tuple() UpperCAmelCase_ : Dict = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) (UpperCAmelCase_ ) : List[str] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , ) -> str: UpperCAmelCase_ : int = XLMForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : int = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , ) -> Any: UpperCAmelCase_ : Tuple = self.num_labels UpperCAmelCase_ : Union[str, Any] = XLMForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : List[Any] = XLMForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Tuple = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : List[Any] = config_and_inputs UpperCAmelCase_ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class UpperCamelCase_ (__snake_case , __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __magic_name__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __magic_name__ = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=False ) -> Tuple: UpperCAmelCase_ : int = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) UpperCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : Dict = XLMModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase_ , emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=1 ) -> Dict: self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase_ ) ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase_ ): # adds PAD dummy token UpperCAmelCase_ : List[str] = min_length + idx + 1 UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[int]=1 ) -> Any: self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase_ ) , ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase_ ): # adds PAD dummy token UpperCAmelCase_ : List[str] = min_length + idx + 1 UpperCAmelCase_ : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase_ ) , ) pass @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = XLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class UpperCamelCase_ (unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : Any = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=lowerCamelCase_ ) # the president UpperCAmelCase_ : Optional[int] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase_ )
268
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = text.split(_a ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )] def lowerCamelCase_ ( _a : dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(_a ): titles.append(title if title is not None else """""" ) texts.append(_a ) return {"title": titles, "text": texts} def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ): '''simple docstring''' UpperCAmelCase_ : List[str] = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ): '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way UpperCAmelCase_ : Optional[int] = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc ) # And compute the embeddings UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a ) UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) UpperCAmelCase_ : Any = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space UpperCAmelCase_ : List[str] = dataset.map( partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , ) # And finally save your dataset UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(_a ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=_a ) # And save the index UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(_a ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _snake_case : '''simple docstring''' A__ : str = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A__ : Optional[str] = field( default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A__ : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A__ : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A__ : Optional[str] = field( default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _snake_case : '''simple docstring''' A__ : Optional[int] = field( default=__snake_case , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A__ : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _snake_case : '''simple docstring''' A__ : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A__ : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
345
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( __snake_case ): '''simple docstring''' def __init__( self , *__A , **__A ): """simple docstring""" warnings.warn( "The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use GLPNImageProcessor instead." , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
283
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = AutoencoderKL A__ : Optional[int] = "sample" A__ : Tuple = 1E-2 @property def A__ ( self: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Any = (32, 32) UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def A__ ( self: List[str] ) -> Tuple: return (3, 32, 32) @property def A__ ( self: Optional[Any] ) -> Any: return (3, 32, 32) def A__ ( self: Any ) -> Tuple: UpperCAmelCase_ : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } UpperCAmelCase_ : int = self.dummy_input return init_dict, inputs_dict def A__ ( self: Optional[Any] ) -> int: pass def A__ ( self: str ) -> Any: pass @unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" ) def A__ ( self: Union[str, Any] ) -> Dict: # enable deterministic behavior for gradient checkpointing UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common() UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() UpperCAmelCase_ : Dict = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) UpperCAmelCase_ : Dict = dict(model.named_parameters() ) UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) ) def A__ ( self: Optional[Any] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(lowerCamelCase_ ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A__ ( self: Optional[int] ) -> int: UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.manual_seed(0 ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) UpperCAmelCase_ : str = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : int = image.to(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": UpperCAmelCase_ : Tuple = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": UpperCAmelCase_ : List[str] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: UpperCAmelCase_ : List[str] = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) ) @slow class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy''' def A__ ( self: Union[str, Any] ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]: UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any: UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa UpperCAmelCase_ : int = AutoencoderKL.from_pretrained( lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,) model.to(lowerCamelCase_ ).eval() return model def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple: UpperCAmelCase_ : List[Any] = self.get_sd_vae_model() UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple: UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict: UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model() UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample assert sample.shape == image.shape UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.get_sd_vae_model() UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu() UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int: UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" ) def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = self.get_sd_vae_model() UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Dict = self.get_sd_vae_model() UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ ) UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu() UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
345
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE_ ( __snake_case ): __lowerCAmelCase = ["image_processor", "tokenizer"] __lowerCAmelCase = "AutoImageProcessor" __lowerCAmelCase = "AutoTokenizer" def __init__( self : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ): """simple docstring""" super().__init__(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = self.image_processor def __call__( self : Dict , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : Tuple ): """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: UpperCamelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and images is not None: UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[str] ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
343
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _snake_case ( __snake_case ): '''simple docstring''' A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) A__ : ClassVar[Features] = Features({"audio": Audio()} ) A__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) A__ : str = "audio" A__ : str = "transcription" def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] ,lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) UpperCAmelCase_ : Any = copy.deepcopy(self ) UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy() UpperCAmelCase_ : Any = features[self.audio_column] UpperCAmelCase_ : Union[str, Any] = input_schema return task_template @property def A__ ( self: List[str] ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
345
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
230
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = "layoutlmv3" def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]: super().__init__( vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase_ : List[Any] = max_ad_position_embeddings UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : Optional[int] = shape_size UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias UpperCAmelCase_ : Optional[int] = rel_pos_bins UpperCAmelCase_ : Union[str, Any] = max_rel_pos UpperCAmelCase_ : Dict = has_spatial_attention_bias UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins UpperCAmelCase_ : Tuple = max_rel_ad_pos UpperCAmelCase_ : Union[str, Any] = text_embed UpperCAmelCase_ : Optional[Any] = visual_embed UpperCAmelCase_ : List[str] = input_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : Tuple = classifier_dropout class _snake_case ( __snake_case ): '''simple docstring''' A__ : Optional[Any] = version.parse("1.12" ) @property def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]: # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def A__ ( self: Any ) -> float: return 1e-5 @property def A__ ( self: int ) -> int: return 12 def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]: setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ : List[str] = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) UpperCAmelCase_ : int = compute_effective_axis_dimension( lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = dict( processor( lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) ) return inputs
345
0
'''simple docstring''' import os def UpperCAmelCase ( a_ = "input.txt" ) -> Any: """simple docstring""" with open(os.path.join(os.path.dirname(_a ) , _a ) ) as input_file: A_ : List[Any] = [ [int(_a ) for element in line.split(""",""" )] for line in input_file.readlines() ] A_ : int = len(_a ) A_ : Optional[int] = len(matrix[0] ) A_ : Any = [[-1 for _ in range(_a )] for _ in range(_a )] for i in range(_a ): A_ : Dict = matrix[i][0] for j in range(1 , _a ): for i in range(_a ): A_ : Dict = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _a ): A_ : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): A_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
344
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase_ ( _a : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_a , _a ) def lowerCamelCase_ ( _a : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def lowerCamelCase_ ( _a : Dict ): '''simple docstring''' UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" ) UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] ) UpperCAmelCase_ : Optional[int] = checkpoint["""model"""] remove_ignore_keys_(_a ) UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0] UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} UpperCAmelCase_ : int = XGLMConfig( vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a ) UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a ) print(_a ) UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
345
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) lowercase = -1 lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) lowercase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ ) lowercase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowercase = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ ( self ): lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) lowercase = -1 lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) lowercase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ ) lowercase = tokenizer.decode(greedy_ids[0] ) lowercase = TextIteratorStreamer(lowerCamelCase_ ) lowercase = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} lowercase = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() lowercase = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ ( self ): lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) lowercase = -1 lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) lowercase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ ) lowercase = greedy_ids[:, input_ids.shape[1] :] lowercase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowercase = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowercase = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowercase = AutoTokenizer.from_pretrained('distilgpt2' ) lowercase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(lowerCamelCase_ ) lowercase = -1 lowercase = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowercase = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowercase = cs.out[:-1] # Remove the final "\n" lowercase = tokenizer(lowerCamelCase_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCamelCase_ ( self ): lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ ) lowercase = -1 lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) lowercase = TextIteratorStreamer(lowerCamelCase_ , timeout=0.0_0_1 ) lowercase = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer} lowercase = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): lowercase = """""" for new_text in streamer: streamer_text += new_text
220
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Dict = embed_dim UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = num_heads UpperCAmelCase_ : List[Any] = window_size UpperCAmelCase_ : Union[str, Any] = mlp_ratio UpperCAmelCase_ : int = qkv_bias UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : List[Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = patch_norm UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Optional[Any] = scope UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Optional[int] = encoder_stride UpperCAmelCase_ : Optional[int] = out_features UpperCAmelCase_ : Optional[int] = out_indices def A__ ( self: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Any = self.get_config() return config, pixel_values, labels def A__ ( self: List[Any] ) -> Tuple: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ) UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]: UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int: UpperCAmelCase_ : List[Any] = self.type_sequence_label_size UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs UpperCAmelCase_ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A__ : Union[str, Any] = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : Any = False A__ : List[str] = False A__ : Any = False A__ : Any = False def A__ ( self: List[str] ) -> Tuple: UpperCAmelCase_ : Dict = FocalNetModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ ) def A__ ( self: List[str] ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self: List[str] ) -> Union[str, Any]: return def A__ ( self: str ) -> List[str]: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def A__ ( self: Tuple ) -> int: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self: int ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self: Optional[Any] ) -> Optional[Any]: pass def A__ ( self: Optional[Any] ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) UpperCAmelCase_ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) ) def A__ ( self: str ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = model_class(lowerCamelCase_ ) UpperCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Any = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase_ ) def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]: UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) ) UpperCAmelCase_ : Any = outputs.hidden_states UpperCAmelCase_ : List[Any] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) # FocalNet has a different seq_length UpperCAmelCase_ : int = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape UpperCAmelCase_ : List[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def A__ ( self: Any ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : str = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCAmelCase_ : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) ) @slow def A__ ( self: Optional[int] ) -> Optional[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self: Optional[int] ) -> str: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Dict = model(**lowerCamelCase_ ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else () A__ : int = FocalNetConfig A__ : List[str] = False def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : str = FocalNetModelTester(self )
