code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def snake_case ( A__ ):
if n == 1 or not isinstance(_a ,_a ):
return 0
elif n == 2:
return 1
else:
UpperCAmelCase_ : Union[str, Any] = [0, 1]
for i in range(2 ,n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def snake_case ( A__ ):
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : Any = 2
while digits < n:
index += 1
UpperCAmelCase_ : Any = len(str(fibonacci(_a ) ) )
return index
def snake_case ( A__ = 10_00 ):
return fibonacci_digits_index(_a )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 268 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[int] ) -> Any:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : str = -1
UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ )
UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ )
model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
UpperCAmelCase_ : Optional[int] = cs.out[:-1]
self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: Dict ) -> Optional[Any]:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = -1
UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ )
UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] )
UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ )
thread.start()
UpperCAmelCase_ : int = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: List[Any] ) -> Dict:
UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = -1
UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ )
UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :]
UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ )
model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
UpperCAmelCase_ : List[str] = cs.out[:-1]
self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: str ) -> str:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" )
UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Any = -1
UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ )
model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n"
UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" )
self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) )
def A__ ( self: List[str] ) -> Any:
UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = -1
UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 )
UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCamelCase_ ):
UpperCAmelCase_ : Union[str, Any] = """"""
for new_text in streamer:
streamer_text += new_text
| 345 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''microsoft/trocr-base-handwritten''': (
'''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'''
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class UpperCAmelCase_ ( __snake_case ):
'''simple docstring'''
__A : Tuple = "trocr"
__A : Optional[Any] = ["past_key_values"]
__A : List[str] = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self , __A=5_0265 , __A=1024 , __A=12 , __A=16 , __A=4096 , __A="gelu" , __A=512 , __A=0.1 , __A=0.0 , __A=0.0 , __A=2 , __A=0.02 , __A=0.0 , __A=True , __A=False , __A=True , __A=True , __A=1 , __A=0 , __A=2 , **__A , ):
"""simple docstring"""
lowerCamelCase : List[str] = vocab_size
lowerCamelCase : Union[str, Any] = d_model
lowerCamelCase : Tuple = decoder_layers
lowerCamelCase : List[str] = decoder_attention_heads
lowerCamelCase : Optional[Any] = decoder_ffn_dim
lowerCamelCase : Union[str, Any] = activation_function
lowerCamelCase : List[str] = max_position_embeddings
lowerCamelCase : List[str] = dropout
lowerCamelCase : List[Any] = attention_dropout
lowerCamelCase : List[Any] = activation_dropout
lowerCamelCase : Tuple = init_std
lowerCamelCase : List[Any] = decoder_layerdrop
lowerCamelCase : Optional[int] = use_cache
lowerCamelCase : Union[str, Any] = scale_embedding
lowerCamelCase : Any = use_learned_position_embeddings
lowerCamelCase : int = layernorm_embedding
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
| 283 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
@property
def A__ ( self: Optional[int] ) -> int:
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = UNetaDModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,)
return model
@property
def A__ ( self: Tuple ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = VQModel(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,)
return model
@property
def A__ ( self: Tuple ) -> Any:
torch.manual_seed(0 )
UpperCAmelCase_ : int = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
return CLIPTextModel(lowerCamelCase_ )
def A__ ( self: str ) -> Optional[Any]:
UpperCAmelCase_ : str = self.dummy_uncond_unet
UpperCAmelCase_ : List[Any] = DDIMScheduler()
UpperCAmelCase_ : List[Any] = self.dummy_vq_model
UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ )
ldm.to(lowerCamelCase_ )
ldm.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images
UpperCAmelCase_ : List[str] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0]
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[int] ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(lowerCamelCase_ )
ldm.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 345 | 0 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = 1
UpperCamelCase = 3
UpperCamelCase = (32, 32)
UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCamelCase_ )
return image
@property
def lowerCamelCase_ ( self : List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
def extract(*lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : str ):
class SCREAMING_SNAKE_CASE_ :
def __init__( self : List[Any] ):
"""simple docstring"""
UpperCamelCase = torch.ones([0] )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : str ):
"""simple docstring"""
self.pixel_values.to(lowerCamelCase_ )
return self
return Out()
return extract
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.dummy_cond_unet
UpperCamelCase = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , )
UpperCamelCase = self.dummy_vae
UpperCamelCase = self.dummy_text_encoder
UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
UpperCamelCase = StableDiffusionPipeline(
unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = """A painting of a squirrel eating a burger"""
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCamelCase = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
UpperCamelCase = output.images
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0]
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase_ ( self : Optional[Any] ):
"""simple docstring"""
UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCamelCase = self.dummy_cond_unet
UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
UpperCamelCase = self.dummy_vae
UpperCamelCase = self.dummy_text_encoder
UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
UpperCamelCase = StableDiffusionPipeline(
unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = """A painting of a squirrel eating a burger"""
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCamelCase = sd_pipe([prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
UpperCamelCase = output.images
UpperCamelCase = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCamelCase_ , )[0]
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCamelCase = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase_ ( self : str ):
"""simple docstring"""
UpperCamelCase = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCamelCase_ )
assert isinstance(lowerCamelCase_ , lowerCamelCase_ )
assert isinstance(pipe.scheduler , lowerCamelCase_ )
assert pipe.safety_checker is None
UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCamelCase_ )
UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = self.dummy_cond_unet
UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
UpperCamelCase = self.dummy_vae
UpperCamelCase = self.dummy_text_encoder
UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
UpperCamelCase = unet.half()
UpperCamelCase = vae.half()
UpperCamelCase = bert.half()
# make sure here that pndm scheduler skips prk
UpperCamelCase = StableDiffusionPipeline(
unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=self.dummy_extractor , )
UpperCamelCase = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = """A painting of a squirrel eating a burger"""
UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCamelCase_ ( self : List[str] ):
"""simple docstring"""
UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ )
UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCamelCase = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
UpperCamelCase = 40_0366_0346
UpperCamelCase = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase = output.images
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase = output.images
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase_ ( self : Optional[int] ):
"""simple docstring"""
UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCamelCase_ )
UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCamelCase = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity"""
UpperCamelCase = 27_3497_1755
UpperCamelCase = 7
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase = output.images
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase = output.images
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCamelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
UpperCamelCase = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCamelCase = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
UpperCamelCase = 10_4435_5234
UpperCamelCase = 12
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
UpperCamelCase = output.images
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
UpperCamelCase = torch.manual_seed(lowerCamelCase_ )
UpperCamelCase = sd_pipe(
[prompt] , generator=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
UpperCamelCase = output.images
UpperCamelCase = image[0, -3:, -3:, -1]
UpperCamelCase = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 343 |
def lowerCamelCase_ ( _a : List[str] ):
'''simple docstring'''
UpperCAmelCase_ : Tuple = [0] * len(_a )
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Dict = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_a ) ):
if indegree[i] == 0:
queue.append(_a )
while queue:
UpperCAmelCase_ : List[str] = queue.pop(0 )
cnt += 1
topo.append(_a )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(_a )
if cnt != len(_a ):
print("""Cycle exists""" )
else:
print(_a )
# Adjacency List of Graph
UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 345 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A__ = logging.get_logger(__name__)
A__ = {
'''microsoft/swinv2-tiny-patch4-window8-256''': (
'''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'''
),
}
class a ( __snake_case ):
__lowerCAmelCase : Optional[Any] = "swinv2"
__lowerCAmelCase : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self :List[str] ,__lowercase :List[str]=2_2_4 ,__lowercase :List[str]=4 ,__lowercase :List[Any]=3 ,__lowercase :Optional[Any]=9_6 ,__lowercase :Any=[2, 2, 6, 2] ,__lowercase :Dict=[3, 6, 1_2, 2_4] ,__lowercase :str=7 ,__lowercase :Optional[Any]=4.0 ,__lowercase :Tuple=True ,__lowercase :List[str]=0.0 ,__lowercase :Optional[int]=0.0 ,__lowercase :List[str]=0.1 ,__lowercase :str="gelu" ,__lowercase :str=False ,__lowercase :Dict=0.02 ,__lowercase :Union[str, Any]=1e-5 ,__lowercase :str=3_2 ,**__lowercase :List[str] ,):
super().__init__(**lowerCamelCase_ )
snake_case__ : Tuple = image_size
snake_case__ : Tuple = patch_size
snake_case__ : Dict = num_channels
snake_case__ : List[Any] = embed_dim
snake_case__ : Dict = depths
snake_case__ : Dict = len(lowerCamelCase_ )
snake_case__ : str = num_heads
snake_case__ : Tuple = window_size
snake_case__ : int = mlp_ratio
snake_case__ : str = qkv_bias
snake_case__ : Any = hidden_dropout_prob
snake_case__ : Tuple = attention_probs_dropout_prob
snake_case__ : int = drop_path_rate
snake_case__ : Optional[Any] = hidden_act
snake_case__ : List[str] = use_absolute_embeddings
snake_case__ : Dict = layer_norm_eps
snake_case__ : int = initializer_range
snake_case__ : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case__ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
snake_case__ : Any = (0, 0, 0, 0)
| 230 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'''microsoft/swinv2-tiny-patch4-window8-256''': (
'''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'''
),
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = "swinv2"
A__ : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple:
super().__init__(**lowerCamelCase_ )
UpperCAmelCase_ : Tuple = image_size
UpperCAmelCase_ : Tuple = patch_size
UpperCAmelCase_ : Dict = num_channels
UpperCAmelCase_ : List[Any] = embed_dim
UpperCAmelCase_ : Dict = depths
UpperCAmelCase_ : Dict = len(lowerCamelCase_ )
UpperCAmelCase_ : str = num_heads
UpperCAmelCase_ : Tuple = window_size
UpperCAmelCase_ : int = mlp_ratio
UpperCAmelCase_ : str = qkv_bias
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : int = drop_path_rate
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : List[str] = use_absolute_embeddings
UpperCAmelCase_ : Dict = layer_norm_eps
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
UpperCAmelCase_ : Any = (0, 0, 0, 0)
| 345 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Any:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Union[str, Any]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Tuple:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Tuple:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Tuple:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[Any]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> int:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Dict:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> Optional[int]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]:
requires_backends(self , ["""sentencepiece"""] )
class _lowerCAmelCase ( metaclass=__snake_case ):
"""simple docstring"""
lowerCamelCase = ["sentencepiece"]
def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> str:
requires_backends(self , ["""sentencepiece"""] )
| 344 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: int ) -> str:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase_ : List[str] = mock.Mock()
UpperCAmelCase_ : List[Any] = 500
UpperCAmelCase_ : Union[str, Any] = {}
UpperCAmelCase_ : Union[str, Any] = HTTPError
UpperCAmelCase_ : Any = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head:
UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def A__ ( self: str ) -> int:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase_ : str = mock.Mock()
UpperCAmelCase_ : Optional[int] = 500
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : Union[str, Any] = HTTPError
UpperCAmelCase_ : List[Any] = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head:
UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# This check we did call the fake head request
mock_head.assert_called()
def A__ ( self: str ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
try:
UpperCAmelCase_ : Any = tempfile.mktemp()
with open(lowerCamelCase_ ,"""wb""" ) as f:
http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ )
UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ )
finally:
os.remove(lowerCamelCase_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("""tokenizer.json""" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("""tokenizer.json""" ,"""wb""" ) as f:
http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ )
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("""tokenizer.json""" )
def A__ ( self: List[str] ) -> Tuple:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" )
@is_staging_test
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def A__ ( cls: Dict ) -> Optional[int]:
UpperCAmelCase_ : List[str] = TOKEN
HfFolder.save_token(lowerCamelCase_ )
@classmethod
def A__ ( cls: Optional[Any] ) -> List[str]:
try:
delete_repo(token=cls._token ,repo_id="""test-tokenizer""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" )
except HTTPError:
pass
def A__ ( self: Any ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ )
tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token )
UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id="""test-tokenizer""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token )
UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def A__ ( self: Optional[int] ) -> Any:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ )
tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token )
UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token )
UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def A__ ( self: Optional[int] ) -> Optional[Any]:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ )
# No fast custom tokenizer
tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token )
UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ )
bert_tokenizer.save_pretrained(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ )
tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token )
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" )
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" )
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[Any] ) -> Any:
UpperCAmelCase_ : Any = Trie()
trie.add("""Hello 友達""" )
self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
trie.add("""Hello""" )
trie.data
self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
def A__ ( self: Tuple ) -> Optional[int]:
UpperCAmelCase_ : str = Trie()
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] )
trie.add("""[CLS]""" )
trie.add("""extra_id_1""" )
trie.add("""extra_id_100""" )
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] )
def A__ ( self: Optional[Any] ) -> Optional[int]:
UpperCAmelCase_ : Dict = Trie()
trie.add("""A""" )
self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] )
self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] )
def A__ ( self: Union[str, Any] ) -> int:
UpperCAmelCase_ : List[str] = Trie()
trie.add("""TOKEN]""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] )
def A__ ( self: int ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = Trie()
trie.add("""A""" )
trie.add("""P""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] )
def A__ ( self: int ) -> List[str]:
UpperCAmelCase_ : int = Trie()
trie.add("""AB""" )
trie.add("""B""" )
trie.add("""C""" )
self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] )
def A__ ( self: str ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = Trie()
trie.add("""ABC""" )
trie.add("""B""" )
trie.add("""CD""" )
self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] )
def A__ ( self: List[Any] ) -> Any:
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCAmelCase_ : Tuple = Trie()
UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
| 345 | 0 |
"""simple docstring"""
import datasets
from .evaluate import evaluate
_UpperCamelCase : Dict = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n'
_UpperCamelCase : str = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n'
_UpperCamelCase : List[str] = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class a ( datasets.Metric ):
def UpperCamelCase_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )},
'references': {
'id': datasets.Value('string' ),
'answers': datasets.features.Sequence(
{
'text': datasets.Value('string' ),
'answer_start': datasets.Value('int32' ),
} ),
},
} ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , )
def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowercase = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
lowercase = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
lowercase = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_ )
return score
| 220 |
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Tuple = ["flax"]
def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Any = ["flax"]
def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Dict = ["flax"]
def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : List[str] = ["flax"]
def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : int = ["flax"]
def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Optional[int] = ["flax"]
def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : List[Any] = ["flax"]
def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Tuple = ["flax"]
def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : str = ["flax"]
def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Union[str, Any] = ["flax"]
def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Tuple = ["flax"]
def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Optional[Any] = ["flax"]
def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Optional[int] = ["flax"]
def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]:
requires_backends(cls ,["""flax"""] )
| 345 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import (
EncodecConfig,
EncodecFeatureExtractor,
EncodecModel,
logging,
)
# checkpoints downloaded from:
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th
# https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin
# https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE_: Dict =logging.get_logger('transformers.models.encodec')
SCREAMING_SNAKE_CASE_: Optional[int] ={
'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited',
'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size',
'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed',
'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg',
}
SCREAMING_SNAKE_CASE_: str ={
'encoder.model.0.conv.conv': 'encoder.layers.0.conv',
'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv',
'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv',
'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv',
'encoder.model.3.conv.conv': 'encoder.layers.3.conv',
'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv',
'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv',
'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv',
'encoder.model.6.conv.conv': 'encoder.layers.6.conv',
'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv',
'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv',
'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv',
'encoder.model.9.conv.conv': 'encoder.layers.9.conv',
'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv',
'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv',
'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv',
'encoder.model.12.conv.conv': 'encoder.layers.12.conv',
'encoder.model.13.lstm': 'encoder.layers.13.lstm',
'encoder.model.15.conv.conv': 'encoder.layers.15.conv',
}
SCREAMING_SNAKE_CASE_: int ={
'encoder.model.0.conv.norm': 'encoder.layers.0.norm',
'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm',
'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm',
'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm',
'encoder.model.3.conv.norm': 'encoder.layers.3.norm',
'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm',
'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm',
'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm',
'encoder.model.6.conv.norm': 'encoder.layers.6.norm',
'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm',
'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm',
'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm',
'encoder.model.9.conv.norm': 'encoder.layers.9.norm',
'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm',
'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm',
'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm',
'encoder.model.12.conv.norm': 'encoder.layers.12.norm',
'encoder.model.15.conv.norm': 'encoder.layers.15.norm',
}
SCREAMING_SNAKE_CASE_: List[str] ={
'decoder.model.0.conv.conv': 'decoder.layers.0.conv',
'decoder.model.1.lstm': 'decoder.layers.1.lstm',
'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv',
'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv',
'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv',
'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv',
'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv',
'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv',
'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv',
'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv',
'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv',
'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv',
'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv',
'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv',
'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv',
'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv',
'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv',
'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv',
'decoder.model.15.conv.conv': 'decoder.layers.15.conv',
}
SCREAMING_SNAKE_CASE_: List[Any] ={
'decoder.model.0.conv.norm': 'decoder.layers.0.norm',
'decoder.model.3.convtr.norm': 'decoder.layers.3.norm',
'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm',
'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm',
'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm',
'decoder.model.6.convtr.norm': 'decoder.layers.6.norm',
'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm',
'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm',
'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm',
'decoder.model.9.convtr.norm': 'decoder.layers.9.norm',
'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm',
'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm',
'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm',
'decoder.model.12.convtr.norm': 'decoder.layers.12.norm',
'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm',
'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm',
'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm',
'decoder.model.15.conv.norm': 'decoder.layers.15.norm',
}
SCREAMING_SNAKE_CASE_: int ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_DECODER,
}
SCREAMING_SNAKE_CASE_: Tuple ={
**MAPPING_QUANTIZER,
**MAPPING_ENCODER,
**MAPPING_ENCODER_48K,
**MAPPING_DECODER,
**MAPPING_DECODER_48K,
}
SCREAMING_SNAKE_CASE_: Any =[]
SCREAMING_SNAKE_CASE_: Any =[]
def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : str ) -> Dict:
'''simple docstring'''
for attribute in key.split("." ):
UpperCAmelCase_ = getattr(_a , _a )
if weight_type is not None:
UpperCAmelCase_ = getattr(_a , _a ).shape
else:
UpperCAmelCase_ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
UpperCAmelCase_ = value
elif weight_type == "weight_g":
UpperCAmelCase_ = value
elif weight_type == "weight_v":
UpperCAmelCase_ = value
elif weight_type == "bias":
UpperCAmelCase_ = value
elif weight_type == "running_mean":
UpperCAmelCase_ = value
elif weight_type == "running_var":
UpperCAmelCase_ = value
elif weight_type == "num_batches_tracked":
UpperCAmelCase_ = value
elif weight_type == "weight_ih_l0":
UpperCAmelCase_ = value
elif weight_type == "weight_hh_l0":
UpperCAmelCase_ = value
elif weight_type == "bias_ih_l0":
UpperCAmelCase_ = value
elif weight_type == "bias_hh_l0":
UpperCAmelCase_ = value
elif weight_type == "weight_ih_l1":
UpperCAmelCase_ = value
elif weight_type == "weight_hh_l1":
UpperCAmelCase_ = value
elif weight_type == "bias_ih_l1":
UpperCAmelCase_ = value
elif weight_type == "bias_hh_l1":
UpperCAmelCase_ = value
else:
UpperCAmelCase_ = value
logger.info(f"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" )
def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : int ) -> Union[str, Any]:
'''simple docstring'''
for key in ignore_keys:
if key.endswith(".*" ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
UpperCAmelCase_ = key.split(".*." )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = []
if model_name == "encodec_24khz" or "encodec_32khz":
UpperCAmelCase_ = MAPPING_24K
elif model_name == "encodec_48khz":
UpperCAmelCase_ = MAPPING_48K
else:
raise ValueError(f"""Unsupported model: {model_name}""" )
for name, value in orig_dict.items():
if should_ignore(_a , _a ):
logger.info(f"""{name} was ignored""" )
continue
UpperCAmelCase_ = False
for key, mapped_key in MAPPING.items():
if "*" in key:
UpperCAmelCase_ = key.split(".*." )
if prefix in name and suffix in name:
UpperCAmelCase_ = suffix
if key in name:
# HACK otherwise .embed gets initialized with .embed_avg too
if key.endswith("embed" ) and name.endswith("embed_avg" ):
continue
UpperCAmelCase_ = True
if "*" in mapped_key:
UpperCAmelCase_ = name.split(_a )[0].split("." )[-2]
UpperCAmelCase_ = mapped_key.replace("*" , _a )
if "weight_g" in name:
UpperCAmelCase_ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase_ = """weight_v"""
elif "weight_ih_l0" in name:
UpperCAmelCase_ = """weight_ih_l0"""
elif "weight_hh_l0" in name:
UpperCAmelCase_ = """weight_hh_l0"""
elif "bias_ih_l0" in name:
UpperCAmelCase_ = """bias_ih_l0"""
elif "bias_hh_l0" in name:
UpperCAmelCase_ = """bias_hh_l0"""
elif "weight_ih_l1" in name:
UpperCAmelCase_ = """weight_ih_l1"""
elif "weight_hh_l1" in name:
UpperCAmelCase_ = """weight_hh_l1"""
elif "bias_ih_l1" in name:
UpperCAmelCase_ = """bias_ih_l1"""
elif "bias_hh_l1" in name:
UpperCAmelCase_ = """bias_hh_l1"""
elif "bias" in name:
UpperCAmelCase_ = """bias"""
elif "weight" in name:
UpperCAmelCase_ = """weight"""
elif "running_mean" in name:
UpperCAmelCase_ = """running_mean"""
elif "running_var" in name:
UpperCAmelCase_ = """running_var"""
elif "num_batches_tracked" in name:
UpperCAmelCase_ = """num_batches_tracked"""
else:
UpperCAmelCase_ = None
set_recursively(_a , _a , _a , _a , _a )
continue
if not is_used:
unused_weights.append(_a )
logger.warning(f"""Unused weights: {unused_weights}""" )
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : int=None , snake_case_ : Optional[int]=None , ) -> Union[str, Any]:
'''simple docstring'''
if config_path is not None:
UpperCAmelCase_ = EncodecConfig.from_pretrained(_a )
else:
UpperCAmelCase_ = EncodecConfig()
if model_name == "encodec_24khz":
pass # config is already correct
elif model_name == "encodec_32khz":
UpperCAmelCase_ = [8, 5, 4, 4]
UpperCAmelCase_ = [2.2]
UpperCAmelCase_ = 64
UpperCAmelCase_ = 3_20_00
UpperCAmelCase_ = 20_48
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
elif model_name == "encodec_48khz":
UpperCAmelCase_ = [8, 5, 4, 2]
UpperCAmelCase_ = [3.0, 6.0, 12.0, 24.0]
UpperCAmelCase_ = 4_80_00
UpperCAmelCase_ = 2
UpperCAmelCase_ = False
UpperCAmelCase_ = """time_group_norm"""
UpperCAmelCase_ = True
UpperCAmelCase_ = 1.0
UpperCAmelCase_ = 0.01
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
UpperCAmelCase_ = EncodecModel(_a )
UpperCAmelCase_ = EncodecFeatureExtractor(
feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , )
feature_extractor.save_pretrained(_a )
UpperCAmelCase_ = torch.load(_a )
if "best_state" in original_checkpoint:
# we might have a training state saved, in which case discard the yaml results and just retain the weights
UpperCAmelCase_ = original_checkpoint["""best_state"""]
recursively_load_weights(_a , _a , _a )
model.save_pretrained(_a )
if repo_id:
print("Pushing to the hub..." )
feature_extractor.push_to_hub(_a )
model.push_to_hub(_a )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_: Tuple =argparse.ArgumentParser()
parser.add_argument(
'--model',
default='encodec_24khz',
type=str,
help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.',
)
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
SCREAMING_SNAKE_CASE_: str =parser.parse_args()
convert_checkpoint(
args.model,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 1 |
import random
from typing import Any
def lowerCamelCase_ ( _a : list ):
'''simple docstring'''
for _ in range(len(_a ) ):
UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 )
UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a]
return data
if __name__ == "__main__":
UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7]
UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!''']