345
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : torch.Tensor # [batch_size x 3] lowerCAmelCase_ : int lowerCAmelCase_ : int lowerCAmelCase_ : float lowerCAmelCase_ : float lowerCAmelCase_ : Tuple[int] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = torch.arange(self.height * self.width ) UpperCAmelCase__ = torch.stack( [ pixel_indices % self.width, torch.div(_UpperCAmelCase , self.width , rounding_mode="""trunc""" ), ] , axis=1 , ) return coords @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ , *UpperCAmelCase__ = self.shape UpperCAmelCase__ = int(np.prod(_UpperCAmelCase ) ) UpperCAmelCase__ = self.get_image_coords() UpperCAmelCase__ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase__ = self.get_camera_rays(_UpperCAmelCase ) UpperCAmelCase__ = rays.view(_UpperCAmelCase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : torch.Tensor ): """simple docstring""" UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase__ = coords.view(_UpperCAmelCase , -1 , 2 ) UpperCAmelCase__ = self.resolution() UpperCAmelCase__ = self.fov() UpperCAmelCase__ = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase__ = fracs * torch.tan(fov / 2 ) UpperCAmelCase__ = fracs.view(_UpperCAmelCase , -1 , 2 ) UpperCAmelCase__ = ( self.z.view(_UpperCAmelCase , 1 , 3 ) + self.x.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase__ = directions / directions.norm(dim=-1 , keepdim=_UpperCAmelCase ) UpperCAmelCase__ = torch.stack( [ torch.broadcast_to(self.origin.view(_UpperCAmelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_UpperCAmelCase , *_UpperCAmelCase , 2 , 3 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCAmelCase , height=_UpperCAmelCase , x_fov=self.x_fov , y_fov=self.y_fov , ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCAmelCase__ = np.array([np.sin(SCREAMING_SNAKE_CASE__ ), np.cos(SCREAMING_SNAKE_CASE__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase__ = -z * 4 UpperCAmelCase__ = np.array([np.cos(SCREAMING_SNAKE_CASE__ ), -np.sin(SCREAMING_SNAKE_CASE__ ), 0.0] ) UpperCAmelCase__ = np.cross(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) origins.append(SCREAMING_SNAKE_CASE__ ) xs.append(SCREAMING_SNAKE_CASE__ ) ys.append(SCREAMING_SNAKE_CASE__ ) zs.append(SCREAMING_SNAKE_CASE__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , width=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(SCREAMING_SNAKE_CASE__ )) , )
346
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
346
1
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' if gpta_config_file == "": UpperCAmelCase__ = GPTaConfig() else: UpperCAmelCase__ = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = GPTaModel(SCREAMING_SNAKE_CASE__ ) # Load weights from numpy load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model UpperCAmelCase__ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCAmelCase__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) UpperCAmelCase_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
346
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) UpperCAmelCase__ = jieba UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCAmelCase__ = """ """.join(inputs.strip().split() ) else: UpperCAmelCase__ = inputs UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase ) UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: UpperCAmelCase__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase ) UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) UpperCAmelCase__ = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ = cur_pieces[1:] else: UpperCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ): """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
346
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """wavlm""" def __init__( self : Optional[Any] , _UpperCAmelCase : Any=32 , _UpperCAmelCase : int=7_68 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=1E-5 , _UpperCAmelCase : int="group" , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : str=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=1_28 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : List[str]=3_20 , _UpperCAmelCase : List[str]=8_00 , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=0.05 , _UpperCAmelCase : Any=10 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Optional[Any]=3_20 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=1_00 , _UpperCAmelCase : int=2_56 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]="mean" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : List[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase : Optional[int]=(5, 3, 3, 1, 1) , _UpperCAmelCase : Dict=(1, 2, 3, 1, 1) , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : Tuple=80 , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : int=3 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = feat_extract_norm UpperCAmelCase__ = feat_extract_activation UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = conv_bias UpperCAmelCase__ = num_buckets UpperCAmelCase__ = max_bucket_distance UpperCAmelCase__ = num_conv_pos_embeddings UpperCAmelCase__ = num_conv_pos_embedding_groups UpperCAmelCase__ = len(self.conv_dim ) UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = feat_proj_dropout UpperCAmelCase__ = final_dropout UpperCAmelCase__ = layerdrop UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_ctc_classes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = do_stable_layer_norm UpperCAmelCase__ = use_weighted_layer_sum UpperCAmelCase__ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase__ = apply_spec_augment UpperCAmelCase__ = mask_time_prob UpperCAmelCase__ = mask_time_length UpperCAmelCase__ = mask_time_min_masks UpperCAmelCase__ = mask_feature_prob UpperCAmelCase__ = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCAmelCase__ = num_codevectors_per_group UpperCAmelCase__ = num_codevector_groups UpperCAmelCase__ = contrastive_logits_temperature UpperCAmelCase__ = num_negatives UpperCAmelCase__ = codevector_dim UpperCAmelCase__ = proj_codevector_dim UpperCAmelCase__ = diversity_loss_weight # ctc loss UpperCAmelCase__ = ctc_loss_reduction UpperCAmelCase__ = ctc_zero_infinity # adapter UpperCAmelCase__ = add_adapter UpperCAmelCase__ = adapter_kernel_size UpperCAmelCase__ = adapter_stride UpperCAmelCase__ = num_adapter_layers UpperCAmelCase__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = list(_UpperCAmelCase ) UpperCAmelCase__ = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
346
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) UpperCAmelCase__ = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples["""text"""] ) return fn def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] for i in range(len(tokenized_data["""input_ids"""] ) ): UpperCAmelCase__ = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ : int ): # Concatenate all texts. UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCAmelCase__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCAmelCase__ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size] UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase__ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
346
1
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = 0 @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_UpperCAmelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_UpperCAmelCase ) , 0 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_UpperCAmelCase , """vocab.txt""" ) ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""bert""" , use_fast=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_UpperCAmelCase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_UpperCAmelCase , """merges.txt""" ) ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""gpt2""" , use_fast=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_UpperCAmelCase , """vocab.txt""" ) ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""bert""" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_UpperCAmelCase , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_UpperCAmelCase , """merges.txt""" ) ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""gpt2""" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" with pytest.raises(_UpperCAmelCase ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _UpperCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case , _UpperCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _UpperCAmelCase , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): UpperCAmelCase__ = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = TOKENIZER_MAPPING.values() UpperCAmelCase__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_UpperCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_UpperCAmelCase ) , _UpperCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _UpperCAmelCase ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_UpperCAmelCase ) UpperCAmelCase__ = """Hello, world. How are you?""" UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertEqual("""[UNK]""" , tokens[0] ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(tokenizer.model_max_length , 5_12 ) self.assertEqual(tokenizer.vocab_size , 3_00_00 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = get_tokenizer_config("""bert-base-cased""" ) UpperCAmelCase__ = config.pop("""_commit_hash""" , _UpperCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_UpperCAmelCase , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ = get_tokenizer_config(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = get_tokenizer_config(_UpperCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" try: AutoConfig.register("""custom""" , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) UpperCAmelCase__ = CustomTokenizer.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" try: AutoConfig.register("""custom""" , _UpperCAmelCase ) # Can register in two steps AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = BertTokenizerFast.from_pretrained(_UpperCAmelCase ) bert_tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = CustomTokenizerFast.from_pretrained(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = False class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : int = NewTokenizer lowerCAmelCase_ : Any = False try: AutoConfig.register("""custom""" , _UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase ) AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase ) # If remote code is not set, the default is to use local UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version UpperCAmelCase__ = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ): UpperCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
346
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = 9, 14 # noqa: F841 UpperCAmelCase__ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCAmelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) UpperCAmelCase__ = mst(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: UpperCAmelCase__ = tuple(answer[:2] ) UpperCAmelCase__ = tuple(edge[::-1] ) assert edge in result or reverse in result
346
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ): '''simple docstring''' UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
346
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : float ): """simple docstring""" if nodea not in self.connections: self.add_node(_UpperCAmelCase ) if nodea not in self.connections: self.add_node(_UpperCAmelCase ) UpperCAmelCase__ = probability def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return list(self.connections ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[tuple[str, str, float]] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = Counter(graph.get_nodes() ) UpperCAmelCase__ = start for _ in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = graph.transition(SCREAMING_SNAKE_CASE__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ): """simple docstring""" UpperCAmelCase__ = {} if top_k is not None: UpperCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = load_image(_UpperCAmelCase ) UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model(**_UpperCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
346
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Optional[NestedDataStructureLike[PathLike]] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Dict , ): """simple docstring""" UpperCAmelCase__ = path_or_paths UpperCAmelCase__ = split if split or isinstance(_UpperCAmelCase , _UpperCAmelCase ) else """train""" UpperCAmelCase__ = features UpperCAmelCase__ = cache_dir UpperCAmelCase__ = keep_in_memory UpperCAmelCase__ = streaming UpperCAmelCase__ = num_proc UpperCAmelCase__ = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" pass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[Any] , ): """simple docstring""" UpperCAmelCase__ = features UpperCAmelCase__ = cache_dir UpperCAmelCase__ = keep_in_memory UpperCAmelCase__ = streaming UpperCAmelCase__ = num_proc UpperCAmelCase__ = kwargs @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" pass
346
'''simple docstring''' from math import factorial def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ): '''simple docstring''' UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase__ = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: UpperCAmelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
346
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ): """simple docstring""" UpperCAmelCase__ = {} if top_k is not None: UpperCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = load_image(_UpperCAmelCase ) UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model(**_UpperCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
346
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = MgpstrTokenizer lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """tester""" UpperCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass
346
1
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCAmelCase_ = '\nimport os\n' UpperCAmelCase_ = '\ndef foo():\n import os\n return False\n' UpperCAmelCase_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' UpperCAmelCase_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' UpperCAmelCase_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """test_file.py""" ) with open(SCREAMING_SNAKE_CASE__ , """w""" ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = get_imports(SCREAMING_SNAKE_CASE__ ) assert parsed_imports == ["os"]
346
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCamelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
346
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )] if identifier is not None: UpperCAmelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for n_ in n_identifier: UpperCAmelCase__ = [file for file in files if n_ not in file] else: UpperCAmelCase__ = [file for file in files if n_identifier not in file] UpperCAmelCase__ = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _UpperCAmelCase ) if only_modules: UpperCAmelCase__ = file.split(""".""" )[0] try: UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase ) UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """modeling""" UpperCAmelCase__ = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """tokenization""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """configuration""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = Path("""docs/source""" ) UpperCAmelCase__ = ["""favicon.ico"""] self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
346
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.json'} UpperCAmelCase_ = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } UpperCAmelCase_ = {'mgp-str': 2_7} class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : int = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]="[GO]" , _UpperCAmelCase : Dict="[GO]" , _UpperCAmelCase : str="[s]" , _UpperCAmelCase : Dict="[GO]" , **_UpperCAmelCase : str ): """simple docstring""" super().__init__( unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle: UpperCAmelCase__ = json.load(_UpperCAmelCase ) UpperCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.vocab ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] for s in text: char_tokens.extend(_UpperCAmelCase ) return char_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : int ): """simple docstring""" return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] ): """simple docstring""" return self.decoder.get(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCAmelCase ) ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" ) return (vocab_file,)
346
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase_ = False class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = generator.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = """cyberpunk 2077""" UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase__ = """A painting of a squirrel eating a burger """ UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase__ = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""numpy""" ).images UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
346
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase_ = None UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCAmelCase_ = { 'albert-base-v1': 5_1_2, 'albert-large-v1': 5_1_2, 'albert-xlarge-v1': 5_1_2, 'albert-xxlarge-v1': 5_1_2, 'albert-base-v2': 5_1_2, 'albert-large-v2': 5_1_2, 'albert-xlarge-v2': 5_1_2, 'albert-xxlarge-v2': 5_1_2, } UpperCAmelCase_ = '▁' class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : int = AlbertTokenizer def __init__( self : Tuple , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=False , _UpperCAmelCase : str="[CLS]" , _UpperCAmelCase : Optional[Any]="[SEP]" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : List[str]="[SEP]" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : List[Any]="[CLS]" , _UpperCAmelCase : Tuple="[MASK]" , **_UpperCAmelCase : Union[str, Any] , ): """simple docstring""" UpperCAmelCase__ = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
346
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ): """simple docstring""" UpperCAmelCase__ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
346
1
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return EnvironmentCommand() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : ArgumentParser ): """simple docstring""" UpperCAmelCase__ = parser.add_parser("""env""" ) download_parser.set_defaults(func=_UpperCAmelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=_UpperCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self : str , _UpperCAmelCase : int , *_UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = accelerate_config_file def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = """not installed""" if is_safetensors_available(): import safetensors UpperCAmelCase__ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors UpperCAmelCase__ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' UpperCAmelCase__ = """not installed""" UpperCAmelCase__ = UpperCAmelCase__ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase__ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_UpperCAmelCase ): UpperCAmelCase__ = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase__ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else f'''\t{accelerate_config}''' ) UpperCAmelCase__ = """not installed""" UpperCAmelCase__ = """NA""" if is_torch_available(): import torch UpperCAmelCase__ = torch.__version__ UpperCAmelCase__ = torch.cuda.is_available() UpperCAmelCase__ = """not installed""" UpperCAmelCase__ = """NA""" if is_tf_available(): import tensorflow as tf UpperCAmelCase__ = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase__ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase__ = bool(tf.config.list_physical_devices("""GPU""" ) ) UpperCAmelCase__ = """not installed""" UpperCAmelCase__ = """not installed""" UpperCAmelCase__ = """not installed""" UpperCAmelCase__ = """NA""" if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase__ = flax.__version__ UpperCAmelCase__ = jax.__version__ UpperCAmelCase__ = jaxlib.__version__ UpperCAmelCase__ = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase__ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(_UpperCAmelCase ) ) return info @staticmethod def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : Dict ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
346
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
346
1
'''simple docstring''' import argparse import os import re import packaging.version UpperCAmelCase_ = 'examples/' UpperCAmelCase_ = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCAmelCase_ = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } UpperCAmelCase_ = 'README.md' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.read() UpperCAmelCase__ , UpperCAmelCase__ = REPLACE_PATTERNS[pattern] UpperCAmelCase__ = replace.replace("""VERSION""" , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = re_pattern.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , pattern="""examples""" ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """🤗 Transformers currently provides the following architectures""" UpperCAmelCase__ = """1. Want to contribute a new model?""" with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCAmelCase__ = f.readlines() # Find the start of the list. UpperCAmelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCAmelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): UpperCAmelCase__ = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' with open(REPLACE_FILES["""init"""] , """r""" ) as f: UpperCAmelCase__ = f.read() UpperCAmelCase__ = REPLACE_PATTERNS["""init"""][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any]=False ): '''simple docstring''' UpperCAmelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: UpperCAmelCase__ = default_version.base_version elif patch: UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. UpperCAmelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: UpperCAmelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(SCREAMING_SNAKE_CASE__ , patch=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = get_version() UpperCAmelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' UpperCAmelCase__ = current_version.base_version # Check with the user we got that right. UpperCAmelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: UpperCAmelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(SCREAMING_SNAKE_CASE__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
346
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) UpperCAmelCase__ = TaConfig( vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(_UpperCAmelCase ): UpperCAmelCase__ = TaBlock(_UpperCAmelCase ) self.encoders.append(_UpperCAmelCase ) UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase ) UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase ) UpperCAmelCase__ = encoder_input_tokens.shape[1] UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_UpperCAmelCase ) UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase ) # inverted the attention mask UpperCAmelCase__ = encoder_input_tokens.size() UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase ) for lyr in self.encoders: UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0] UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase ) return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
346
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = StableDiffusionInpaintPipeline lowerCAmelCase_ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS lowerCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCAmelCase_ : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase_ : Union[str, Any] = frozenset([] ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) UpperCAmelCase__ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) UpperCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) UpperCAmelCase__ = CLIPTextModel(_UpperCAmelCase ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=0 ): """simple docstring""" UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) ) UpperCAmelCase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) UpperCAmelCase__ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase__ = sd_pipe(**_UpperCAmelCase ).images UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) UpperCAmelCase__ = """stabilityai/stable-diffusion-2-inpainting""" UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) UpperCAmelCase__ = """stabilityai/stable-diffusion-2-inpainting""" UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) UpperCAmelCase__ = """stabilityai/stable-diffusion-2-inpainting""" UpperCAmelCase__ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder="""scheduler""" ) UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
346
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = {} with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
346
1
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , SCREAMING_SNAKE_CASE__ , ) if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): UpperCAmelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ = image[0].size UpperCAmelCase__ , UpperCAmelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCAmelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase__ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) UpperCAmelCase__ = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 2_55.0 UpperCAmelCase__ = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase__ = 2.0 * image - 1.0 UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[List, PIL.Image.Image, torch.Tensor] ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return mask elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): UpperCAmelCase__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCAmelCase__ , UpperCAmelCase__ = mask[0].size UpperCAmelCase__ , UpperCAmelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] UpperCAmelCase__ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) UpperCAmelCase__ = mask.astype(np.floataa ) / 2_55.0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(mask[0] , torch.Tensor ): UpperCAmelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return mask class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : UNetaDModel lowerCAmelCase_ : RePaintScheduler def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ): """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : int , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCAmelCase : int = 2_50 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = image UpperCAmelCase__ = _preprocess_image(_UpperCAmelCase ) UpperCAmelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase__ = _preprocess_mask(_UpperCAmelCase ) UpperCAmelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCAmelCase__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase__ = original_image.shape UpperCAmelCase__ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.device ) UpperCAmelCase__ = eta UpperCAmelCase__ = self.scheduler.timesteps[0] + 1 UpperCAmelCase__ = generator[0] if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCAmelCase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute previous image: x_t -> x_t-1 UpperCAmelCase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCAmelCase__ = self.scheduler.undo_step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = t UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase__ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
346
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ): """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor: UpperCAmelCase__ = [] UpperCAmelCase__ = Counter() UpperCAmelCase__ = 0 UpperCAmelCase__ = defaultdict(_UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): for candidate in candidates: UpperCAmelCase__ = candidate + """\n""" + test_case UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase ) futures.append(_UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_UpperCAmelCase ): UpperCAmelCase__ = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] for result in results.values(): result.sort() UpperCAmelCase__ = [r[1]["""passed"""] for r in result] total.append(len(_UpperCAmelCase ) ) correct.append(sum(_UpperCAmelCase ) ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = k UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) else: assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ ) return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
346
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) UpperCAmelCase_ = logging.getLogger(__name__) UpperCAmelCase_ = {'facebook/bart-base': BartForConditionalGeneration} UpperCAmelCase_ = {'facebook/bart-base': BartTokenizer} def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=SCREAMING_SNAKE_CASE__ , ) parser.add_argument( """--config_name""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=SCREAMING_SNAKE_CASE__ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Where to store the final ONNX file.""" ) UpperCAmelCase__ = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple="cpu" ): '''simple docstring''' UpperCAmelCase__ = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase__ = 0 UpperCAmelCase__ = None UpperCAmelCase__ = 0 return huggingface_model, tokenizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' model.eval() UpperCAmelCase__ = None UpperCAmelCase__ = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) ) with torch.no_grad(): UpperCAmelCase__ = """My friends are cool but they eat too many carbs.""" UpperCAmelCase__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) UpperCAmelCase__ = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , early_stopping=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE__ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE__ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=SCREAMING_SNAKE_CASE__ , ) logger.info("""Model exported to {}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = ort_sess.run( SCREAMING_SNAKE_CASE__ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(SCREAMING_SNAKE_CASE__ ), """max_length""": np.array(SCREAMING_SNAKE_CASE__ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = parse_args() UpperCAmelCase__ = 5 UpperCAmelCase__ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase__ = torch.device(args.device ) UpperCAmelCase__ , UpperCAmelCase__ = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE__ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(SCREAMING_SNAKE_CASE__ ) if args.max_length: UpperCAmelCase__ = args.max_length if args.num_beams: UpperCAmelCase__ = args.num_beams if args.output_file_path: UpperCAmelCase__ = args.output_file_path else: UpperCAmelCase__ = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
346
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = factor * value UpperCAmelCase__ = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
346
1