print('''Fisher-Yates Shuffle:''')
print('''List''', integers, strings)
print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 345 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
A ={
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json',
}
class _a ( __snake_case ):
__a : List[Any] = "albert"
def __init__( self : Optional[int] , lowercase : Optional[int]=30_000 , lowercase : Optional[int]=128 , lowercase : List[str]=4_096 , lowercase : int=12 , lowercase : Optional[Any]=1 , lowercase : Dict=64 , lowercase : List[Any]=16_384 , lowercase : int=1 , lowercase : Union[str, Any]="gelu_new" , lowercase : Optional[int]=0 , lowercase : Any=0 , lowercase : int=512 , lowercase : Any=2 , lowercase : str=0.02 , lowercase : List[str]=1E-12 , lowercase : Optional[int]=0.1 , lowercase : str="absolute" , lowercase : str=0 , lowercase : Tuple=2 , lowercase : Optional[int]=3 , **lowercase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ )
UpperCAmelCase = vocab_size
UpperCAmelCase = embedding_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_hidden_groups
UpperCAmelCase = num_attention_heads
UpperCAmelCase = inner_group_num
UpperCAmelCase = hidden_act
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = classifier_dropout_prob
UpperCAmelCase = position_embedding_type
class _a ( __snake_case ):
@property
def A ( self : Optional[int] ):
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCAmelCase = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 34 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : int = 1
A__ : bool = True
A__ : bool = False
A__ : bool = False
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> List[str]:
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[int] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD(
in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel(
in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
attentions.append(lowerCamelCase_ )
UpperCAmelCase_ : int = resnets
UpperCAmelCase_ : Tuple = attentions
if self.add_downsample:
UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int:
UpperCAmelCase_ : List[Any] = ()
for resnet, attn in zip(self.resnets ,self.attentions ):
UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ )
output_states += (hidden_states,)
return hidden_states, output_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : bool = True
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> int:
UpperCAmelCase_ : List[str] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase_ : Dict = FlaxResnetBlockaD(
in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = resnets
if self.add_downsample:
UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any:
UpperCAmelCase_ : Union[str, Any] = ()
for resnet in self.resnets:
UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ )
output_states += (hidden_states,)
return hidden_states, output_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : int = 1
A__ : bool = True
A__ : bool = False
A__ : bool = False
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
def A__ ( self: str ) -> Any:
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : List[str] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : int = FlaxTransformeraDModel(
in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
attentions.append(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = resnets
UpperCAmelCase_ : Dict = attentions
if self.add_upsample:
UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]:
for resnet, attn in zip(self.resnets ,self.attentions ):
# pop res hidden states
UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1]
UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1]
UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 )
UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
if self.add_upsample:
UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ )
return hidden_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : bool = True
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> Dict:
UpperCAmelCase_ : Any = []
for i in range(self.num_layers ):
UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase_ : Any = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : str = resnets
if self.add_upsample:
UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]:
for resnet in self.resnets:
# pop res hidden states
UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1]
UpperCAmelCase_ : str = res_hidden_states_tuple[:-1]
UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 )
UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
if self.add_upsample:
UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ )
return hidden_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : int = 1
A__ : bool = False
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> List[str]:
# there is always at least one resnet
UpperCAmelCase_ : List[Any] = [
FlaxResnetBlockaD(
in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
]
UpperCAmelCase_ : Any = []
for _ in range(self.num_layers ):
UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel(
in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
attentions.append(lowerCamelCase_ )
UpperCAmelCase_ : Any = FlaxResnetBlockaD(
in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : Dict = resnets
UpperCAmelCase_ : Any = attentions
def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]:
UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ )
for attn, resnet in zip(self.attentions ,self.resnets[1:] ):
UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
return hidden_states
| 345 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
_lowercase : Optional[int] = logging.get_logger(__name__)
_lowercase : Optional[Any] = {
"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json",
}
# fmt: off
_lowercase : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
_lowercase : Optional[Any] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
class __magic_name__ ( __snake_case):
UpperCamelCase__ = "whisper"
UpperCamelCase__ = ["past_key_values"]
UpperCamelCase__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Any , lowercase_ : Optional[int]=51865 , lowercase_ : str=80 , lowercase_ : Tuple=6 , lowercase_ : Tuple=4 , lowercase_ : int=6 , lowercase_ : Tuple=4 , lowercase_ : Dict=1536 , lowercase_ : Tuple=1536 , lowercase_ : str=0.0 , lowercase_ : Dict=0.0 , lowercase_ : str=50257 , lowercase_ : List[Any]=True , lowercase_ : int=True , lowercase_ : Tuple="gelu" , lowercase_ : Any=256 , lowercase_ : str=0.0 , lowercase_ : List[Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : List[Any]=0.02 , lowercase_ : Optional[int]=False , lowercase_ : List[str]=1500 , lowercase_ : Dict=448 , lowercase_ : List[Any]=50256 , lowercase_ : Optional[Any]=50256 , lowercase_ : Optional[Any]=50256 , lowercase_ : Union[str, Any]=None , lowercase_ : List[str]=[220, 50256] , lowercase_ : str=False , lowercase_ : List[Any]=256 , lowercase_ : Tuple=False , lowercase_ : Union[str, Any]=0.05 , lowercase_ : List[str]=10 , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=0.0 , lowercase_ : Any=10 , lowercase_ : Dict=0 , lowercase_ : str=7 , **lowercase_ : int , ):
lowercase_ : str = vocab_size
lowercase_ : str = num_mel_bins
lowercase_ : Any = d_model
lowercase_ : List[str] = encoder_layers
lowercase_ : Optional[Any] = encoder_attention_heads
lowercase_ : List[str] = decoder_layers
lowercase_ : Dict = decoder_attention_heads
lowercase_ : Optional[int] = decoder_ffn_dim
lowercase_ : int = encoder_ffn_dim
lowercase_ : Tuple = dropout
lowercase_ : Any = attention_dropout
lowercase_ : Optional[int] = activation_dropout
lowercase_ : Optional[int] = activation_function
lowercase_ : List[str] = init_std
lowercase_ : List[Any] = encoder_layerdrop
lowercase_ : List[str] = decoder_layerdrop
lowercase_ : Any = use_cache
lowercase_ : Optional[int] = encoder_layers
lowercase_ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True
lowercase_ : List[str] = max_source_positions
lowercase_ : int = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
lowercase_ : Tuple = classifier_proj_size
lowercase_ : List[str] = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowercase_ : Optional[Any] = apply_spec_augment
lowercase_ : Union[str, Any] = mask_time_prob
lowercase_ : List[Any] = mask_time_length
lowercase_ : int = mask_time_min_masks
lowercase_ : Union[str, Any] = mask_feature_prob
lowercase_ : Optional[Any] = mask_feature_length
lowercase_ : List[Any] = mask_feature_min_masks
lowercase_ : Optional[int] = median_filter_width
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , suppress_tokens=lowerCamelCase_ , begin_suppress_tokens=lowerCamelCase_ , **lowerCamelCase_ , )
class __magic_name__ ( __snake_case):
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Tuple = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
lowercase_ : Optional[int] = {0: """batch"""}
else:
lowercase_ : Any = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(lowerCamelCase_ , direction="""inputs""" )
return common_inputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowercase_ : int = -1 , lowercase_ : int = -1 , lowercase_ : bool = False , lowercase_ : Optional["TensorType"] = None , lowercase_ : int = 22050 , lowercase_ : float = 5.0 , lowercase_ : int = 220 , ):
lowercase_ : Tuple = OrderedDict()
lowercase_ : Any = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=lowerCamelCase_ , framework=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , time_duration=lowerCamelCase_ , frequency=lowerCamelCase_ , )
lowercase_ : Tuple = encoder_inputs["""input_features"""].shape[2]
lowercase_ : str = encoder_sequence_length // 2 if self.use_past else seq_length
lowercase_ : int = super().generate_dummy_inputs(
preprocessor.tokenizer , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
lowercase_ : List[Any] = encoder_inputs.pop("""input_features""" )
lowercase_ : Any = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
lowercase_ : Any = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return 1E-3
| 239 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class _snake_case :
'''simple docstring'''
def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]:
UpperCAmelCase_ : List[Any] = bp_numa
UpperCAmelCase_ : str = bp_numa
UpperCAmelCase_ : List[Any] = bp_numa
UpperCAmelCase_ : Optional[int] = conva_get[:2]
UpperCAmelCase_ : List[Any] = conva_get[2]
UpperCAmelCase_ : str = size_pa
UpperCAmelCase_ : Optional[int] = rate_w
UpperCAmelCase_ : Dict = rate_t
UpperCAmelCase_ : List[Any] = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1
UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1
UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple:
# save model dict with pickle
UpperCAmelCase_ : Dict = {
"""num_bp1""": self.num_bpa,
"""num_bp2""": self.num_bpa,
"""num_bp3""": self.num_bpa,
"""conv1""": self.conva,
"""step_conv1""": self.step_conva,
"""size_pooling1""": self.size_poolinga,
"""rate_weight""": self.rate_weight,
"""rate_thre""": self.rate_thre,
"""w_conv1""": self.w_conva,
"""wkj""": self.wkj,
"""vji""": self.vji,
"""thre_conv1""": self.thre_conva,
"""thre_bp2""": self.thre_bpa,
"""thre_bp3""": self.thre_bpa,
}
with open(lowerCamelCase_ ,"""wb""" ) as f:
pickle.dump(lowerCamelCase_ ,lowerCamelCase_ )
print(F'''Model saved: {save_path}''' )
@classmethod
def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]:
# read saved model
with open(lowerCamelCase_ ,"""rb""" ) as f:
UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301
UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" )
conv_get.append(model_dic.get("""step_conv1""" ) )
UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" )
UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" )
UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" )
UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" )
UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" )
UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" )
# create model instance
UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# modify model parameter
UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" )
UpperCAmelCase_ : int = model_dic.get("""wkj""" )
UpperCAmelCase_ : int = model_dic.get("""vji""" )
UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" )
UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" )
UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" )
return conv_ins
def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple:
return 1 / (1 + np.exp(-1 * x ))
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]:
return round(lowerCamelCase_ ,3 )
def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any:
# convolution process
UpperCAmelCase_ : Optional[Any] = convs[0]
UpperCAmelCase_ : int = convs[1]
UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0]
# get the data slice of original image data, data_focus
UpperCAmelCase_ : Dict = []
for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ):
for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ):
UpperCAmelCase_ : Union[str, Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowerCamelCase_ )
# calculate the feature map of every single kernel, and saved as list of matrix
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowerCamelCase_ ):
UpperCAmelCase_ : Optional[int] = []
for i_focus in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : int = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowerCamelCase_ ) )
UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape(
lowerCamelCase_ ,lowerCamelCase_ )
data_featuremap.append(lowerCamelCase_ )
# expanding the data slice to One dimenssion
UpperCAmelCase_ : Optional[Any] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) )
UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ )
return focus_list, data_featuremap
def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]:
# pooling process
UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] )
UpperCAmelCase_ : Any = int(size_map / size_pooling )
UpperCAmelCase_ : Optional[int] = []
for i_map in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : Any = featuremaps[i_map]
UpperCAmelCase_ : Tuple = []
for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase_ : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowerCamelCase_ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowerCamelCase_ ) )
UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ )
featuremap_pooled.append(lowerCamelCase_ )
return featuremap_pooled
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]:
# expanding three dimension data to one dimension list
UpperCAmelCase_ : List[Any] = []
for i in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : Tuple = np.shape(data[i] )
UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] )
UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0]
data_expanded.extend(lowerCamelCase_ )
UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ )
return data_expanded
def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]:
# expanding matrix to one dimension list
UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ )
UpperCAmelCase_ : str = np.shape(lowerCamelCase_ )
UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Tuple = 0
for i_map in range(lowerCamelCase_ ):
UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) )
for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase_ : Any = pd_pool[
i_pool
]
UpperCAmelCase_ : List[str] = i_pool + 1
UpperCAmelCase_ : Optional[Any] = np.multiply(
lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(lowerCamelCase_ )
return pd_all
def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]:
# model traning
print("""----------------------Start Training-------------------------""" )
print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) )
print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) )
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : Tuple = []
UpperCAmelCase_ : Any = 10000
while rp < n_repeat and mse >= error_accuracy:
UpperCAmelCase_ : List[str] = 0
print(F'''-------------Learning Time {rp}--------------''' )
for p in range(len(lowerCamelCase_ ) ):
# print('------------Learning Image: %d--------------'%p)
UpperCAmelCase_ : str = np.asmatrix(datas_train[p] )
UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute(
lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga )
UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )
UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = data_bp_input
UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa
UpperCAmelCase_ : int = self.sig(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa
UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
UpperCAmelCase_ : List[str] = np.multiply(
(data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) )
UpperCAmelCase_ : List[Any] = np.multiply(
np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) )
UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji )
UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga)
UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist()
UpperCAmelCase_ : str = self._calculate_gradient_from_pool(
lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] )
UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
UpperCAmelCase_ : str = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight
UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre
UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
UpperCAmelCase_ : int = rp + 1
UpperCAmelCase_ : Any = error_count / patterns
all_mse.append(lowerCamelCase_ )
def draw_error():
UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowerCamelCase_ ,"""+-""" )
plt.plot(lowerCamelCase_ ,"""r--""" )
plt.xlabel("""Learning Times""" )
plt.ylabel("""All_mse""" )
plt.grid(lowerCamelCase_ ,alpha=0.5 )
plt.show()
print("""------------------Training Complished---------------------""" )
print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple:
# model predict
UpperCAmelCase_ : Union[str, Any] = []
print("""-------------------Start Testing-------------------------""" )
print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) )
for p in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : int = np.asmatrix(datas_test[p] )
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute(
lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga )
UpperCAmelCase_ : str = self._expand(lowerCamelCase_ )
UpperCAmelCase_ : str = data_bp_input
UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa
UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ )
UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa
UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ )
produce_out.extend(bp_outa.getA().tolist() )
UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out]
return np.asarray(lowerCamelCase_ )
def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple:
# return the data of image after convoluting process so we can check it out
UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute(
lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 345 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : str = logging.get_logger(__name__)
A_ : Optional[int] = {
'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json',
'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json',
}
class _a (__snake_case ):
'''simple docstring'''
UpperCAmelCase__: List[str] = "markuplm"
def __init__( self , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=3072 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=2 , A__=0.0_2 , A__=1e-12 , A__=0 , A__=0 , A__=2 , A__=256 , A__=1024 , A__=216 , A__=1001 , A__=32 , A__=50 , A__="absolute" , A__=True , A__=None , **A__ , ):