'''simple docstring''' import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int = 16000 ): '''simple docstring''' UpperCAmelCase__ = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE__ ) <= sample_length: return wav UpperCAmelCase__ = randint(0 , len(SCREAMING_SNAKE_CASE__ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : Optional[str] = field(default=lowerCamelCase_ , metadata={"""help""": """Name of a dataset from the datasets package"""} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """A file containing the training audio paths and labels."""} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) lowerCAmelCase_ : str = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) lowerCAmelCase_ : str = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) lowerCAmelCase_ : str = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) lowerCAmelCase_ : str = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) lowerCAmelCase_ : Optional[int] = field( default=lowerCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ : Optional[int] = field( default=lowerCamelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) lowerCAmelCase_ : float = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : str = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) lowerCAmelCase_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) lowerCAmelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCAmelCase_ : Optional[str] = field( default=lowerCamelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase_ : bool = field( default=lowerCamelCase_ , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) lowerCAmelCase_ : bool = field( default=lowerCamelCase_ , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) lowerCAmelCase_ : bool = field( default=lowerCamelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCAmelCase_ : Optional[bool] = field( default=lowerCamelCase_ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) lowerCAmelCase_ : bool = field( default=lowerCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , _UpperCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase__ = DatasetDict() UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--label_column_name` to the correct text column - one of """ F'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase__ = feature_extractor.model_input_names[0] def train_transforms(SCREAMING_SNAKE_CASE__ : str ): UpperCAmelCase__ = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase__ = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase__ = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} UpperCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): UpperCAmelCase__ = [audio["""array"""] for audio in batch[data_args.audio_column_name]] UpperCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase__ = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )} UpperCAmelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase__ = raw_datasets["""train"""].features[data_args.label_column_name].names UpperCAmelCase__ , UpperCAmelCase__ = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = str(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = label # Load the accuracy metric from the datasets package UpperCAmelCase__ = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ : Any ): UpperCAmelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=eval_pred.label_ids ) UpperCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase__ = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase__ = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ ) # Initialize our trainer UpperCAmelCase__ = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: UpperCAmelCase__ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ = last_checkpoint UpperCAmelCase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ = trainer.evaluate() trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub UpperCAmelCase__ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
346
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" ) UpperCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
346
1
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ = 1.0_5457_1817E-34 # unit of ℏ : J * s UpperCAmelCase_ = 3E8 # unit of c : m * s^-1 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: UpperCAmelCase__ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: UpperCAmelCase__ = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: UpperCAmelCase__ = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"] UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
346
1
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' def decorator(SCREAMING_SNAKE_CASE__ : str ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ ) return func return decorator def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' def decorator(SCREAMING_SNAKE_CASE__ : Optional[Any] ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ ) return func return decorator class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __new__( cls : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = super().__new__(cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , """key_handler""" ): setattr(_UpperCAmelCase , """key_handler""" , {} ) setattr(_UpperCAmelCase , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase__ = getattr(_UpperCAmelCase , """handle_key""" , [] ) for key in handled_keys: UpperCAmelCase__ = value return new_cls @staticmethod def SCREAMING_SNAKE_CASE__ ( cls : Any ): """simple docstring""" UpperCAmelCase__ = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase__ = ord(_UpperCAmelCase ) UpperCAmelCase__ = cls.key_handler.get(_UpperCAmelCase ) if handler: UpperCAmelCase__ = char return handler(cls ) else: return None def _UpperCamelCase ( cls : Dict ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
346
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,) lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
346
1
'''simple docstring''' import numpy as np UpperCAmelCase_ = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ): """simple docstring""" UpperCAmelCase__ = np.array(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = np.where(letter == self.SQUARE ) UpperCAmelCase__ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.SQUARE[indexa - 1, indexa - 1] return letter def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = message.lower() UpperCAmelCase__ = message.replace(""" """ , """""" ) UpperCAmelCase__ = message.replace("""j""" , """i""" ) UpperCAmelCase__ = np.empty((2, len(_UpperCAmelCase )) ) for letter_index in range(len(_UpperCAmelCase ) ): UpperCAmelCase__ = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase__ = numbers[0] UpperCAmelCase__ = numbers[1] UpperCAmelCase__ = first_step.reshape(2 * len(_UpperCAmelCase ) ) UpperCAmelCase__ = """""" for numbers_index in range(len(_UpperCAmelCase ) ): UpperCAmelCase__ = int(second_step[numbers_index * 2] ) UpperCAmelCase__ = int(second_step[(numbers_index * 2) + 1] ) UpperCAmelCase__ = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = encoded_message + letter return encoded_message def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = message.lower() message.replace(""" """ , """""" ) UpperCAmelCase__ = np.empty(2 * len(_UpperCAmelCase ) ) for letter_index in range(len(_UpperCAmelCase ) ): UpperCAmelCase__ = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase__ = numbers[0] UpperCAmelCase__ = numbers[1] UpperCAmelCase__ = first_step.reshape((2, len(_UpperCAmelCase )) ) UpperCAmelCase__ = """""" for numbers_index in range(len(_UpperCAmelCase ) ): UpperCAmelCase__ = int(second_step[0, numbers_index] ) UpperCAmelCase__ = int(second_step[1, numbers_index] ) UpperCAmelCase__ = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = decoded_message + letter return decoded_message
346
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """vivit""" def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = tubelet_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias super().__init__(**_UpperCAmelCase )
346
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """instructblip_vision_model""" def __init__( self : List[str] , _UpperCAmelCase : Dict=14_08 , _UpperCAmelCase : int=61_44 , _UpperCAmelCase : List[str]=39 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : Dict=14 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=1E-6 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Union[str, Any]=1E-10 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Tuple , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = patch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = hidden_act UpperCAmelCase__ = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : int ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase__ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = """instructblip_qformer""" def __init__( self : List[str] , _UpperCAmelCase : Any=3_05_22 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : int=14_08 , **_UpperCAmelCase : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = hidden_act UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = cross_attention_frequency UpperCAmelCase__ = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ): """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": UpperCAmelCase__ = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Tuple = """instructblip""" lowerCAmelCase_ : str = True def __init__( self : int , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple=32 , **_UpperCAmelCase : Tuple ): """simple docstring""" super().__init__(**_UpperCAmelCase ) if vision_config is None: UpperCAmelCase__ = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: UpperCAmelCase__ = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: UpperCAmelCase__ = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) UpperCAmelCase__ = InstructBlipVisionConfig(**_UpperCAmelCase ) UpperCAmelCase__ = InstructBlipQFormerConfig(**_UpperCAmelCase ) UpperCAmelCase__ = text_config["""model_type"""] if """model_type""" in text_config else """opt""" UpperCAmelCase__ = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) UpperCAmelCase__ = self.text_config.tie_word_embeddings UpperCAmelCase__ = self.text_config.is_encoder_decoder UpperCAmelCase__ = num_query_tokens UpperCAmelCase__ = self.vision_config.hidden_size UpperCAmelCase__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase__ = 1.0 UpperCAmelCase__ = 0.02 @classmethod def SCREAMING_SNAKE_CASE__ ( cls : int , _UpperCAmelCase : InstructBlipVisionConfig , _UpperCAmelCase : InstructBlipQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[Any] , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.vision_config.to_dict() UpperCAmelCase__ = self.qformer_config.to_dict() UpperCAmelCase__ = self.text_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
346
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
346
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) UpperCAmelCase__ = jieba UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCAmelCase__ = """ """.join(inputs.strip().split() ) else: UpperCAmelCase__ = inputs UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase ) UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: UpperCAmelCase__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase ) UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) UpperCAmelCase__ = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ = cur_pieces[1:] else: UpperCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ): """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
346
1
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = list(range(len(SCREAMING_SNAKE_CASE__ ) ) ) UpperCAmelCase__ = [v / w for v, w in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] index.sort(key=lambda SCREAMING_SNAKE_CASE__ : ratio[i] , reverse=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 0 UpperCAmelCase__ = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in index: if weight[i] <= capacity: UpperCAmelCase__ = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) UpperCAmelCase__ = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples["""text"""] ) return fn def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] for i in range(len(tokenized_data["""input_ids"""] ) ): UpperCAmelCase__ = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ : int ): # Concatenate all texts. UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCAmelCase__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCAmelCase__ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size] UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase__ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
346
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"] UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
346
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : int=16 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=[0, 1, 2, 3] , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=[1, 3_84, 24, 24] , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = backbone_out_indices UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = backbone_featmap_shape UpperCAmelCase__ = scope UpperCAmelCase__ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase__ = (image_size // patch_size) ** 2 UpperCAmelCase__ = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 1_92, 3_84, 7_68], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase_ : Dict = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ : str = False lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = DPTModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ = [*signature.parameters.keys()] UpperCAmelCase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = True if model_class in get_values(_UpperCAmelCase ): continue UpperCAmelCase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase__ = model(**_UpperCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = False UpperCAmelCase__ = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue UpperCAmelCase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase__ = model(**_UpperCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: UpperCAmelCase__ = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone UpperCAmelCase__ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCAmelCase__ = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCAmelCase__ = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ = """add""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = DPTForDepthEstimation(_UpperCAmelCase ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) UpperCAmelCase__ = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_UpperCAmelCase ) UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ = model(**_UpperCAmelCase ) UpperCAmelCase__ = outputs.predicted_depth # verify the predicted depth UpperCAmelCase__ = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _UpperCAmelCase , atol=1E-4 ) )
346
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ): '''simple docstring''' UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
346
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ = divmod(SCREAMING_SNAKE_CASE__ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE__ ) + str(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = str(SCREAMING_SNAKE_CASE__ ).strip() if not number: raise ValueError("""No input value was provided""" ) UpperCAmelCase__ = """-""" if number.startswith("""-""" ) else """""" UpperCAmelCase__ = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE__ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
346
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ): """simple docstring""" UpperCAmelCase__ = {} if top_k is not None: UpperCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = load_image(_UpperCAmelCase ) UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model(**_UpperCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
346
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase_ = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : int = PegasusConfig lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : Optional[int] = """gelu""" def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=13 , _UpperCAmelCase : int=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : str=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[str]=20 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : int=0 , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = eos_token_id UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase__ = prepare_pegasus_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = 20 UpperCAmelCase__ = model_class_name(_UpperCAmelCase ) UpperCAmelCase__ = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) UpperCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) UpperCAmelCase__ = model.decode(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = 20 UpperCAmelCase__ = model_class_name(_UpperCAmelCase ) UpperCAmelCase__ = model.encode(inputs_dict["""input_ids"""] ) UpperCAmelCase__ , UpperCAmelCase__ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) UpperCAmelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase__ = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) UpperCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase__ = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) UpperCAmelCase__ = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) UpperCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase__ = np.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCAmelCase_ : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : Dict = False def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = FlaxPegasusModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : str ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) UpperCAmelCase__ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(_UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest("""JIT Enabled""" ): UpperCAmelCase__ = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): UpperCAmelCase__ = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=_UpperCAmelCase ) UpperCAmelCase__ = np.ones((1, 1) ) UpperCAmelCase__ = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) UpperCAmelCase__ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] UpperCAmelCase__ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""np""" , truncation=_UpperCAmelCase , max_length=5_12 , padding=_UpperCAmelCase ) UpperCAmelCase__ = model.generate(**_UpperCAmelCase , num_beams=2 ).sequences UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) assert tgt_text == decoded
346
'''simple docstring''' from math import factorial def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ): '''simple docstring''' UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase__ = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: UpperCAmelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
346
1
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" ) UpperCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
346
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = MgpstrTokenizer lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """tester""" UpperCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass
346
1
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" import PIL.Image UpperCAmelCase__ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=_UpperCAmelCase ) as mock_cast_to_python_objects: UpperCAmelCase__ = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) UpperCAmelCase__ , UpperCAmelCase__ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , _UpperCAmelCase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = pa.BufferReader(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , pa.Buffer ) else pa.memory_map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = pa.ipc.open_stream(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase__ = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ = pa.ipc.open_stream(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = f.read_all() UpperCAmelCase__ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt="""split_name""" , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer: with pytest.raises(SCREAMING_SNAKE_CASE__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt="""split_name""" , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer: with pytest.raises(SCREAMING_SNAKE_CASE__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter( stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt="""split_name""" , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()} UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """test.arrow""" ) with ArrowWriter(path=SCREAMING_SNAKE_CASE__ , schema=pa.schema(SCREAMING_SNAKE_CASE__ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata ) _check_output(SCREAMING_SNAKE_CASE__ , 1 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' if pa.types.is_list(SCREAMING_SNAKE_CASE__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' if isinstance(lst[0] , SCREAMING_SNAKE_CASE__ ): change_first_primitive_element_in_list(lst[0] , SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = pa.array(TypedSequence(SCREAMING_SNAKE_CASE__ , optimized_int_type=SCREAMING_SNAKE_CASE__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE__ , col=SCREAMING_SNAKE_CASE__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase__ = copy.deepcopy(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE__ , col=SCREAMING_SNAKE_CASE__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=SCREAMING_SNAKE_CASE__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = """mock://dataset-train.arrow""" with ArrowWriter(path=SCREAMING_SNAKE_CASE__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(SCREAMING_SNAKE_CASE__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = pa.BufferOutputStream() with ParquetWriter(stream=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase__ = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ = pq.read_table(SCREAMING_SNAKE_CASE__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' import PIL.Image UpperCAmelCase__ = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(SCREAMING_SNAKE_CASE__ , format="""png""" ) UpperCAmelCase__ = pa.BufferOutputStream() with ParquetWriter( stream=SCREAMING_SNAKE_CASE__ , features=Features({"""image""": Image()} ) , embed_local_files=SCREAMING_SNAKE_CASE__ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() UpperCAmelCase__ = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ = pq.read_table(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = pa.schema([pa.field("""col_1""" , pa.string() , nullable=SCREAMING_SNAKE_CASE__ )] ) UpperCAmelCase__ = pa.BufferOutputStream() with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ ) as writer: writer._build_writer(inferred_schema=SCREAMING_SNAKE_CASE__ ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
346
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = [1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, 0 UpperCAmelCase__ = ugly_nums[ia] * 2 UpperCAmelCase__ = ugly_nums[ia] * 3 UpperCAmelCase__ = ugly_nums[ia] * 5 for _ in range(1 , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ugly_nums.append(SCREAMING_SNAKE_CASE__ ) if next_num == next_a: ia += 1 UpperCAmelCase__ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase__ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase__ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"{ugly_numbers(2_0_0) = }")
346
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )] if identifier is not None: UpperCAmelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for n_ in n_identifier: UpperCAmelCase__ = [file for file in files if n_ not in file] else: UpperCAmelCase__ = [file for file in files if n_identifier not in file] UpperCAmelCase__ = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _UpperCAmelCase ) if only_modules: UpperCAmelCase__ = file.split(""".""" )[0] try: UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase ) UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """modeling""" UpperCAmelCase__ = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """tokenization""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """configuration""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = Path("""docs/source""" ) UpperCAmelCase__ = ["""favicon.ico"""] self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
346
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = None lowerCAmelCase_ : List[str] = None @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """feature_size""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """sampling_rate""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """padding_value""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) UpperCAmelCase__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict=False ): """simple docstring""" def _inputs_have_equal_length(_UpperCAmelCase : int ): UpperCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = self.feat_extract_tester.seq_length_diff UpperCAmelCase__ = self.feat_extract_tester.max_seq_length + pad_diff UpperCAmelCase__ = self.feat_extract_tester.min_seq_length UpperCAmelCase__ = self.feat_extract_tester.batch_size UpperCAmelCase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" ) UpperCAmelCase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding="""max_length""" )[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10 ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , pad_to_multiple_of=10 ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_UpperCAmelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors="""np""" , ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(all(len(_UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCAmelCase__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=False ): """simple docstring""" def _inputs_have_equal_length(_UpperCAmelCase : int ): UpperCAmelCase__ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase : str , _UpperCAmelCase : Tuple ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_UpperCAmelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to smallest with np UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_UpperCAmelCase , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to middle UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase , return_tensors="""np""" , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) UpperCAmelCase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding="""longest""" , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding="""longest""" , truncation=_UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding="""max_length""" , truncation=_UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCAmelCase__ = 12 UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) UpperCAmelCase__ = input_a[input_name] UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , ) UpperCAmelCase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCAmelCase__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCAmelCase__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" self._check_padding(numpify=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" self._check_padding(numpify=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" self._check_truncation(numpify=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" self._check_truncation(numpify=_UpperCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name] UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.feat_extract_dict UpperCAmelCase__ = True UpperCAmelCase__ = self.feature_extraction_class(**_UpperCAmelCase ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = [len(_UpperCAmelCase ) for x in speech_inputs] UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.feat_extract_dict UpperCAmelCase__ = True UpperCAmelCase__ = self.feature_extraction_class(**_UpperCAmelCase ) UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common() UpperCAmelCase__ = [len(_UpperCAmelCase ) for x in speech_inputs] UpperCAmelCase__ = feat_extract.model_input_names[0] UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase__ = min(_UpperCAmelCase ) UpperCAmelCase__ = feat_extract.pad( _UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
346
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
1
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCAmelCase_ = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) UpperCAmelCase_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCAmelCase_ = 'zero2' UpperCAmelCase_ = 'zero3' UpperCAmelCase_ = [ZEROa, ZEROa] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = parameterized.to_safe_name("""_""".join(str(SCREAMING_SNAKE_CASE__ ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test UpperCAmelCase_ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : int ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ): """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = models[model] UpperCAmelCase__ = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = self.get_auto_remove_tmp_dir("""./xxx""" , after=_UpperCAmelCase ) UpperCAmelCase__ = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCAmelCase__ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() UpperCAmelCase__ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] UpperCAmelCase__ = self.get_launcher(_UpperCAmelCase ) UpperCAmelCase__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[str]=False ): """simple docstring""" UpperCAmelCase__ = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
346
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
1
'''simple docstring''' import math import sys import cva import numpy as np def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' UpperCAmelCase__ = math.sqrt(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' UpperCAmelCase__ = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE__ ): for j in range(0 , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int , ): '''simple docstring''' UpperCAmelCase__ = np.zeros(img.shape ) UpperCAmelCase__ = get_gauss_kernel(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): UpperCAmelCase__ = get_slice(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = img_s - img_s[kernel_size // 2, kernel_size // 2] UpperCAmelCase__ = vec_gaussian(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = np.multiply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = np.multiply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = np.sum(SCREAMING_SNAKE_CASE__ ) / np.sum(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = val return imga def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list ): '''simple docstring''' UpperCAmelCase__ = args[1] if args[1:] else """../image_data/lena.jpg""" UpperCAmelCase__ = float(args[2] ) if args[2:] else 1.0 UpperCAmelCase__ = float(args[3] ) if args[3:] else 1.0 if args[4:]: UpperCAmelCase__ = int(args[4] ) UpperCAmelCase__ = kernel_size + abs(kernel_size % 2 - 1 ) else: UpperCAmelCase__ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parse_args(sys.argv) UpperCAmelCase_ = cva.imread(filename, 0) cva.imshow('input image', img) UpperCAmelCase_ = img / 2_5_5 UpperCAmelCase_ = out.astype('float32') UpperCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) UpperCAmelCase_ = out * 2_5_5 UpperCAmelCase_ = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
346
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ): """simple docstring""" UpperCAmelCase__ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
346
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 600851475143 ): '''simple docstring''' try: UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCAmelCase__ = 2 UpperCAmelCase__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCAmelCase__ = i while n % i == 0: UpperCAmelCase__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"{solution() = }")
346
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
346
1
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) UpperCAmelCase__ = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples["""text"""] ) return fn def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] for i in range(len(tokenized_data["""input_ids"""] ) ): UpperCAmelCase__ = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ : int ): # Concatenate all texts. UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCAmelCase__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCAmelCase__ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size] UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase__ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
346
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) UpperCAmelCase__ = TaConfig( vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(_UpperCAmelCase ): UpperCAmelCase__ = TaBlock(_UpperCAmelCase ) self.encoders.append(_UpperCAmelCase ) UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase ) UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase ) UpperCAmelCase__ = encoder_input_tokens.shape[1] UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_UpperCAmelCase ) UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase ) # inverted the attention mask UpperCAmelCase__ = encoder_input_tokens.size() UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase ) for lyr in self.encoders: UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0] UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase ) return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
346
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = '▁' UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} UpperCAmelCase_ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } UpperCAmelCase_ = { 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off UpperCAmelCase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] lowerCAmelCase_ : List[int] = [] lowerCAmelCase_ : List[int] = [] def __init__( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : int="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : int=None , **_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) UpperCAmelCase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase__ = 1 UpperCAmelCase__ = len(self.sp_model ) UpperCAmelCase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } UpperCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) UpperCAmelCase__ = src_lang if src_lang is not None else """en_XX""" UpperCAmelCase__ = self.lang_code_to_id[self._src_lang] UpperCAmelCase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None UpperCAmelCase__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , _UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = [1] * len(self.prefix_tokens ) UpperCAmelCase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : str ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCAmelCase__ = src_lang UpperCAmelCase__ = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = self.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase__ = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = src_lang UpperCAmelCase__ = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.lang_code_to_id[src_lang] UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code] def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.lang_code_to_id[lang] UpperCAmelCase__ = [] UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