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
A__ : List[str] = vocab_size
A__ : List[str] = hidden_size
A__ : int = num_hidden_layers
A__ : Dict = num_attention_heads
A__ : int = hidden_act
A__ : Union[str, Any] = intermediate_size
A__ : int = hidden_dropout_prob
A__ : List[str] = attention_probs_dropout_prob
A__ : List[Any] = max_position_embeddings
A__ : str = type_vocab_size
A__ : Optional[Any] = initializer_range
A__ : Dict = layer_norm_eps
A__ : Optional[Any] = position_embedding_type
A__ : List[Any] = use_cache
A__ : int = classifier_dropout
# additional properties
A__ : Tuple = max_depth
A__ : Union[str, Any] = max_xpath_tag_unit_embeddings
A__ : str = max_xpath_subs_unit_embeddings
A__ : Optional[int] = tag_pad_id
A__ : Tuple = subs_pad_id
A__ : Union[str, Any] = xpath_unit_hidden_size
| 192 |
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : Optional[Any] = CTRLTokenizer
A__ : Optional[Any] = False
A__ : str = False
def A__ ( self: Optional[int] ) -> List[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""]
UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) )
UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""]
UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""}
UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCamelCase_ ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCamelCase_ ) )
def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ )
def A__ ( self: int ,lowerCamelCase_: int ) -> str:
UpperCAmelCase_ : List[str] = """adapt react readapt apt"""
UpperCAmelCase_ : List[Any] = """adapt react readapt apt"""
return input_text, output_text
def A__ ( self: Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
UpperCAmelCase_ : List[Any] = """adapt react readapt apt"""
UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split()
UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token]
UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
| 345 | 0 |
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class __snake_case ( __snake_case , unittest.TestCase ):
_a : Optional[int]= BertJapaneseTokenizer
_a : Any= False
_a : Optional[Any]= True
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
super().setUp()
lowercase : Dict = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""こんにちは""",
"""こん""",
"""にちは""",
"""ばんは""",
"""##こん""",
"""##にちは""",
"""##ばんは""",
"""世界""",
"""##世界""",
"""、""",
"""##、""",
"""。""",
"""##。""",
]
lowercase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self ,snake_case ):
'''simple docstring'''
lowercase : Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。"""
lowercase : Optional[Any] = """こんにちは 、 世界 。 こんばんは 、 世界 。"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self ,snake_case ):
'''simple docstring'''
lowercase : str = self.get_input_output_texts(lowerCamelCase_ )
lowercase : Tuple = tokenizer.encode(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ )
lowercase : List[str] = tokenizer.decode(lowerCamelCase_ ,clean_up_tokenization_spaces=lowerCamelCase_ )
return text, ids
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass # TODO add if relevant
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass # TODO add if relevant
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass # TODO add if relevant
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = self.tokenizer_class(self.vocab_file )
lowercase : Any = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" )
self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""mecab""" )
self.assertIsNotNone(lowerCamelCase_ )
lowercase : Optional[int] = """こんにちは、世界。\nこんばんは、世界。"""
lowercase : Tuple = tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowercase : str = os.path.join(self.tmpdirname ,"""tokenizer.bin""" )
with open(lowerCamelCase_ ,"""wb""" ) as handle:
pickle.dump(lowerCamelCase_ ,lowerCamelCase_ )
with open(lowerCamelCase_ ,"""rb""" ) as handle:
lowercase : Optional[int] = pickle.load(lowerCamelCase_ )
lowercase : Dict = tokenizer_new.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = MecabTokenizer(mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
try:
lowercase : List[str] = MecabTokenizer(mecab_dic="""unidic_lite""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
try:
lowercase : Any = MecabTokenizer(mecab_dic="""unidic""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = MecabTokenizer(do_lower_case=lowerCamelCase_ ,mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
try:
lowercase : List[str] = MecabTokenizer(
do_lower_case=lowerCamelCase_ ,normalize_text=lowerCamelCase_ ,mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[str] = MecabTokenizer(normalize_text=lowerCamelCase_ ,mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] ,)
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""sudachi""" )
self.assertIsNotNone(lowerCamelCase_ )
lowercase : List[str] = """こんにちは、世界。\nこんばんは、世界。"""
lowercase : Optional[Any] = tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowercase : str = os.path.join(self.tmpdirname ,"""tokenizer.bin""" )
with open(lowerCamelCase_ ,"""wb""" ) as handle:
pickle.dump(lowerCamelCase_ ,lowerCamelCase_ )
with open(lowerCamelCase_ ,"""rb""" ) as handle:
lowercase : int = pickle.load(lowerCamelCase_ )
lowercase : Tuple = tokenizer_new.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Any = SudachiTokenizer(sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] ,)
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""A""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国""", """人""", """参政""", """権"""] )
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""B""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国人""", """参政権"""] )
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" ,sudachi_split_mode="""C""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) ,["""外国人参政権"""] )
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = SudachiTokenizer(do_lower_case=lowerCamelCase_ ,sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] ,)
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = SudachiTokenizer(normalize_text=lowerCamelCase_ ,sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,[""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] ,)
@require_sudachi
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[Any] = SudachiTokenizer(trim_whitespace=lowerCamelCase_ ,sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] ,)
@require_jumanpp
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type="""jumanpp""" )
self.assertIsNotNone(lowerCamelCase_ )
lowercase : Any = """こんにちは、世界。\nこんばんは、世界。"""
lowercase : List[str] = tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 12, 10, 14, 4, 9, 12, 10, 14] )
lowercase : Optional[int] = os.path.join(self.tmpdirname ,"""tokenizer.bin""" )
with open(lowerCamelCase_ ,"""wb""" ) as handle:
pickle.dump(lowerCamelCase_ ,lowerCamelCase_ )
with open(lowerCamelCase_ ,"""rb""" ) as handle:
lowercase : Optional[int] = pickle.load(lowerCamelCase_ )
lowercase : Optional[Any] = tokenizer_new.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
@require_jumanpp
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,)
@require_jumanpp
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = JumanppTokenizer(do_lower_case=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,)
@require_jumanpp
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = JumanppTokenizer(normalize_text=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] ,)
@require_jumanpp
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = JumanppTokenizer(trim_whitespace=lowerCamelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) ,["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] ,)
@require_jumanpp
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) ,["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] ,)
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""]
lowercase : Optional[Any] = {}
for i, token in enumerate(lowerCamelCase_ ):
lowercase : Optional[int] = i
lowercase : int = WordpieceTokenizer(vocab=lowerCamelCase_ ,unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) ,[] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) ,["""こんにちは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) ,["""こん""", """##ばんは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) ,["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" )
lowercase : Optional[Any] = tokenizer.subword_tokenizer
lowercase : Optional[Any] = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" )
self.assertListEqual(lowerCamelCase_ ,["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] )
lowercase : str = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" )
self.assertListEqual(lowerCamelCase_ ,["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" )
lowercase : Union[str, Any] = tokenizer.encode("""ありがとう。""" ,add_special_tokens=lowerCamelCase_ )
lowercase : List[str] = tokenizer.encode("""どういたしまして。""" ,add_special_tokens=lowerCamelCase_ )
lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ )
lowercase : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class __snake_case ( __snake_case , unittest.TestCase ):
_a : Union[str, Any]= BertJapaneseTokenizer
_a : str= False
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
super().setUp()
lowercase : Any = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
lowercase : Dict = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self ,**snake_case ):
'''simple docstring'''
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type="""character""" ,**lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ,snake_case ):
'''simple docstring'''
lowercase : Optional[Any] = """こんにちは、世界。 \nこんばんは、世界。"""
lowercase : int = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass # TODO add if relevant
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass # TODO add if relevant
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
pass # TODO add if relevant
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type="""character""" )
lowercase : int = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" )
self.assertListEqual(
lowerCamelCase_ ,["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,[3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
lowercase : Optional[int] = {}
for i, token in enumerate(lowerCamelCase_ ):
lowercase : Dict = i
lowercase : Tuple = CharacterTokenizer(vocab=lowerCamelCase_ ,unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) ,[] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) ,["""こ""", """ん""", """に""", """ち""", """は"""] )
self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) ,["""こ""", """ん""", """に""", """ち""", """[UNK]"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Tuple = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" )
lowercase : Any = tokenizer.encode("""ありがとう。""" ,add_special_tokens=lowerCamelCase_ )
lowercase : Optional[Any] = tokenizer.encode("""どういたしまして。""" ,add_special_tokens=lowerCamelCase_ )
lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ )
lowercase : Any = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ,lowerCamelCase_ )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class __snake_case ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = """cl-tohoku/bert-base-japanese"""
lowercase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase_ )
self.assertIsInstance(lowerCamelCase_ ,lowerCamelCase_ )
class __snake_case ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = """cl-tohoku/bert-base-japanese"""
with self.assertLogs("""transformers""" ,level="""WARNING""" ) as cm:
BertTokenizer.from_pretrained(lowerCamelCase_ )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
lowercase : Optional[Any] = """bert-base-cased"""
with self.assertLogs("""transformers""" ,level="""WARNING""" ) as cm:
BertJapaneseTokenizer.from_pretrained(lowerCamelCase_ )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
| 20 |
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
UpperCamelCase_ = {
'''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''',
'''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''',
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Union[str, Any] = "ernie_m"
A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]:
super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = vocab_size
UpperCAmelCase_ : Any = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : List[Any] = hidden_act
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : List[Any] = classifier_dropout
UpperCAmelCase_ : str = is_decoder
UpperCAmelCase_ : List[str] = act_dropout
| 345 | 0 |
"""simple docstring"""
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = '''▁'''
lowerCamelCase_ = {'''vocab_file''': '''prophetnet.tokenizer'''}
lowerCamelCase_ = {
'''vocab_file''': {
'''microsoft/xprophetnet-large-wiki100-cased''': (
'''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer'''
),
}
}
lowerCamelCase_ = {
'''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False},
}
lowerCamelCase_ = {
'''microsoft/xprophetnet-large-wiki100-cased''': 512,
}
def snake_case ( A__ ):
UpperCAmelCase_ : Tuple = collections.OrderedDict()
with open(_a ,"r" ,encoding="utf-8" ) as reader:
UpperCAmelCase_ : Dict = reader.readlines()
for index, token in enumerate(_a ):
UpperCAmelCase_ : str = token.rstrip("\n" )
UpperCAmelCase_ : int = index
return vocab
class UpperCamelCase_ (__snake_case ):
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any]="[SEP]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : Any="[SEP]" , lowerCAmelCase_ : List[Any]="[UNK]" , lowerCAmelCase_ : Union[str, Any]="[PAD]" , lowerCAmelCase_ : str="[CLS]" , lowerCAmelCase_ : Optional[Any]="[MASK]" , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : List[Any] , ) -> None:
UpperCAmelCase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece" )
raise
UpperCAmelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCamelCase_ ) )
UpperCAmelCase_ : Tuple = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
UpperCAmelCase_ : str = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4}
for i in range(10 ):
UpperCAmelCase_ : Union[str, Any] = f"""[unused{i}]"""
UpperCAmelCase_ : Optional[int] = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
UpperCAmelCase_ : List[str] = 12
UpperCAmelCase_ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(lowerCamelCase_ )
def __getstate__( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase_ : str = self.__dict__.copy()
UpperCAmelCase_ : Union[str, Any] = None
return state
def __setstate__( self : int , lowerCAmelCase_ : Optional[int] ) -> Any:
UpperCAmelCase_ : List[str] = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"
" pip install sentencepiece" )
raise
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return ([0] * len(lowerCamelCase_ )) + [1]
return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1]
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase_ : Tuple = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]:
return len(self.sp_model ) + self.fairseq_offset
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : str ) -> str:
return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase_ : int = self.sp_model.PieceToId(lowerCamelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Dict ) -> Union[str, Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int ) -> int:
UpperCAmelCase_ : Union[str, Any] = """""".join(lowerCamelCase_ ).replace(lowerCamelCase_ , " " ).strip()
return out_string
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCamelCase_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCAmelCase_ : Optional[int] = os.path.join(
lowerCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCamelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCamelCase_ , "wb" ) as fi:
UpperCAmelCase_ : List[Any] = self.sp_model.serialized_model_proto()
fi.write(lowerCamelCase_ )
return (out_vocab_file,)
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Optional[Any] = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 268 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase_ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = text.split(_a )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )]
def lowerCamelCase_ ( _a : dict ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(_a ):
titles.append(title if title is not None else """""" )
texts.append(_a )
return {"title": titles, "text": texts}
def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""]
UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ):
'''simple docstring'''
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
UpperCAmelCase_ : Optional[int] = load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc )
# And compute the embeddings
UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a )
UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
UpperCAmelCase_ : Any = Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
UpperCAmelCase_ : List[str] = dataset.map(
partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , )
# And finally save your dataset
UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(_a )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=_a )
# And save the index
UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(_a )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class _snake_case :
'''simple docstring'''
A__ : str = field(
default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
A__ : Optional[str] = field(
default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
A__ : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
A__ : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
A__ : Optional[str] = field(
default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class _snake_case :
'''simple docstring'''
A__ : Optional[int] = field(
default=__snake_case , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
A__ : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class _snake_case :
'''simple docstring'''
A__ : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
A__ : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase_ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 345 | 0 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowerCamelCase : str = coefficient_matrix.shape
lowerCamelCase : int = constant_matrix.shape
if rowsa != colsa:
lowerCamelCase : str = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"""
raise ValueError(_a )
if colsa != 1:
lowerCamelCase : str = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}"""
raise ValueError(_a )
if rowsa != rowsa:
lowerCamelCase : str = (
"""Coefficient and constant matrices dimensions must be nxn and nx1 but """
f"""received {rowsa}x{colsa} and {rowsa}x{colsa}"""
)
raise ValueError(_a )
if len(_a ) != rowsa:
lowerCamelCase : Dict = (
"""Number of initial values must be equal to number of rows in coefficient """
f"""matrix but received {len(_a )} and {rowsa}"""
)
raise ValueError(_a )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
lowerCamelCase : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
lowerCamelCase : Optional[int] = table.shape
strictly_diagonally_dominant(_a )
# Iterates the whole matrix for given number of times
for _ in range(_a ):
lowerCamelCase : Optional[Any] = []
for row in range(_a ):
lowerCamelCase : int = 0
for col in range(_a ):
if col == row:
lowerCamelCase : Tuple = table[row][col]
elif col == cols - 1:
lowerCamelCase : Optional[int] = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
lowerCamelCase : List[str] = (temp + val) / denom
new_val.append(_a )
lowerCamelCase : List[str] = new_val
return [float(_a ) for i in new_val]