346
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = {} with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
346
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ): """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor: UpperCAmelCase__ = [] UpperCAmelCase__ = Counter() UpperCAmelCase__ = 0 UpperCAmelCase__ = defaultdict(_UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): for candidate in candidates: UpperCAmelCase__ = candidate + """\n""" + test_case UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase ) futures.append(_UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_UpperCAmelCase ): UpperCAmelCase__ = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] for result in results.values(): result.sort() UpperCAmelCase__ = [r[1]["""passed"""] for r in result] total.append(len(_UpperCAmelCase ) ) correct.append(sum(_UpperCAmelCase ) ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = k UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) else: assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ ) return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
346
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = """""" for i in table: res += inp[i - 1] return res def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return data[1:] + data[0] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = """""" for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = int("""0b""" + data[0] + data[-1] , 2 ) UpperCAmelCase__ = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = message[:4] UpperCAmelCase__ = message[4:] UpperCAmelCase__ = apply_table(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = xor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = apply_sbox(SCREAMING_SNAKE_CASE__ , temp[:4] ) # noqa: E741 UpperCAmelCase__ = apply_sbox(SCREAMING_SNAKE_CASE__ , temp[4:] ) UpperCAmelCase__ = """0""" * (2 - len(SCREAMING_SNAKE_CASE__ )) + l # noqa: E741 UpperCAmelCase__ = """0""" * (2 - len(SCREAMING_SNAKE_CASE__ )) + r UpperCAmelCase__ = apply_table(l + r , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = xor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return temp + right if __name__ == "__main__": UpperCAmelCase_ = input('Enter 10 bit key: ') UpperCAmelCase_ = input('Enter 8 bit message: ') UpperCAmelCase_ = [6, 3, 7, 4, 8, 5, 1_0, 9] UpperCAmelCase_ = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] UpperCAmelCase_ = [2, 4, 3, 1] UpperCAmelCase_ = [2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase_ = [4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase_ = [4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase_ = apply_table(key, paa_table) UpperCAmelCase_ = temp[:5] UpperCAmelCase_ = temp[5:] UpperCAmelCase_ = left_shift(left) UpperCAmelCase_ = left_shift(right) UpperCAmelCase_ = apply_table(left + right, pa_table) UpperCAmelCase_ = left_shift(left) UpperCAmelCase_ = left_shift(right) UpperCAmelCase_ = left_shift(left) UpperCAmelCase_ = left_shift(right) UpperCAmelCase_ = apply_table(left + right, pa_table) # encryption UpperCAmelCase_ = apply_table(message, IP) UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = temp[4:] + temp[:4] UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCAmelCase_ = apply_table(CT, IP) UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = temp[4:] + temp[:4] UpperCAmelCase_ = function(expansion, sa, sa, keya, temp) UpperCAmelCase_ = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
346
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = factor * value UpperCAmelCase__ = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
346
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCAmelCase_ = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' if rng is None: UpperCAmelCase__ = random.Random() UpperCAmelCase__ = 1 for dim in shape: total_dims *= dim UpperCAmelCase__ = [] for _ in range(SCREAMING_SNAKE_CASE__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase__ = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE__ ) return output def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None ): '''simple docstring''' UpperCAmelCase__ = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__ ) # make sure that at least one token is attended to for each batch UpperCAmelCase__ = 1 return attn_mask @require_flax class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : str = () def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase__ = 2 UpperCAmelCase__ = inputs["""input_ids"""].shape[-1] // 2 UpperCAmelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length] UpperCAmelCase__ = jnp.ones_like(_UpperCAmelCase ) UpperCAmelCase__ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase__ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase__ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = pt_model_class(_UpperCAmelCase ).eval() UpperCAmelCase__ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , flax_model.params ) UpperCAmelCase__ = flax_model.generate(_UpperCAmelCase ).sequences UpperCAmelCase__ = pt_model.generate(torch.tensor(_UpperCAmelCase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = True UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = False UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = True UpperCAmelCase__ = max_length UpperCAmelCase__ = 0.8 UpperCAmelCase__ = 10 UpperCAmelCase__ = 0.3 UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = max_length UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() UpperCAmelCase__ = max_length UpperCAmelCase__ = 2 UpperCAmelCase__ = 1 UpperCAmelCase__ = 8 UpperCAmelCase__ = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = False UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = True UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase__ = 2 UpperCAmelCase__ = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase__ = model_class(_UpperCAmelCase ) UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase ) UpperCAmelCase__ = jit(model.generate ) UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) UpperCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) UpperCAmelCase__ = """Hello world""" UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCAmelCase , """do_samples""" ): model.generate(_UpperCAmelCase , do_samples=_UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCAmelCase , """foo""" ): UpperCAmelCase__ = {"""foo""": """bar"""} model.generate(_UpperCAmelCase , **_UpperCAmelCase )
346
'''simple docstring''' import string from math import logaa def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" ) UpperCAmelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ): '''simple docstring''' if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return round(tf * idf , 3 )
346
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = """detr""" lowerCAmelCase_ : Tuple = ["""past_key_values"""] lowerCAmelCase_ : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=1_00 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : int=20_48 , _UpperCAmelCase : List[str]=8 , _UpperCAmelCase : int=6 , _UpperCAmelCase : Union[str, Any]=20_48 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]="relu" , _UpperCAmelCase : int=2_56 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[str]="sine" , _UpperCAmelCase : List[str]="resnet50" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : int=1 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=0.1 , **_UpperCAmelCase : Any , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCAmelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = backbone_config.get("""model_type""" ) UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None, None, None UpperCAmelCase__ = use_timm_backbone UpperCAmelCase__ = backbone_config UpperCAmelCase__ = num_channels UpperCAmelCase__ = num_queries UpperCAmelCase__ = d_model UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = encoder_attention_heads UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = activation_function UpperCAmelCase__ = init_std UpperCAmelCase__ = init_xavier_std UpperCAmelCase__ = encoder_layerdrop UpperCAmelCase__ = decoder_layerdrop UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = auxiliary_loss UpperCAmelCase__ = position_embedding_type UpperCAmelCase__ = backbone UpperCAmelCase__ = use_pretrained_backbone UpperCAmelCase__ = dilation # Hungarian matcher UpperCAmelCase__ = class_cost UpperCAmelCase__ = bbox_cost UpperCAmelCase__ = giou_cost # Loss coefficients UpperCAmelCase__ = mask_loss_coefficient UpperCAmelCase__ = dice_loss_coefficient UpperCAmelCase__ = bbox_loss_coefficient UpperCAmelCase__ = giou_loss_coefficient UpperCAmelCase__ = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return self.d_model @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Tuple = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return 1E-5 @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return 12
346
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase_ = parser.parse_args() if args.model_type == "bert": UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase_ = 'bert' else: raise ValueError('args.model_type should be "bert".') UpperCAmelCase_ = model.state_dict() UpperCAmelCase_ = {} for w in ["word_embeddings", "position_embeddings"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"] for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"] UpperCAmelCase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}" ] UpperCAmelCase_ = state_dict[ f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}" ] std_idx += 1 UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight'] UpperCAmelCase_ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"] UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"] print(f"N layers selected for distillation: {std_idx}") print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}") print(f"Save transferred checkpoint to {args.dump_checkpoint}.") torch.save(compressed_sd, args.dump_checkpoint)
346
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,) lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_UpperCAmelCase ) return config def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = 10 UpperCAmelCase__ = self.dummy_model() UpperCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = dict(self.forward_default_kwargs ) UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ): UpperCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase__ = dummy_past_residuals[:] UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase__ = self.dummy_sample UpperCAmelCase__ = 0.1 * sample UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): UpperCAmelCase__ = self.scheduler_classes[0] UpperCAmelCase__ = self.get_scheduler_config() UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.full_loop() UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) ) UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
346
1
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[int] ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if numbers[j] < numbers[i]: UpperCAmelCase__ , UpperCAmelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase_ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
346
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """vivit""" def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = num_frames UpperCAmelCase__ = tubelet_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias super().__init__(**_UpperCAmelCase )
346
1
'''simple docstring''' class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = name UpperCAmelCase__ = val def __str__( self : Union[str, Any] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : Optional[int] , _UpperCAmelCase : Optional[int] ): """simple docstring""" return self.val < other.val class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = self.build_heap(_UpperCAmelCase ) def __getitem__( self : int , _UpperCAmelCase : List[str] ): """simple docstring""" return self.get_value(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" return (idx - 1) // 2 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Any ): """simple docstring""" return idx * 2 + 1 def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Tuple ): """simple docstring""" return idx * 2 + 2 def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Any ): """simple docstring""" return self.heap_dict[key] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = len(_UpperCAmelCase ) - 1 UpperCAmelCase__ = self.get_parent_idx(_UpperCAmelCase ) for idx, i in enumerate(_UpperCAmelCase ): UpperCAmelCase__ = idx UpperCAmelCase__ = i.val for i in range(_UpperCAmelCase , -1 , -1 ): self.sift_down(_UpperCAmelCase , _UpperCAmelCase ) return array def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ): """simple docstring""" while True: UpperCAmelCase__ = self.get_left_child_idx(_UpperCAmelCase ) # noqa: E741 UpperCAmelCase__ = self.get_right_child_idx(_UpperCAmelCase ) UpperCAmelCase__ = idx if l < len(_UpperCAmelCase ) and array[l] < array[idx]: UpperCAmelCase__ = l if r < len(_UpperCAmelCase ) and array[r] < array[smallest]: UpperCAmelCase__ = r if smallest != idx: UpperCAmelCase__ , UpperCAmelCase__ = array[smallest], array[idx] ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) UpperCAmelCase__ = smallest else: break def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.get_parent_idx(_UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: UpperCAmelCase__ , UpperCAmelCase__ = self.heap[idx], self.heap[p] UpperCAmelCase__ , UpperCAmelCase__ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) UpperCAmelCase__ = p UpperCAmelCase__ = self.get_parent_idx(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" return self.heap[0] def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.heap[-1], self.heap[0] UpperCAmelCase__ , UpperCAmelCase__ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) UpperCAmelCase__ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] ): """simple docstring""" self.heap.append(_UpperCAmelCase ) UpperCAmelCase__ = len(self.heap ) - 1 UpperCAmelCase__ = node.val self.sift_up(len(self.heap ) - 1 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return len(self.heap ) == 0 def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" UpperCAmelCase__ = new_value UpperCAmelCase__ = new_value self.sift_up(self.idx_of_element[node] ) UpperCAmelCase_ = Node('R', -1) UpperCAmelCase_ = Node('B', 6) UpperCAmelCase_ = Node('A', 3) UpperCAmelCase_ = Node('X', 1) UpperCAmelCase_ = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array UpperCAmelCase_ = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -1_7) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
346