def lowercase_( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
lowerCamelCase : List[Any] = table.shape
lowerCamelCase : Dict = True
for i in range(0 , _a ):
lowerCamelCase : Optional[int] = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 283 |
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class _snake_case ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : Dict = AutoencoderKL
A__ : Optional[int] = "sample"
A__ : Tuple = 1E-2
@property
def A__ ( self: List[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = 4
UpperCAmelCase_ : str = 3
UpperCAmelCase_ : Any = (32, 32)
UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ )
return {"sample": image}
@property
def A__ ( self: List[str] ) -> Tuple:
return (3, 32, 32)
@property
def A__ ( self: Optional[Any] ) -> Any:
return (3, 32, 32)
def A__ ( self: Any ) -> Tuple:
UpperCAmelCase_ : List[Any] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
UpperCAmelCase_ : int = self.dummy_input
return init_dict, inputs_dict
def A__ ( self: Optional[Any] ) -> int:
pass
def A__ ( self: str ) -> Any:
pass
@unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" )
def A__ ( self: Union[str, Any] ) -> Dict:
# enable deterministic behavior for gradient checkpointing
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ )
model.to(lowerCamelCase_ )
assert not model.is_gradient_checkpointing and model.training
UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(lowerCamelCase_ )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
UpperCAmelCase_ : Dict = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
UpperCAmelCase_ : Dict = dict(model.named_parameters() )
UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) )
def A__ ( self: Optional[Any] ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 )
model.to(lowerCamelCase_ )
UpperCAmelCase_ : Dict = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def A__ ( self: Optional[int] ) -> int:
UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" )
UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ )
model.eval()
if torch_device == "mps":
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
else:
UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCAmelCase_ : str = torch.randn(
1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,)
UpperCAmelCase_ : int = image.to(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample
UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
UpperCAmelCase_ : Tuple = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
] )
elif torch_device == "cpu":
UpperCAmelCase_ : List[str] = torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
UpperCAmelCase_ : List[str] = torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) )
@slow
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]:
return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy'''
def A__ ( self: Union[str, Any] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]:
UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa
UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ )
return image
def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any:
UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None
UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa
UpperCAmelCase_ : int = AutoencoderKL.from_pretrained(
lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,)
model.to(lowerCamelCase_ ).eval()
return model
def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]:
if torch_device == "mps":
return torch.manual_seed(lowerCamelCase_ )
return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple:
UpperCAmelCase_ : List[Any] = self.get_sd_vae_model()
UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample
assert sample.shape == image.shape
UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple:
UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ )
UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample
assert sample.shape == image.shape
UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu()
UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict:
UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model()
UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample
assert sample.shape == image.shape
UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = self.get_sd_vae_model()
UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) )
with torch.no_grad():
UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu()
UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu()
UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" )
def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int:
UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ )
UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" )
def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = self.get_sd_vae_model()
UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = self.get_sd_vae_model()
UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ )
UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist
UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu()
UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
| 345 | 0 |
from collections import defaultdict
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase = first_str.lower().strip()
UpperCamelCase = second_str.lower().strip()
# Remove whitespace
UpperCamelCase = first_str.replace(""" """ , """""" )
UpperCamelCase = second_str.replace(""" """ , """""" )
# Strings of different lengths are not anagrams
if len(_a ) != len(_a ):
return False
# Default values for count should be 0
UpperCamelCase = defaultdict(_a )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(_a ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_SCREAMING_SNAKE_CASE = input("""Enter the first string """).strip()
_SCREAMING_SNAKE_CASE = input("""Enter the second string """).strip()
_SCREAMING_SNAKE_CASE = check_anagrams(input_a, input_b)
print(F'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
| 343 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__snake_case )
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} )
A__ : ClassVar[Features] = Features({"audio": Audio()} )
A__ : ClassVar[Features] = Features({"transcription": Value("string" )} )
A__ : str = "audio"
A__ : str = "transcription"
def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]:
if self.audio_column not in features:
raise ValueError(F'''Column {self.audio_column} is not present in features.''' )
if not isinstance(features[self.audio_column] ,lowerCamelCase_ ):
raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' )
UpperCAmelCase_ : Any = copy.deepcopy(self )
UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy()
UpperCAmelCase_ : Any = features[self.audio_column]
UpperCAmelCase_ : Union[str, Any] = input_schema
return task_template
@property
def A__ ( self: List[str] ) -> Dict[str, str]:
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 345 | 0 |
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class a :
def __init__( self :List[str] ,__lowercase :Tuple ,__lowercase :List[Any]=1_3 ,__lowercase :Union[str, Any]=7 ,__lowercase :List[str]=True ,__lowercase :Optional[Any]=True ,__lowercase :Dict=True ,__lowercase :List[Any]=True ,__lowercase :List[str]=9_9 ,__lowercase :str=3_2 ,__lowercase :List[str]=5 ,__lowercase :int=4 ,__lowercase :Dict=3_7 ,__lowercase :Tuple="gelu" ,__lowercase :Optional[Any]=0.1 ,__lowercase :List[Any]=0.1 ,__lowercase :Optional[Any]=1_2_8 ,__lowercase :List[str]=3_2 ,__lowercase :int=1_6 ,__lowercase :Any=2 ,__lowercase :int=0.02 ,__lowercase :Optional[int]=3 ,__lowercase :Dict=4 ,__lowercase :List[Any]=None ,):
snake_case__ : List[str] = parent
snake_case__ : str = batch_size
snake_case__ : str = seq_length
snake_case__ : List[str] = is_training
snake_case__ : Optional[int] = use_input_mask
snake_case__ : Union[str, Any] = use_token_type_ids
snake_case__ : Any = use_labels
snake_case__ : int = vocab_size
snake_case__ : Optional[Any] = hidden_size
snake_case__ : Dict = num_hidden_layers
snake_case__ : Tuple = num_attention_heads
snake_case__ : Any = intermediate_size
snake_case__ : Optional[int] = hidden_act
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : Any = attention_probs_dropout_prob
snake_case__ : Optional[Any] = max_position_embeddings
snake_case__ : List[str] = type_vocab_size
snake_case__ : Union[str, Any] = type_sequence_label_size
snake_case__ : Optional[int] = initializer_range
snake_case__ : Optional[int] = num_labels
snake_case__ : Dict = num_choices
snake_case__ : int = scope
def __lowerCamelCase ( self :Union[str, Any] ):
snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
snake_case__ : Any = None
if self.use_input_mask:
snake_case__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ : Dict = None
if self.use_token_type_ids:
snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
snake_case__ : List[str] = None
snake_case__ : Tuple = None
snake_case__ : List[str] = None
if self.use_labels:
snake_case__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
snake_case__ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices )
snake_case__ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCamelCase ( self :Optional[int] ):
return NezhaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,)
def __lowerCamelCase ( self :Any ):
(
snake_case__
) : Tuple = self.prepare_config_and_inputs()
snake_case__ : Tuple = True
snake_case__ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCamelCase ( self :Any ,__lowercase :List[str] ,__lowercase :Dict ,__lowercase :str ,__lowercase :str ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :List[Any] ):
snake_case__ : Optional[Any] = NezhaModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ )
snake_case__ : Any = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ )
snake_case__ : Optional[int] = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def __lowerCamelCase ( self :int ,__lowercase :Any ,__lowercase :str ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Tuple ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Tuple ,__lowercase :Optional[int] ,):
snake_case__ : Union[str, Any] = True
snake_case__ : str = NezhaModel(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : Tuple = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,encoder_attention_mask=lowerCamelCase_ ,)
snake_case__ : Optional[Any] = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,encoder_hidden_states=lowerCamelCase_ ,)
snake_case__ : Union[str, Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def __lowerCamelCase ( self :str ,__lowercase :List[str] ,__lowercase :int ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :Optional[Any] ,__lowercase :int ):
snake_case__ : Tuple = NezhaForMaskedLM(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : int = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCamelCase ( self :List[Any] ,__lowercase :int ,__lowercase :str ,__lowercase :Optional[int] ,__lowercase :List[str] ,__lowercase :List[Any] ,__lowercase :int ,__lowercase :Union[str, Any] ):
snake_case__ : List[str] = NezhaForNextSentencePrediction(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : int = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def __lowerCamelCase ( self :int ,__lowercase :List[Any] ,__lowercase :str ,__lowercase :Any ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Any ,__lowercase :Optional[int] ):
snake_case__ : Tuple = NezhaForPreTraining(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : int = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def __lowerCamelCase ( self :Optional[int] ,__lowercase :int ,__lowercase :Optional[int] ,__lowercase :Optional[int] ,__lowercase :Optional[int] ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Any ):
snake_case__ : List[Any] = NezhaForQuestionAnswering(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : Union[str, Any] = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Dict ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :int ,__lowercase :Union[str, Any] ,__lowercase :Any ,__lowercase :Optional[Any] ):
snake_case__ : str = self.num_labels
snake_case__ : List[Any] = NezhaForSequenceClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : str = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __lowerCamelCase ( self :Any ,__lowercase :Union[str, Any] ,__lowercase :List[Any] ,__lowercase :Optional[Any] ,__lowercase :Optional[int] ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ):
snake_case__ : Optional[int] = self.num_labels
snake_case__ : Optional[Any] = NezhaForTokenClassification(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : Tuple = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def __lowerCamelCase ( self :Any ,__lowercase :str ,__lowercase :List[str] ,__lowercase :Any ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :List[str] ):
snake_case__ : Union[str, Any] = self.num_choices
snake_case__ : Optional[int] = NezhaForMultipleChoice(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
snake_case__ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
snake_case__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
snake_case__ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
snake_case__ : int = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def __lowerCamelCase ( self :Any ):
snake_case__ : Optional[int] = self.prepare_config_and_inputs()
(
snake_case__
) : List[str] = config_and_inputs
snake_case__ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class a ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
__lowerCAmelCase : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
__lowerCAmelCase : List[str] = (
{
"feature-extraction": NezhaModel,
"fill-mask": NezhaForMaskedLM,
"question-answering": NezhaForQuestionAnswering,
"text-classification": NezhaForSequenceClassification,
"token-classification": NezhaForTokenClassification,
"zero-shot": NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowerCAmelCase : List[str] = True
def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[Any] ,__lowercase :str ,__lowercase :List[Any]=False ):
snake_case__ : Tuple = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ )
if return_labels:
if model_class in get_values(lowerCamelCase_ ):
snake_case__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ )
snake_case__ : str = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ )
return inputs_dict
def __lowerCamelCase ( self :Dict ):
snake_case__ : List[Any] = NezhaModelTester(self )
snake_case__ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=3_7 )
def __lowerCamelCase ( self :Optional[int] ):
self.config_tester.run_common_tests()
def __lowerCamelCase ( self :Dict ):
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def __lowerCamelCase ( self :Optional[Any] ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ )
def __lowerCamelCase ( self :Dict ):
# This regression test was failing with PyTorch < 1.3
(
snake_case__
) : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case__ : str = None
self.model_tester.create_and_check_model_as_decoder(
lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,)
def __lowerCamelCase ( self :List[str] ):
snake_case__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ )
def __lowerCamelCase ( self :Tuple ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ )
def __lowerCamelCase ( self :Tuple ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*lowerCamelCase_ )
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ )
def __lowerCamelCase ( self :str ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ )
def __lowerCamelCase ( self :List[str] ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ )
def __lowerCamelCase ( self :int ):
snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ )
@slow
def __lowerCamelCase ( self :Tuple ):
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : Union[str, Any] = NezhaModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@slow
@require_torch_gpu
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
snake_case__ : Optional[Any] = True
snake_case__ : Tuple = model_class(config=lowerCamelCase_ )
snake_case__ : Optional[Any] = self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ )
snake_case__ : Optional[int] = torch.jit.trace(
lowerCamelCase_ ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowerCamelCase_ ,os.path.join(lowerCamelCase_ ,'''bert.pt''' ) )
snake_case__ : List[str] = torch.jit.load(os.path.join(lowerCamelCase_ ,'''bert.pt''' ) ,map_location=lowerCamelCase_ )
loaded(inputs_dict['''input_ids'''].to(lowerCamelCase_ ) ,inputs_dict['''attention_mask'''].to(lowerCamelCase_ ) )
@require_torch
class a ( unittest.TestCase ):
@slow
def __lowerCamelCase ( self :Union[str, Any] ):
snake_case__ : List[Any] = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
snake_case__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] )
snake_case__ : str = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
snake_case__ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0]
snake_case__ : Optional[Any] = torch.Size((1, 6, 7_6_8) )
self.assertEqual(output.shape ,lowerCamelCase_ )
snake_case__ : Optional[Any] = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowerCamelCase_ ,atol=1e-4 ) )
@slow
def __lowerCamelCase ( self :str ):
snake_case__ : Union[str, Any] = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
snake_case__ : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]] )
snake_case__ : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
snake_case__ : int = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ )[0]
snake_case__ : List[Any] = torch.Size((1, 6, 2_1_1_2_8) )
self.assertEqual(output.shape ,lowerCamelCase_ )
snake_case__ : str = torch.tensor(
[[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,lowerCamelCase_ ,atol=1e-4 ) )
| 230 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''',
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = "layoutlmv3"
def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]:
super().__init__(
vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,)
UpperCAmelCase_ : List[Any] = max_ad_position_embeddings
UpperCAmelCase_ : Optional[int] = coordinate_size
UpperCAmelCase_ : Optional[int] = shape_size
UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias
UpperCAmelCase_ : Optional[int] = rel_pos_bins
UpperCAmelCase_ : Union[str, Any] = max_rel_pos
UpperCAmelCase_ : Dict = has_spatial_attention_bias
UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins
UpperCAmelCase_ : Tuple = max_rel_ad_pos
UpperCAmelCase_ : Union[str, Any] = text_embed
UpperCAmelCase_ : Optional[Any] = visual_embed
UpperCAmelCase_ : List[str] = input_size
UpperCAmelCase_ : str = num_channels
UpperCAmelCase_ : Optional[int] = patch_size
UpperCAmelCase_ : Tuple = classifier_dropout
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = version.parse("1.12" )
@property
def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def A__ ( self: Any ) -> float:
return 1e-5
@property
def A__ ( self: int ) -> int:
return 12
def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]:
setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ : List[str] = compute_effective_axis_dimension(
lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ )
UpperCAmelCase_ : int = compute_effective_axis_dimension(
lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = dict(
processor(
lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) )
return inputs
| 345 | 0 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def UpperCAmelCase ( a_ , a_=False ) -> Union[str, Any]:
"""simple docstring"""
try:
A_ : int = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
A_ : Tuple = default
else:
# KEY is set, convert it to True or False.
try:
A_ : Union[str, Any] = strtobool(_a )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"If set, {key} must be yes or no." )
return _value
UpperCamelCase__ : str = parse_flag_from_env('RUN_SLOW', default=False)
UpperCamelCase__ : Tuple = parse_flag_from_env('RUN_REMOTE', default=False)
UpperCamelCase__ : Tuple = parse_flag_from_env('RUN_LOCAL', default=True)
UpperCamelCase__ : str = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
UpperCamelCase__ : Optional[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
UpperCamelCase__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
UpperCamelCase__ : Dict = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
UpperCamelCase__ : str = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
UpperCamelCase__ : List[Any] = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
UpperCamelCase__ : Dict = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
UpperCamelCase__ : Optional[int] = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
A_ : Tuple = unittest.skip("""test requires faiss""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
A_ : int = unittest.skip("""test requires regex""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
A_ : List[str] = unittest.skip("""test requires elasticsearch""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
A_ : Optional[Any] = unittest.skip("""test requires sqlalchemy""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
A_ : Optional[Any] = unittest.skip("""test requires PyTorch""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
if not config.TF_AVAILABLE:
A_ : Union[str, Any] = unittest.skip("""test requires TensorFlow""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> Dict:
"""simple docstring"""
if not config.JAX_AVAILABLE:
A_ : Dict = unittest.skip("""test requires JAX""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> str:
"""simple docstring"""
if not config.PIL_AVAILABLE:
A_ : Any = unittest.skip("""test requires Pillow""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(_a )
else:
return test_case
def UpperCAmelCase ( a_ ) -> List[Any]:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(_a )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(_a )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
def _require_spacy_model(a_ ):
try:
import spacy # noqa F401
spacy.load(_a )
except ImportError:
return unittest.skip("""test requires spacy""" )(_a )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(_a ) )(_a )
else:
return test_case
return _require_spacy_model
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(_a )
else:
return test_case
def UpperCAmelCase ( a_ ) -> List[str]:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(_a )
else:
return test_case
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
A_ : str = unittest.skip("""test is slow""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
A_ : int = unittest.skip("""test is local""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> Union[str, Any]:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
A_ : Union[str, Any] = unittest.skip("""test is packaged""" )(_a )
return test_case
def UpperCAmelCase ( a_ ) -> Optional[Any]:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
A_ : Tuple = unittest.skip("""test requires remote""" )(_a )
return test_case
def UpperCAmelCase ( *a_ ) -> List[str]:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(_a ) and name.startswith("""test""" ):
for decorator in decorators:
A_ : int = decorator(_a )
setattr(cls , _a , _a )
return cls
return decorate
class _lowerCAmelCase ( __snake_case ):
"""simple docstring"""
pass
class _lowerCAmelCase ( __snake_case ):
"""simple docstring"""
lowerCamelCase = 0
lowerCamelCase = 1
lowerCamelCase = 2
@contextmanager
def UpperCAmelCase ( a_=OfflineSimulationMode.CONNECTION_FAILS , a_=1E-16 ) -> List[Any]:
"""simple docstring"""
A_ : Union[str, Any] = requests.Session().request
def timeout_request(a_ , a_ , a_ , **a_ ):
# Change the url to an invalid url so that the connection hangs
A_ : int = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
F"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." )
A_ : Optional[int] = timeout
try:
return online_request(_a , _a , **_a )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
A_ : Tuple = url
A_ : str = e.args[0]
A_ : Optional[int] = (max_retry_error.args[0].replace("""10.255.255.1""" , F"OfflineMock[{url}]" ),)
A_ : Any = (max_retry_error,)
raise
def raise_connection_error(a_ , a_ , **a_ ):
raise requests.ConnectionError("""Offline mode is enabled.""" , request=_a )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" , _a ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" , _a ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _a ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def UpperCAmelCase ( *a_ , **a_ ) -> List[Any]:
"""simple docstring"""
A_ : Union[str, Any] = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_a , **_a ) as tmp_dir:
try:
os.chdir(_a )
yield
finally:
os.chdir(_a )
@contextmanager
def UpperCAmelCase ( ) -> Tuple:
"""simple docstring"""
import gc
gc.collect()
A_ : List[Any] = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def UpperCAmelCase ( ) -> str:
"""simple docstring"""
import gc
gc.collect()
A_ : int = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def UpperCAmelCase ( a_ , a_ ) -> Dict:
"""simple docstring"""
return deepcopy(_a ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_a ).integers(0 , 1_0_0 , 1_0 ).tolist()
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(a_ , *a_ , **a_ ):
try:
return func(*_a , **_a )
except HTTPError as err:
if str(_a ).startswith("""500""" ) or str(_a ).startswith("""502""" ):
pytest.xfail(str(_a ) )
raise err
return decorator.decorator(_wrapper , _a )
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
A_ : Union[str, Any] = returncode
A_ : Optional[Any] = stdout
A_ : List[Any] = stderr
async def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
while True:
A_ : Optional[Any] = await stream.readline()
if line:
callback(_a )
else:
break
async def UpperCAmelCase ( a_ , a_=None , a_=None , a_=None , a_=False , a_=False ) -> Dict:
"""simple docstring"""
if echo:
print("""\nRunning: """ , """ """.join(_a ) )
A_ : Tuple = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_a , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
A_ : Optional[Any] = []
A_ : int = []
def tee(a_ , a_ , a_ , a_="" ):
A_ : Tuple = line.decode("""utf-8""" ).rstrip()
sink.append(_a )
if not quiet:
print(_a , _a , file=_a )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda a_ : tee(_a , _a , sys.stdout , label="""stdout:""" ) ),
_read_stream(p.stderr , lambda a_ : tee(_a , _a , sys.stderr , label="""stderr:""" ) ),
] , timeout=_a , )
return _RunOutput(await p.wait() , _a , _a )
def UpperCAmelCase ( a_ , a_=None , a_=None , a_=1_8_0 , a_=False , a_=True ) -> Optional[Any]:
"""simple docstring"""
A_ : Union[str, Any] = asyncio.get_event_loop()
A_ : Any = loop.run_until_complete(
_stream_subprocess(_a , env=_a , stdin=_a , timeout=_a , quiet=_a , echo=_a ) )
A_ : List[str] = """ """.join(_a )
if result.returncode > 0:
A_ : Union[str, Any] = """\n""".join(result.stderr )
raise RuntimeError(
F"\'{cmd_str}\' failed with returncode {result.returncode}\n\n"
F"The combined stderr from workers follows:\n{stderr}" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"\'{cmd_str}\' produced no output." )
return result
def UpperCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
A_ : int = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" )
A_ : int = re.sub(R"""^gw""" , """""" , _a , 0 , re.M )
return int(_a )
def UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
A_ : Tuple = 2_9_5_0_0
A_ : Union[str, Any] = pytest_xdist_worker_id()
return port + uniq_delta
| 344 |
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def lowerCamelCase_ ( _a : List[Any] ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_a , _a )
def lowerCamelCase_ ( _a : Any ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape
UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a )
UpperCAmelCase_ : List[Any] = emb.weight.data
return lin_layer
def lowerCamelCase_ ( _a : Dict ):
'''simple docstring'''
UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" )
UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] )
UpperCAmelCase_ : Optional[int] = checkpoint["""model"""]
remove_ignore_keys_(_a )
UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0]
UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()}
UpperCAmelCase_ : int = XGLMConfig(
vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a )
UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a )
print(_a )
UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 345 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase : Optional[int] = logging.get_logger(__name__)
_UpperCamelCase : Optional[Any] = torch.device('cpu')
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = Image.open(requests.get(_a , stream=_a ).raw )
return im
def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ):
'''simple docstring'''
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] )
def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Tuple , __snake_case : Any ):
'''simple docstring'''
lowercase = dct.pop(_a )
lowercase = val
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ):
'''simple docstring'''
lowercase = []
for k in state_dict.keys():
lowercase = k
if ".pwconv" in k:
lowercase = k_new.replace('.pwconv' , '.point_wise_conv' )
if ".dwconv" in k:
lowercase = k_new.replace('.dwconv' , '.depth_wise_conv' )
if ".Proj." in k:
lowercase = k_new.replace('.Proj.' , '.proj.' )
if "patch_embed" in k_new:
lowercase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' )
if "network" in k_new:
lowercase = k_new.split('.' )
if ls[2].isdigit():
lowercase = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
lowercase = k_new.replace('network' , 'swiftformer.encoder.network' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any ):
'''simple docstring'''
lowercase = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
lowercase = 10_00
lowercase = """huggingface/label-files"""
lowercase = """imagenet-1k-id2label.json"""
lowercase = json.load(open(hf_hub_download(_a , _a , repo_type='dataset' ) , 'r' ) )
lowercase = {int(_a ): v for k, v in idalabel.items()}
lowercase = idalabel
lowercase = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
lowercase = [3, 3, 6, 4]
lowercase = [48, 56, 1_12, 2_20]
elif swiftformer_name == "swiftformer_s":
lowercase = [3, 3, 9, 6]
lowercase = [48, 64, 1_68, 2_24]
elif swiftformer_name == "swiftformer_l1":
lowercase = [4, 3, 10, 5]
lowercase = [48, 96, 1_92, 3_84]
elif swiftformer_name == "swiftformer_l3":
lowercase = [4, 4, 12, 6]
lowercase = [64, 1_28, 3_20, 5_12]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('https' ):
lowercase = torch.hub.load_state_dict_from_url(_a , map_location='cpu' , check_hash=_a )
else:
lowercase = torch.load(_a , map_location='cpu' )
lowercase = checkpoint
lowercase = create_rename_keys(_a )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(_a , _a , _a )
# load HuggingFace model
lowercase = SwiftFormerForImageClassification(_a ).eval()
hf_model.load_state_dict(_a )
# prepare test inputs
lowercase = prepare_img()
lowercase = ViTImageProcessor.from_pretrained('preprocessor_config' )
lowercase = processor(images=_a , return_tensors='pt' )
# compare outputs from both models
lowercase = get_expected_output(_a )
lowercase = hf_model(inputs['pixel_values'] ).logits
assert hf_logits.shape == torch.Size([1, 10_00] )
assert torch.allclose(hf_logits[0, 0:5] , _a , atol=1e-3 )
Path(_a ).mkdir(exist_ok=_a )
print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' )
hf_model.save_pretrained(_a )
if __name__ == "__main__":
_UpperCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swiftformer_name',
default='swiftformer_xs',
choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'],
type=str,
help='Name of the SwiftFormer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='./converted_outputs/',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.')