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = original_name.split(""".""" )[0] UpperCAmelCase__ = key.split(""".""" ) UpperCAmelCase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) UpperCAmelCase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) UpperCAmelCase__ = orig_block_num - offset UpperCAmelCase__ = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = OrderedDict() UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): UpperCAmelCase__ = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 UpperCAmelCase__ = key[: key.find("""proj""" )] UpperCAmelCase__ = key.replace(SCREAMING_SNAKE_CASE__ , F'''patch_embeddings.{total_embed_found}.''' ) UpperCAmelCase__ = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: UpperCAmelCase__ = """poolformer.encoder.""" + key if "mlp.fc1" in key: UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """norm1""" , """before_norm""" ) if "norm2" in key: UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: UpperCAmelCase__ = key.replace("""head""" , """classifier""" ) UpperCAmelCase__ = value return new_state_dict def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = PoolFormerConfig() # set attributes based on model_name UpperCAmelCase__ = """huggingface/label-files""" UpperCAmelCase__ = model_name[-3:] UpperCAmelCase__ = 1000 UpperCAmelCase__ = """imagenet-1k-id2label.json""" UpperCAmelCase__ = (1, 1000) # set config attributes UpperCAmelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} if size == "s12": UpperCAmelCase__ = [2, 2, 6, 2] UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 4.0 UpperCAmelCase__ = 0.9 elif size == "s24": UpperCAmelCase__ = [4, 4, 12, 4] UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 4.0 UpperCAmelCase__ = 0.9 elif size == "s36": UpperCAmelCase__ = [6, 6, 18, 6] UpperCAmelCase__ = [64, 128, 320, 512] UpperCAmelCase__ = 4.0 UpperCAmelCase__ = 1e-6 UpperCAmelCase__ = 0.9 elif size == "m36": UpperCAmelCase__ = [6, 6, 18, 6] UpperCAmelCase__ = [96, 192, 384, 768] UpperCAmelCase__ = 4.0 UpperCAmelCase__ = 1e-6 UpperCAmelCase__ = 0.95 elif size == "m48": UpperCAmelCase__ = [8, 8, 24, 8] UpperCAmelCase__ = [96, 192, 384, 768] UpperCAmelCase__ = 4.0 UpperCAmelCase__ = 1e-6 UpperCAmelCase__ = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor UpperCAmelCase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) ) # rename keys UpperCAmelCase__ = rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict UpperCAmelCase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor UpperCAmelCase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = outputs.logits # define expected logit slices for different models if size == "s12": UpperCAmelCase__ = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": UpperCAmelCase__ = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": UpperCAmelCase__ = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": UpperCAmelCase__ = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": UpperCAmelCase__ = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCAmelCase_ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
346
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'spiece.model'} UpperCAmelCase_ = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ): """simple docstring""" UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) UpperCAmelCase__ = jieba UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.__dict__.copy() UpperCAmelCase__ = None return state def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase__ = {} UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ): """simple docstring""" if self.remove_space: UpperCAmelCase__ = """ """.join(inputs.strip().split() ) else: UpperCAmelCase__ = inputs UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase ) UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: UpperCAmelCase__ = outputs.lower() return outputs def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase ) UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) UpperCAmelCase__ = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase__ = cur_pieces[1:] else: UpperCAmelCase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ): """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: UpperCAmelCase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
346
1
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase_ = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase_ = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE__ ) if g == main_target[position]] ) return (item, float(SCREAMING_SNAKE_CASE__ )) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) UpperCAmelCase__ = parent_a[:random_slice] + parent_a[random_slice:] UpperCAmelCase__ = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] ): '''simple docstring''' UpperCAmelCase__ = list(SCREAMING_SNAKE_CASE__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: UpperCAmelCase__ = random.choice(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : tuple[str, float] , SCREAMING_SNAKE_CASE__ : list[tuple[str, float]] , SCREAMING_SNAKE_CASE__ : list[str] , ): '''simple docstring''' UpperCAmelCase__ = [] # Generate more children proportionally to the fitness score. UpperCAmelCase__ = int(parent_a[1] * 100 ) + 1 UpperCAmelCase__ = 10 if child_n >= 10 else child_n for _ in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = population_score[random.randint(0 , SCREAMING_SNAKE_CASE__ )][0] UpperCAmelCase__ , UpperCAmelCase__ = crossover(parent_a[0] , SCREAMING_SNAKE_CASE__ ) # Append new string to the population list. pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return pop def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : bool = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: UpperCAmelCase__ = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Verify that the target contains no genes besides the ones inside genes variable. UpperCAmelCase__ = sorted({c for c in target if c not in genes} ) if not_in_genes_list: UpperCAmelCase__ = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Generate random starting population. UpperCAmelCase__ = [] for _ in range(SCREAMING_SNAKE_CASE__ ): population.append("""""".join([random.choice(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) ) # Just some logs to know what the algorithms is doing. UpperCAmelCase__ , UpperCAmelCase__ = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(SCREAMING_SNAKE_CASE__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. UpperCAmelCase__ = [evaluate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for item in population] # Check if there is a matching evolution. UpperCAmelCase__ = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. UpperCAmelCase__ = population[: int(N_POPULATION / 3 )] population.clear() population.extend(SCREAMING_SNAKE_CASE__ ) # Normalize population score to be between 0 and 1. UpperCAmelCase__ = [ (item, score / len(SCREAMING_SNAKE_CASE__ )) for item, score in population_score ] # This is selection for i in range(SCREAMING_SNAKE_CASE__ ): population.extend(select(population_score[int(SCREAMING_SNAKE_CASE__ )] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(SCREAMING_SNAKE_CASE__ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase_ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) UpperCAmelCase_ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
346
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) UpperCAmelCase__ = parser.parse_args() return args def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples["""text"""] ) return fn def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [] for i in range(len(tokenized_data["""input_ids"""] ) ): UpperCAmelCase__ = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE__ ) return records def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit ) UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE__ : int ): # Concatenate all texts. UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()} UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 UpperCAmelCase__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. UpperCAmelCase__ = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )] for k, t in concatenated_examples.items() } return result UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 ) UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ): UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size] UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase__ = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE__ ) print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
346
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : Optional[int]=4_00 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=[0.5, 0.5, 0.5] , _UpperCAmelCase : str=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCAmelCase__ = size if size is not None else {"""shortest_edge""": 18} UpperCAmelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = min_resolution UpperCAmelCase__ = max_resolution UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean UpperCAmelCase__ = image_std def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = LevitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = LevitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched UpperCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
346
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCAmelCase_ = '\\n\n' UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """input_texts""": datasets.Value("""string""" ), } ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCAmelCase__ = """cuda""" else: UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = model.to(_UpperCAmelCase ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_UpperCAmelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCAmelCase__ = model.config.max_length - 1 else: UpperCAmelCase__ = model.config.max_length UpperCAmelCase__ = tokenizer( _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase ) UpperCAmelCase__ = encodings["""input_ids"""] UpperCAmelCase__ = encodings["""attention_mask"""] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCAmelCase__ = [] UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" ) for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ): UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) ) UpperCAmelCase__ = encoded_texts[start_index:end_index] UpperCAmelCase__ = attn_masks[start_index:end_index] if add_start_token: UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCAmelCase__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 ) UpperCAmelCase__ = encoded_batch with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits UpperCAmelCase__ = out_logits[..., :-1, :].contiguous() UpperCAmelCase__ = labels[..., 1:].contiguous() UpperCAmelCase__ = attn_mask[..., 1:].contiguous() UpperCAmelCase__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
346
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : List[str] = ["""pixel_values"""] def __init__( self : Any , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 32 , _UpperCAmelCase : Any=PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Any , ): """simple docstring""" UpperCAmelCase__ = do_resize UpperCAmelCase__ = do_rescale UpperCAmelCase__ = size_divisor UpperCAmelCase__ = resample super().__init__(**_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[ChannelDimension] = None , **_UpperCAmelCase : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = get_image_size(_UpperCAmelCase ) # Rounds the height and width down to the closest multiple of size_divisor UpperCAmelCase__ = height // size_divisor * size_divisor UpperCAmelCase__ = width // size_divisor * size_divisor UpperCAmelCase__ = resize(_UpperCAmelCase , (new_h, new_w) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) return image def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[ChannelDimension] = None , **_UpperCAmelCase : str ): """simple docstring""" return rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[TensorType, str]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : List[Any] , ): """simple docstring""" UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = size_divisor if size_divisor is not None else self.size_divisor UpperCAmelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("""size_divisor is required for resizing""" ) UpperCAmelCase__ = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError("""Invalid image(s)""" ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(_UpperCAmelCase ) for img in images] if do_resize: UpperCAmelCase__ = [self.resize(_UpperCAmelCase , size_divisor=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(_UpperCAmelCase , scale=1 / 2_55 ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
346
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ): '''simple docstring''' UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
346
1
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCAmelCase__ = TOKENIZER_CLASSES else: UpperCAmelCase__ = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE__ , tokenizer_name + """Fast""" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase__ = True if checkpoint_name is None: UpperCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase__ = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCAmelCase__ = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase__ , UpperCAmelCase__ = checkpoint.split("""/""" ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif add_prefix: UpperCAmelCase__ = checkpoint UpperCAmelCase__ = dump_path else: UpperCAmelCase__ = None UpperCAmelCase__ = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase__ = file_path.split(SCREAMING_SNAKE_CASE__ )[-1][0] if next_char == "/": UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCAmelCase__ = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ , filename_prefix=SCREAMING_SNAKE_CASE__ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(SCREAMING_SNAKE_CASE__ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) UpperCAmelCase_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
346
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ): """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ): """simple docstring""" UpperCAmelCase__ = {} if top_k is not None: UpperCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ): """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = load_image(_UpperCAmelCase ) UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model(**_UpperCAmelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
346
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = """deberta-v2""" def __init__( self : str , _UpperCAmelCase : Tuple=12_81_00 , _UpperCAmelCase : str=15_36 , _UpperCAmelCase : List[Any]=24 , _UpperCAmelCase : List[Any]=24 , _UpperCAmelCase : List[str]=61_44 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : str=1E-7 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Tuple=-1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=True , _UpperCAmelCase : str=None , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Union[str, Any]="gelu" , **_UpperCAmelCase : str , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = relative_attention UpperCAmelCase__ = max_relative_positions UpperCAmelCase__ = pad_token_id UpperCAmelCase__ = position_biased_input # Backwards compatibility if type(_UpperCAmelCase ) == str: UpperCAmelCase__ = [x.strip() for x in pos_att_type.lower().split("""|""" )] UpperCAmelCase__ = pos_att_type UpperCAmelCase__ = vocab_size UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = kwargs.get("""pooler_hidden_size""" , _UpperCAmelCase ) UpperCAmelCase__ = pooler_dropout UpperCAmelCase__ = pooler_hidden_act class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return 12 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : "PreTrainedTokenizerBase" = None , ): """simple docstring""" UpperCAmelCase__ = super().generate_dummy_inputs(preprocessor=_UpperCAmelCase , framework=_UpperCAmelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
346
'''simple docstring''' from math import factorial def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ): '''simple docstring''' UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCAmelCase__ = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: UpperCAmelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
346
1
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = factor * value UpperCAmelCase__ = value while not is_prime(SCREAMING_SNAKE_CASE__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ ) return value
346
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = MgpstrTokenizer lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + """\n""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = """tester""" UpperCAmelCase__ = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , 1 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertNotEqual(len(_UpperCAmelCase ) , 0 ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" pass
346
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
346
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = False while not completed: if counter == 1: self.reset() UpperCAmelCase__ = self.advance() if not self.does_advance(_UpperCAmelCase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCAmelCase__ = token_ids UpperCAmelCase__ = len(self.token_ids ) UpperCAmelCase__ = -1 # the index of the currently fulfilled step UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.fulfilled_idx += 1 UpperCAmelCase__ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase__ = True UpperCAmelCase__ = completed else: # failed to make progress. UpperCAmelCase__ = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = 0 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = PhrasalConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.fulfilled_idx UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ): """simple docstring""" UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] ) UpperCAmelCase__ = {} for token_ids in nested_token_ids: UpperCAmelCase__ = root for tidx, token_id in enumerate(_UpperCAmelCase ): if token_id not in level: UpperCAmelCase__ = {} UpperCAmelCase__ = level[token_id] if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f''' {nested_token_ids}.''' ) UpperCAmelCase__ = root def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.trie for current_token in current_seq: UpperCAmelCase__ = start[current_token] UpperCAmelCase__ = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase ) return len(_UpperCAmelCase ) == 0 def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = list(root.values() ) if len(_UpperCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ): """simple docstring""" UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase ) return len(_UpperCAmelCase ) != leaf_count class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ): """simple docstring""" super(_UpperCAmelCase , self ).__init__() if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase ) UpperCAmelCase__ = nested_token_ids UpperCAmelCase__ = self.trie.max_height UpperCAmelCase__ = [] UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False if self.does_advance(_UpperCAmelCase ): self.current_seq.append(_UpperCAmelCase ) UpperCAmelCase__ = True else: UpperCAmelCase__ = True self.reset() UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq ) UpperCAmelCase__ = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = False UpperCAmelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ): """simple docstring""" UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCAmelCase__ = self.seqlen UpperCAmelCase__ = self.current_seq UpperCAmelCase__ = self.completed return new_constraint class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ): """simple docstring""" UpperCAmelCase__ = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase__ = max([c.seqlen for c in constraints] ) UpperCAmelCase__ = len(_UpperCAmelCase ) UpperCAmelCase__ = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = [] UpperCAmelCase__ = None UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase__ = constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) else: UpperCAmelCase__ = self.inprogress_constraint.advance() if isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.append(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): token_list.extend(_UpperCAmelCase ) if len(_UpperCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCAmelCase__ , UpperCAmelCase__ = False, False if self.completed: UpperCAmelCase__ = True UpperCAmelCase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) ) UpperCAmelCase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCAmelCase__ = None if len(self.pending_constraints ) == 0: # we're done! UpperCAmelCase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_UpperCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_UpperCAmelCase ) UpperCAmelCase__ = None if not complete and stepped: UpperCAmelCase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ): """simple docstring""" UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase__ = [ constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
346
1
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): '''simple docstring''' UpperCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase__ = np.zeros((n + 1,) ) UpperCAmelCase__ = ya UpperCAmelCase__ = xa for k in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE__ , y[k] ) UpperCAmelCase__ = y[k] + ( (step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE__ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
346
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )] if identifier is not None: UpperCAmelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for n_ in n_identifier: UpperCAmelCase__ = [file for file in files if n_ not in file] else: UpperCAmelCase__ = [file for file in files if n_identifier not in file] UpperCAmelCase__ = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _UpperCAmelCase ) if only_modules: UpperCAmelCase__ = file.split(""".""" )[0] try: UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase ) UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """modeling""" UpperCAmelCase__ = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """tokenization""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """configuration""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = Path("""docs/source""" ) UpperCAmelCase__ = ["""favicon.ico"""] self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
346
1
'''simple docstring''' import math def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 while num > 0: UpperCAmelCase__ = num % 8 UpperCAmelCase__ = octal + (remainder * math.floor(math.pow(10 , SCREAMING_SNAKE_CASE__ ) )) counter += 1 UpperCAmelCase__ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'''0o{int(SCREAMING_SNAKE_CASE__ )}''' def _UpperCamelCase ( ): '''simple docstring''' print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
346
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
1
'''simple docstring''' UpperCAmelCase_ = {} def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCAmelCase__ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCAmelCase__ = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCAmelCase__ = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCAmelCase__ = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 ) UpperCAmelCase__ = state_late + state_absent + state_ontime UpperCAmelCase__ = prizestrings return prizestrings def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 30 ): '''simple docstring''' return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
346
'''simple docstring''' from timeit import timeit UpperCAmelCase_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2 UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())''' UpperCAmelCase__ = F'''from __main__ import test_data, {name}''' UpperCAmelCase__ = 500000 UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f"{key:21} {value}") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
346
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).save_pretrained(SCREAMING_SNAKE_CASE__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
346
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ): """simple docstring""" UpperCAmelCase__ = compute_bleu( reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase ) ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
346
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Any = ["""pixel_values"""] def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Dict , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = size if size is not None else {"""height""": 2_24, """width""": 2_24} UpperCAmelCase__ = get_size_dict(_UpperCAmelCase ) UpperCAmelCase__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name="""crop_size""" ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = do_rescale UpperCAmelCase__ = do_normalize UpperCAmelCase__ = do_center_crop UpperCAmelCase__ = crop_size UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = rescale_factor UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ): """simple docstring""" UpperCAmelCase__ = get_size_dict(_UpperCAmelCase ) if "shortest_edge" in size: UpperCAmelCase__ = get_resize_output_image_size(_UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=_UpperCAmelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase__ = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ): """simple docstring""" UpperCAmelCase__ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] ): """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ): """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" , default_to_square=_UpperCAmelCase ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(_UpperCAmelCase ) if not is_batched(_UpperCAmelCase ): UpperCAmelCase__ = [images] if not valid_images(_UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: UpperCAmelCase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase__ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] UpperCAmelCase__ = {"""pixel_values""": images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
346
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
346
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape UpperCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = emb.weight.data return lin_layer def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) UpperCAmelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] UpperCAmelCase__ = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCAmelCase__ = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) UpperCAmelCase__ = state_dict["""decoder.embed_tokens.weight"""] UpperCAmelCase__ = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
346
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) UpperCAmelCase__ = TaConfig( vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(_UpperCAmelCase ): UpperCAmelCase__ = TaBlock(_UpperCAmelCase ) self.encoders.append(_UpperCAmelCase ) UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase ) UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase ) UpperCAmelCase__ = encoder_input_tokens.shape[1] UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_UpperCAmelCase ) UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase ) # inverted the attention mask UpperCAmelCase__ = encoder_input_tokens.size() UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase ) for lyr in self.encoders: UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0] UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase ) return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
346
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCAmelCase_ = { 'b0': { 'hidden_dim': 1_2_8_0, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_2_4, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_2_8_0, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_4_0, 'dropout_rate': 0.2, 'dw_padding': [1_6], }, 'b2': { 'hidden_dim': 1_4_0_8, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_6_0, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 1_6], }, 'b3': { 'hidden_dim': 1_5_3_6, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_0_0, 'dropout_rate': 0.3, 'dw_padding': [5, 1_8], }, 'b4': { 'hidden_dim': 1_7_9_2, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_8_0, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_0_4_8, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_5_6, 'dropout_rate': 0.4, 'dw_padding': [1_3, 2_7], }, 'b6': { 'hidden_dim': 2_3_0_4, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_2_8, 'dropout_rate': 0.5, 'dw_padding': [3_1], }, 'b7': { 'hidden_dim': 2_5_6_0, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_0_0, 'dropout_rate': 0.5, 'dw_padding': [1_8], }, } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = EfficientNetConfig() UpperCAmelCase__ = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCAmelCase__ = CONFIG_MAP[model_name]["""width_coef"""] UpperCAmelCase__ = CONFIG_MAP[model_name]["""depth_coef"""] UpperCAmelCase__ = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase__ = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCAmelCase__ = CONFIG_MAP[model_name]["""dw_padding"""] UpperCAmelCase__ = """huggingface/label-files""" UpperCAmelCase__ = """imagenet-1k-id2label.json""" UpperCAmelCase__ = 1000 UpperCAmelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase__ = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=SCREAMING_SNAKE_CASE__ , ) return preprocessor def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCAmelCase__ = sorted(set(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = {b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__ , range(SCREAMING_SNAKE_CASE__ ) )} UpperCAmelCase__ = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCAmelCase__ = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCAmelCase__ = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase__ = """efficientnet.""" + item[1] UpperCAmelCase__ = """classifier.weight""" UpperCAmelCase__ = """classifier.bias""" return key_mapping def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase__ = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase__ = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) ) else: UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE__ , weights="""imagenet""" , input_tensor=SCREAMING_SNAKE_CASE__ , input_shape=SCREAMING_SNAKE_CASE__ , pooling=SCREAMING_SNAKE_CASE__ , classes=1000 , classifier_activation="""softmax""" , ) UpperCAmelCase__ = original_model.trainable_variables UpperCAmelCase__ = original_model.non_trainable_variables UpperCAmelCase__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase__ = param.numpy() UpperCAmelCase__ = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase__ = get_efficientnet_config(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval() UpperCAmelCase__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCAmelCase__ = rename_keys(SCREAMING_SNAKE_CASE__ ) replace_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Initialize preprocessor and preprocess input image UpperCAmelCase__ = convert_image_processor(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase__ = hf_model(**SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase__ = False UpperCAmelCase__ = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase__ = image.img_to_array(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=0 ) UpperCAmelCase__ = original_model.predict(SCREAMING_SNAKE_CASE__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.mkdir(SCREAMING_SNAKE_CASE__ ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCAmelCase__ = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCAmelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
346
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = {} with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
346
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : Dict = """encodec""" def __init__( self : Any , _UpperCAmelCase : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase : Tuple=2_40_00 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=[8, 5, 4, 2] , _UpperCAmelCase : Union[str, Any]="weight_norm" , _UpperCAmelCase : int=7 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]="reflect" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=1.0 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=True , **_UpperCAmelCase : Optional[Any] , ): """simple docstring""" UpperCAmelCase__ = target_bandwidths UpperCAmelCase__ = sampling_rate UpperCAmelCase__ = audio_channels UpperCAmelCase__ = normalize UpperCAmelCase__ = chunk_length_s UpperCAmelCase__ = overlap UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_filters UpperCAmelCase__ = num_residual_layers UpperCAmelCase__ = upsampling_ratios UpperCAmelCase__ = norm_type UpperCAmelCase__ = kernel_size UpperCAmelCase__ = last_kernel_size UpperCAmelCase__ = residual_kernel_size UpperCAmelCase__ = dilation_growth_rate UpperCAmelCase__ = use_causal_conv UpperCAmelCase__ = pad_mode UpperCAmelCase__ = compress UpperCAmelCase__ = num_lstm_layers UpperCAmelCase__ = trim_right_ratio UpperCAmelCase__ = codebook_size UpperCAmelCase__ = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase__ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_UpperCAmelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
346
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ): """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor: UpperCAmelCase__ = [] UpperCAmelCase__ = Counter() UpperCAmelCase__ = 0 UpperCAmelCase__ = defaultdict(_UpperCAmelCase ) for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): for candidate in candidates: UpperCAmelCase__ = candidate + """\n""" + test_case UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase ) futures.append(_UpperCAmelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(_UpperCAmelCase ): UpperCAmelCase__ = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] for result in results.values(): result.sort() UpperCAmelCase__ = [r[1]["""passed"""] for r in result] total.append(len(_UpperCAmelCase ) ) correct.append(sum(_UpperCAmelCase ) ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = np.array(_UpperCAmelCase ) UpperCAmelCase__ = k UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ) else: assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ ) return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
346
1