_UpperCamelCase : str = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 220 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
'''simple docstring'''
def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str:
UpperCAmelCase_ : List[Any] = parent
UpperCAmelCase_ : Tuple = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : str = patch_size
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : Dict = embed_dim
UpperCAmelCase_ : Dict = hidden_sizes
UpperCAmelCase_ : str = depths
UpperCAmelCase_ : int = num_heads
UpperCAmelCase_ : List[Any] = window_size
UpperCAmelCase_ : Union[str, Any] = mlp_ratio
UpperCAmelCase_ : int = qkv_bias
UpperCAmelCase_ : List[str] = hidden_dropout_prob
UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[int] = drop_path_rate
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : List[Any] = use_absolute_embeddings
UpperCAmelCase_ : List[Any] = patch_norm
UpperCAmelCase_ : int = layer_norm_eps
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Optional[Any] = is_training
UpperCAmelCase_ : Optional[Any] = scope
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase_ : Optional[int] = encoder_stride
UpperCAmelCase_ : Optional[int] = out_features
UpperCAmelCase_ : Optional[int] = out_indices
def A__ ( self: Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : Any = self.get_config()
return config, pixel_values, labels
def A__ ( self: List[Any] ) -> Tuple:
return FocalNetConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,)
def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]:
UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ )
UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) )
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]:
UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Tuple = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Tuple = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase_ : int = 1
UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int:
UpperCAmelCase_ : List[Any] = self.type_sequence_label_size
UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ : List[Any] = 1
UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : List[str] = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def A__ ( self: Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs
UpperCAmelCase_ : int = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : List[Any] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
A__ : Union[str, Any] = (
{"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification}
if is_torch_available()
else {}
)
A__ : Optional[Any] = False
A__ : Any = False
A__ : List[str] = False
A__ : Any = False
A__ : Any = False
def A__ ( self: List[str] ) -> Tuple:
UpperCAmelCase_ : Dict = FocalNetModelTester(self )
UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ )
def A__ ( self: List[str] ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self: List[str] ) -> Union[str, Any]:
return
def A__ ( self: str ) -> List[str]:
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def A__ ( self: Tuple ) -> int:
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCamelCase_ )
def A__ ( self: Dict ) -> List[str]:
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ )
def A__ ( self: int ) -> int:
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def A__ ( self: int ) -> Dict:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def A__ ( self: Optional[Any] ) -> Optional[Any]:
pass
def A__ ( self: Optional[Any] ) -> List[str]:
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
UpperCAmelCase_ : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) )
def A__ ( self: str ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : str = model_class(lowerCamelCase_ )
UpperCAmelCase_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Any = [*signature.parameters.keys()]
UpperCAmelCase_ : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase_ )
def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]:
UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
UpperCAmelCase_ : Any = outputs.hidden_states
UpperCAmelCase_ : List[Any] = getattr(
self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# FocalNet has a different seq_length
UpperCAmelCase_ : int = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape
UpperCAmelCase_ : List[Any] = (
reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
def A__ ( self: Any ) -> List[Any]:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : str = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Union[str, Any] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: List[str] ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Tuple = 3
UpperCAmelCase_ : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase_ : Union[str, Any] = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : Optional[Any] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Optional[int] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) )
@slow
def A__ ( self: Optional[int] ) -> Optional[Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def A__ ( self: Optional[Any] ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ )
for model_class in self.all_model_classes:
UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@require_vision
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def A__ ( self: Optional[int] ) -> str:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def A__ ( self: List[Any] ) -> List[str]:
UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Tuple = self.default_image_processor
UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**lowerCamelCase_ )
# verify the logits
UpperCAmelCase_ : str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 )
@require_torch
class _snake_case ( __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else ()
A__ : int = FocalNetConfig
A__ : List[str] = False
def A__ ( self: Any ) -> Optional[int]:
UpperCAmelCase_ : str = FocalNetModelTester(self )
| 345 | 0 |
'''simple docstring'''
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
SCREAMING_SNAKE_CASE_: Dict =version.parse(importlib_metadata.version('nltk'))
if NLTK_VERSION >= version.Version('3.6.4'):
from nltk import word_tokenize
SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
SCREAMING_SNAKE_CASE_: List[Any] ='\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
SCREAMING_SNAKE_CASE_: str ='\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __A ( datasets.Metric ):
def _lowercase (self : List[str] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"] , reference_urls=[
"https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score",
"https://en.wikipedia.org/wiki/METEOR",
] , )
def _lowercase (self : Optional[int] , __a : List[Any] ):
import nltk
nltk.download("wordnet" )
if NLTK_VERSION >= version.Version("3.6.5" ):
nltk.download("punkt" )
if NLTK_VERSION >= version.Version("3.6.6" ):
nltk.download("omw-1.4" )
def _lowercase (self : Tuple , __a : Optional[Any] , __a : Any , __a : List[str]=0.9 , __a : Dict=3 , __a : int=0.5 ):
if NLTK_VERSION >= version.Version("3.6.5" ):
UpperCAmelCase_ = [
meteor_score.single_meteor_score(
word_tokenize(lowerCamelCase_ ) , word_tokenize(lowerCamelCase_ ) , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ )
for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ )
]
else:
UpperCAmelCase_ = [
meteor_score.single_meteor_score(lowerCamelCase_ , lowerCamelCase_ , alpha=lowerCamelCase_ , beta=lowerCamelCase_ , gamma=lowerCamelCase_ )
for ref, pred in zip(lowerCamelCase_ , lowerCamelCase_ )
]
return {"meteor": np.mean(lowerCamelCase_ )}
| 1 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
'''simple docstring'''
def __init__( self: Tuple ,lowerCamelCase_: List[str] ,lowerCamelCase_: int=13 ,lowerCamelCase_: int=32 ,lowerCamelCase_: Optional[int]=2 ,lowerCamelCase_: Any=3 ,lowerCamelCase_: str=16 ,lowerCamelCase_: Optional[Any]=[1, 2, 1] ,lowerCamelCase_: Tuple=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[Any]=2.0 ,lowerCamelCase_: str=True ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[Any]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Tuple="gelu" ,lowerCamelCase_: Union[str, Any]=False ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Union[str, Any]=None ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Optional[int]=10 ,lowerCamelCase_: Tuple=8 ,) -> List[Any]:
UpperCAmelCase_ : List[str] = parent
UpperCAmelCase_ : int = batch_size
UpperCAmelCase_ : int = image_size
UpperCAmelCase_ : Union[str, Any] = patch_size
UpperCAmelCase_ : Optional[Any] = num_channels
UpperCAmelCase_ : int = embed_dim
UpperCAmelCase_ : Union[str, Any] = depths
UpperCAmelCase_ : List[str] = num_heads
UpperCAmelCase_ : int = window_size
UpperCAmelCase_ : List[str] = mlp_ratio
UpperCAmelCase_ : Tuple = qkv_bias
UpperCAmelCase_ : Tuple = hidden_dropout_prob
UpperCAmelCase_ : str = attention_probs_dropout_prob
UpperCAmelCase_ : Tuple = drop_path_rate
UpperCAmelCase_ : List[str] = hidden_act
UpperCAmelCase_ : int = use_absolute_embeddings
UpperCAmelCase_ : Any = patch_norm
UpperCAmelCase_ : Optional[int] = layer_norm_eps
UpperCAmelCase_ : Tuple = initializer_range
UpperCAmelCase_ : Optional[Any] = is_training
UpperCAmelCase_ : Dict = scope
UpperCAmelCase_ : int = use_labels
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[str] = encoder_stride
def A__ ( self: Any ) -> int:
UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : List[Any] = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : str = self.get_config()
return config, pixel_values, labels
def A__ ( self: List[Any] ) -> Union[str, Any]:
return SwinvaConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,)
def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ) -> str:
UpperCAmelCase_ : str = SwinvaModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase_ : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) )
def A__ ( self: List[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: int ) -> int:
UpperCAmelCase_ : Any = SwinvaForMaskedImageModeling(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase_ : str = 1
UpperCAmelCase_ : Optional[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : int = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def A__ ( self: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ) -> int:
UpperCAmelCase_ : Union[str, Any] = self.type_sequence_label_size
UpperCAmelCase_ : int = SwinvaForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def A__ ( self: str ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs
UpperCAmelCase_ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : Tuple = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
A__ : Optional[Any] = (
{"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification}
if is_torch_available()
else {}
)
A__ : List[Any] = False
A__ : Tuple = False
A__ : int = False
A__ : Union[str, Any] = False
def A__ ( self: List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Any = SwinvaModelTester(self )
UpperCAmelCase_ : str = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 )
def A__ ( self: Optional[int] ) -> List[Any]:
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self: Any ) -> Dict:
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def A__ ( self: int ) -> Dict:
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def A__ ( self: Tuple ) -> List[str]:
pass
def A__ ( self: str ) -> List[Any]:
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : int = model_class(lowerCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
UpperCAmelCase_ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) )
def A__ ( self: Optional[Any] ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ : Dict = model_class(lowerCamelCase_ )
UpperCAmelCase_ : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : int = [*signature.parameters.keys()]
UpperCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase_ )
def A__ ( self: Union[str, Any] ) -> Optional[Any]:
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Any = True
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : Union[str, Any] = False
UpperCAmelCase_ : str = True
UpperCAmelCase_ : List[Any] = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
UpperCAmelCase_ : Optional[Any] = outputs.attentions
UpperCAmelCase_ : List[str] = len(self.model_tester.depths )
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCAmelCase_ : str = True
UpperCAmelCase_ : Optional[Any] = config.window_size**2
UpperCAmelCase_ : Optional[int] = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
UpperCAmelCase_ : List[Any] = outputs.attentions
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,)
UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ )
# Check attention is always last and order is fine
UpperCAmelCase_ : Tuple = True
UpperCAmelCase_ : List[Any] = True
UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
if hasattr(self.model_tester ,"""num_hidden_states_types""" ):
UpperCAmelCase_ : List[Any] = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
UpperCAmelCase_ : List[str] = 2
self.assertEqual(out_len + added_hidden_states ,len(lowerCamelCase_ ) )
UpperCAmelCase_ : Any = outputs.attentions
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_heads[0], window_size_squared, window_size_squared] ,)
def A__ ( self: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> List[Any]:
UpperCAmelCase_ : str = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : int = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
UpperCAmelCase_ : List[str] = outputs.hidden_states
UpperCAmelCase_ : Optional[Any] = getattr(
self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# Swinv2 has a different seq_length
UpperCAmelCase_ : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
UpperCAmelCase_ : Optional[int] = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape
UpperCAmelCase_ : Optional[Any] = (
reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
def A__ ( self: Any ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
UpperCAmelCase_ : Any = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : str = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: List[str] ) -> Dict:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Union[str, Any] = 3
UpperCAmelCase_ : Optional[int] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase_ : List[str] = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase_ : Optional[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
UpperCAmelCase_ : Optional[Any] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : List[str] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) )
def A__ ( self: Optional[int] ) -> str:
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ )
def A__ ( self: Union[str, Any] ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@slow
def A__ ( self: str ) -> Tuple:
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Dict = SwinvaModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def A__ ( self: Any ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = _config_zero_init(lowerCamelCase_ )
for model_class in self.all_model_classes:
UpperCAmelCase_ : int = model_class(config=lowerCamelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@require_vision
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def A__ ( self: Dict ) -> Optional[Any]:
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def A__ ( self: str ) -> List[Any]:
UpperCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
lowerCamelCase_ )
UpperCAmelCase_ : Any = self.default_image_processor
UpperCAmelCase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
UpperCAmelCase_ : Optional[int] = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ )
# verify the logits
UpperCAmelCase_ : Dict = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase_ )
UpperCAmelCase_ : Any = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
| 345 | 0 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.17.0.dev0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
A =logging.getLogger(__name__)
@dataclass
class _a :
__a : Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
__a : Optional[str] = field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
__a : int = field(
default=1_024 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
__a : bool = field(
default=__snake_case , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
__a : bool = field(
default=__snake_case , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
__a : Optional[int] = field(
default=__snake_case , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
__a : Optional[int] = field(
default=__snake_case , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
__a : Optional[int] = field(
default=__snake_case , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """A csv or a json file containing the training data."""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """A csv or a json file containing the validation data."""} )
__a : Optional[str] = field(default=__snake_case , metadata={"""help""": """A csv or a json file containing the test data."""} )
def A ( self : List[str] ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
UpperCAmelCase = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
UpperCAmelCase = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _a :
__a : str = field(
default=__snake_case , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
__a : Optional[str] = field(
default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
__a : bool = field(
default=__snake_case , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
__a : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
__a : bool = field(
default=__snake_case , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def snake_case_ ():
UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(_a )
datasets.utils.logging.set_verbosity(_a )
transformers.utils.logging.set_verbosity(_a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
UpperCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
UpperCAmelCase = data_args.train_file.split('''.''' )[-1]
UpperCAmelCase = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
UpperCAmelCase = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(F"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
UpperCAmelCase = load_dataset('''csv''' , data_files=_a , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
UpperCAmelCase = load_dataset('''json''' , data_files=_a , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
UpperCAmelCase = raw_datasets["""train"""].features["""label"""].names
UpperCAmelCase = len(_a )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
UpperCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_a , )
UpperCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
UpperCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
UpperCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
UpperCAmelCase = {"""Refused""": 0, """Entailed""": 1}
UpperCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
UpperCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(_a : Optional[Any] ):
# Tokenize the texts
def _convert_table_text_to_pandas(_a : Optional[Any] ):
UpperCAmelCase = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
UpperCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
UpperCAmelCase = examples["""statement"""]
UpperCAmelCase = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) )
UpperCAmelCase = tokenizer(_a , _a , padding=_a , max_length=_a , truncation=_a )
UpperCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
UpperCAmelCase = raw_datasets.map(
_a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
UpperCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
UpperCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
UpperCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
UpperCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
UpperCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
UpperCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(_a ) ) , 3 ):
logger.info(F"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_a : EvalPrediction ):
UpperCAmelCase = p.predictions[0] if isinstance(p.predictions , _a ) else p.predictions
UpperCAmelCase = np.argmax(_a , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
UpperCAmelCase = default_data_collator
elif training_args.fpaa:
UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 )
else:
UpperCAmelCase = None
# Initialize our Trainer
UpperCAmelCase = Trainer(
model=_a , args=_a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , )
# Training
if training_args.do_train:
UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase = last_checkpoint
UpperCAmelCase = trainer.train(resume_from_checkpoint=_a )
UpperCAmelCase = train_result.metrics
UpperCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_a )
)
UpperCAmelCase = min(_a , len(_a ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''' , _a )
trainer.save_metrics('''train''' , _a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase = trainer.evaluate(eval_dataset=_a )
UpperCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_a )
UpperCAmelCase = min(_a , len(_a ) )
trainer.log_metrics('''eval''' , _a )
trainer.save_metrics('''eval''' , _a )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
UpperCAmelCase = predict_dataset.remove_columns('''label''' )
UpperCAmelCase = trainer.predict(_a , metric_key_prefix='''predict''' ).predictions
UpperCAmelCase = np.argmax(_a , axis=1 )
UpperCAmelCase = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(_a , '''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(_a ):
UpperCAmelCase = label_list[item]
writer.write(F"{index}\t{item}\n" )
UpperCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**_a )
else:
trainer.create_model_card(**_a )
def snake_case_ (_a : Dict ):
main()
if __name__ == "__main__":
main()
| 34 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all LED models at https://huggingface.co/models?filter=LED
UpperCamelCase_ = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
UpperCamelCase_ = {
'''allenai/led-base-16384''': 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowerCamelCase_ ( ):
'''simple docstring'''
UpperCAmelCase_ : int = (
list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) )
)
UpperCAmelCase_ : Dict = bs[:]
UpperCAmelCase_ : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_a )
cs.append(2**8 + n )
n += 1
UpperCAmelCase_ : Any = [chr(_a ) for n in cs]
return dict(zip(_a , _a ) )
def lowerCamelCase_ ( _a : List[str] ):
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = set()
UpperCAmelCase_ : List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCAmelCase_ : Optional[int] = char
return pairs
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : str = VOCAB_FILES_NAMES
A__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Optional[int] = ["input_ids", "attention_mask"]
def __init__( self: Union[str, Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any]="replace" ,lowerCamelCase_: Optional[Any]="<s>" ,lowerCamelCase_: List[Any]="</s>" ,lowerCamelCase_: List[str]="</s>" ,lowerCamelCase_: int="<s>" ,lowerCamelCase_: int="<unk>" ,lowerCamelCase_: str="<pad>" ,lowerCamelCase_: Optional[Any]="<mask>" ,lowerCamelCase_: List[str]=False ,**lowerCamelCase_: Tuple ,) -> Any:
UpperCAmelCase_ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token
UpperCAmelCase_ : int = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token
UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token
UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token
UpperCAmelCase_ : Optional[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token
UpperCAmelCase_ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCAmelCase_ : str = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token
super().__init__(
errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,)
with open(lowerCamelCase_ ,encoding="""utf-8""" ) as vocab_handle:
UpperCAmelCase_ : Union[str, Any] = json.load(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()}
UpperCAmelCase_ : Any = errors # how to handle errors in decoding
UpperCAmelCase_ : int = bytes_to_unicode()
UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCamelCase_ ,encoding="""utf-8""" ) as merges_handle:
UpperCAmelCase_ : Any = merges_handle.read().split("""\n""" )[1:-1]
UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges]
UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) )
UpperCAmelCase_ : Tuple = {}
UpperCAmelCase_ : Optional[int] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
UpperCAmelCase_ : int = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def A__ ( self: List[str] ) -> List[str]:
return len(self.encoder )
def A__ ( self: Any ) -> Union[str, Any]:
return dict(self.encoder ,**self.added_tokens_encoder )
def A__ ( self: Tuple ,lowerCamelCase_: Dict ) -> Optional[Any]:
if token in self.cache:
return self.cache[token]
UpperCAmelCase_ : Union[str, Any] = tuple(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = get_pairs(lowerCamelCase_ )
if not pairs:
return token
while True:
UpperCAmelCase_ : Union[str, Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
UpperCAmelCase_ , UpperCAmelCase_ : Any = bigram
UpperCAmelCase_ : Optional[Any] = []
UpperCAmelCase_ : List[str] = 0
while i < len(lowerCamelCase_ ):
try:
UpperCAmelCase_ : str = word.index(lowerCamelCase_ ,lowerCamelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
UpperCAmelCase_ : Union[str, Any] = j
if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCAmelCase_ : List[str] = tuple(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = new_word
if len(lowerCamelCase_ ) == 1:
break
else:
UpperCAmelCase_ : List[str] = get_pairs(lowerCamelCase_ )
UpperCAmelCase_ : int = """ """.join(lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = word
return word
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> List[str]:
UpperCAmelCase_ : str = []
for token in re.findall(self.pat ,lowerCamelCase_ ):
UpperCAmelCase_ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(""" """ ) )
return bpe_tokens
def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ) -> Optional[int]:
return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) )
def A__ ( self: List[str] ,lowerCamelCase_: str ) -> Optional[Any]:
return self.decoder.get(lowerCamelCase_ )
def A__ ( self: List[str] ,lowerCamelCase_: List[str] ) -> List[Any]:
UpperCAmelCase_ : str = """""".join(lowerCamelCase_ )
UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors )
return text
def A__ ( self: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCamelCase_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase_ : List[Any] = os.path.join(
lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase_ : List[str] = os.path.join(
lowerCamelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + """\n""" )
UpperCAmelCase_ : str = 0
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
UpperCAmelCase_ : Tuple = token_index
writer.write(""" """.join(lowerCamelCase_ ) + """\n""" )
index += 1
return vocab_file, merge_file
def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : int = [self.cls_token_id]
UpperCAmelCase_ : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A__ ( self: Union[str, Any] ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ,lowerCamelCase_: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCamelCase_ )) + [1]
return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1]
def A__ ( self: str ,lowerCamelCase_: List[int] ,lowerCamelCase_: Optional[List[int]] = None ) -> List[int]:
UpperCAmelCase_ : Optional[Any] = [self.sep_token_id]
UpperCAmelCase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str=False ,**lowerCamelCase_: List[str] ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()):
UpperCAmelCase_ : Dict = """ """ + text
return (text, kwargs)
def A__ ( self: List[str] ,lowerCamelCase_: Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[bool] = None ,) -> dict:
UpperCAmelCase_ : Optional[int] = super()._pad(
encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,)
# Load from model defaults
if return_attention_mask is None:
UpperCAmelCase_ : str = """attention_mask""" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
UpperCAmelCase_ : List[Any] = len(encoded_inputs["""global_attention_mask"""] ) != len(lowerCamelCase_ )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = len(lowerCamelCase_ ) - len(encoded_inputs["""global_attention_mask"""] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
UpperCAmelCase_ : str = (
encoded_inputs["""global_attention_mask"""] + [-1] * difference
)
elif self.padding_side == "left":
UpperCAmelCase_ : List[str] = [-1] * difference + encoded_inputs[
"""global_attention_mask"""
]
else:
raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) )
return encoded_inputs
| 345 | 0 |
'''simple docstring'''
import logging
from transformers.configuration_utils import PretrainedConfig
_lowercase : List[Any] = logging.getLogger(__name__)
class __magic_name__ ( __snake_case):
UpperCamelCase__ = "masked_bert"
def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : List[Any]=12 , lowercase_ : List[Any]=12 , lowercase_ : Tuple=3072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Any=1E-12 , lowercase_ : Optional[Any]=0 , lowercase_ : Dict="topK" , lowercase_ : str="constant" , lowercase_ : Optional[int]=0.0 , **lowercase_ : List[str] , ):
super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
lowercase_ : Optional[int] = vocab_size
lowercase_ : List[Any] = hidden_size
lowercase_ : Dict = num_hidden_layers
lowercase_ : Union[str, Any] = num_attention_heads
lowercase_ : Tuple = hidden_act
lowercase_ : Any = intermediate_size
lowercase_ : Any = hidden_dropout_prob
lowercase_ : Optional[int] = attention_probs_dropout_prob
lowercase_ : int = max_position_embeddings
lowercase_ : List[str] = type_vocab_size
lowercase_ : List[str] = initializer_range
lowercase_ : Optional[Any] = layer_norm_eps
lowercase_ : int = pruning_method
lowercase_ : Optional[Any] = mask_init
lowercase_ : Tuple = mask_scale
| 239 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Union[str, Any] ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def A__ ( self: List[str] ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = 1
UpperCAmelCase_ : Tuple = 3
UpperCAmelCase_ : Optional[Any] = (32, 32)
UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(lowerCamelCase_ )
return image
@property
def A__ ( self: List[Any] ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : int = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,)
return model
@property
def A__ ( self: str ) -> List[str]:
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,)
return model
@property
def A__ ( self: Optional[int] ) -> int:
torch.manual_seed(0 )
UpperCAmelCase_ : Dict = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
return CLIPTextModel(lowerCamelCase_ )
@property
def A__ ( self: Tuple ) -> Tuple:
def extract(*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: str ):
class _snake_case :
'''simple docstring'''
def __init__( self: List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = torch.ones([0] )
def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> int:
self.pixel_values.to(lowerCamelCase_ )
return self
return Out()
return extract
def A__ ( self: Union[str, Any] ) -> Tuple:
UpperCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : int = self.dummy_cond_unet
UpperCAmelCase_ : Optional[Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule="""scaled_linear""" ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,)
UpperCAmelCase_ : str = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : str = StableDiffusionPipeline(
unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,)
UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : List[str] = """A painting of a squirrel eating a burger"""
UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCAmelCase_ : int = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" )
UpperCAmelCase_ : List[Any] = output.images
UpperCAmelCase_ : str = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCAmelCase_ : Dict = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0]
UpperCAmelCase_ : int = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Tuple = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def A__ ( self: Optional[Any] ) -> Any:
UpperCAmelCase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase_ : Dict = self.dummy_cond_unet
UpperCAmelCase_ : List[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
UpperCAmelCase_ : str = self.dummy_vae
UpperCAmelCase_ : Union[str, Any] = self.dummy_text_encoder
UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Any = StableDiffusionPipeline(
unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,)
UpperCAmelCase_ : int = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = """A painting of a squirrel eating a burger"""
UpperCAmelCase_ : Optional[Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" )
UpperCAmelCase_ : str = output.images
UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCAmelCase_ : int = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=lowerCamelCase_ ,)[0]
UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : Tuple = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def A__ ( self: str ) -> Dict:
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=lowerCamelCase_ )
assert isinstance(lowerCamelCase_ ,lowerCamelCase_ )
assert isinstance(pipe.scheduler ,lowerCamelCase_ )
assert pipe.safety_checker is None
UpperCAmelCase_ : List[Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCamelCase_ )
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
UpperCAmelCase_ : Optional[int] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" )
def A__ ( self: List[str] ) -> Any:
UpperCAmelCase_ : Tuple = self.dummy_cond_unet
UpperCAmelCase_ : Dict = PNDMScheduler(skip_prk_steps=lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = self.dummy_vae
UpperCAmelCase_ : List[str] = self.dummy_text_encoder
UpperCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
UpperCAmelCase_ : Optional[Any] = unet.half()
UpperCAmelCase_ : Optional[int] = vae.half()
UpperCAmelCase_ : int = bert.half()
# make sure here that pndm scheduler skips prk
UpperCAmelCase_ : Any = StableDiffusionPipeline(
unet=lowerCamelCase_ ,scheduler=lowerCamelCase_ ,vae=lowerCamelCase_ ,text_encoder=lowerCamelCase_ ,tokenizer=lowerCamelCase_ ,safety_checker=lowerCamelCase_ ,feature_extractor=self.dummy_extractor ,)
UpperCAmelCase_ : List[Any] = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Tuple = """A painting of a squirrel eating a burger"""
UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[int] ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self: List[str] ) -> List[Any]:
UpperCAmelCase_ : Tuple = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : str = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
UpperCAmelCase_ : Optional[int] = 4003660346
UpperCAmelCase_ : int = 7
# without safety guidance (sld_guidance_scale = 0)
UpperCAmelCase_ : Dict = torch.manual_seed(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,)
UpperCAmelCase_ : Optional[int] = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Dict = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
# without safety guidance (strong configuration)
UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(lowerCamelCase_ )
UpperCAmelCase_ : Any = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,)
UpperCAmelCase_ : Tuple = output.images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : str = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A__ ( self: Optional[int] ) -> Any:
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=lowerCamelCase_ )
UpperCAmelCase_ : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
UpperCAmelCase_ : str = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Any = """padme amidala taking a bath artwork, safe for work, no nudity"""
UpperCAmelCase_ : List[Any] = 2734971755
UpperCAmelCase_ : Optional[Any] = 7
UpperCAmelCase_ : int = torch.manual_seed(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,)
UpperCAmelCase_ : Dict = output.images
UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
UpperCAmelCase_ : Any = torch.manual_seed(lowerCamelCase_ )
UpperCAmelCase_ : Tuple = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,)
UpperCAmelCase_ : Dict = output.images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Tuple = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A__ ( self: Union[str, Any] ) -> int:
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
UpperCAmelCase_ : List[str] = sd_pipe.to(lowerCamelCase_ )
sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Any = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
UpperCAmelCase_ : Optional[Any] = 1044355234
UpperCAmelCase_ : List[str] = 12
UpperCAmelCase_ : List[Any] = torch.manual_seed(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,)
UpperCAmelCase_ : Any = output.images
UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7
UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = sd_pipe(
[prompt] ,generator=lowerCamelCase_ ,guidance_scale=lowerCamelCase_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2000 ,sld_warmup_steps=7 ,sld_threshold=0.0_2_5 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,)
UpperCAmelCase_ : List[str] = output.images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Any = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 345 | 0 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
A_ : Dict = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n'
def UpperCamelCase (lowercase_: List[Any] , lowercase_: Tuple , lowercase_: Any=8 ) -> List[str]:
A__ : List[Any] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
A__ : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class _a (__snake_case ):
'''simple docstring'''
def __init__( self , A__ , A__ , A__ , ):
super().__init__()
self.register_modules(
unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , )
A__ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ ):
if latents is None:
A__ : int = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ )
else:
if latents.shape != shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
A__ : Tuple = latents.to(lowerCamelCase_ )
A__ : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def __A ( self , A__=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
A__ : Optional[Any] = torch.device(F"""cuda:{gpu_id}""" )
A__ : List[str] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCamelCase_ , lowerCamelCase_ )
def __A ( self , A__=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
A__ : List[str] = torch.device(F"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
A__ : int = None
for cpu_offloaded_model in [self.unet, self.movq]:
A__ : List[str] = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ )
# We'll offload the last model manually.
A__ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __A ( self ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowerCamelCase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowerCamelCase_ )
def __call__( self , A__ , A__ , A__ = 512 , A__ = 512 , A__ = 100 , A__ = 4.0 , A__ = 1 , A__ = None , A__ = None , A__ = "pil" , A__ = True , ):
A__ : Any = self._execution_device
A__ : List[str] = guidance_scale > 1.0
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
A__ : List[Any] = torch.cat(lowerCamelCase_ , dim=0 )
A__ : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
A__ : Dict = torch.cat(lowerCamelCase_ , dim=0 )
if do_classifier_free_guidance:
A__ : Union[str, Any] = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 )
A__ : Any = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 )
A__ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ )
self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ )
A__ : str = self.scheduler.timesteps
A__ : List[str] = self.unet.config.in_channels
A__ : Dict = downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor )
# create initial latent
A__ : Optional[int] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ):
# expand the latents if we are doing classifier free guidance
A__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
A__ : Union[str, Any] = {"""image_embeds""": image_embeds}
A__ : Union[str, Any] = self.unet(
sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0]
if do_classifier_free_guidance:
A__ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 )
A__ : Dict = noise_pred.chunk(2 )
A__ : Union[str, Any] = variance_pred.chunk(2 )
A__ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
A__ : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
A__ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
A__ : Any = self.scheduler.step(
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0]
# post-processing
A__ : Optional[int] = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
A__ : Optional[int] = image * 0.5 + 0.5
A__ : Dict = image.clamp(0 , 1 )
A__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
A__ : List[str] = self.numpy_to_pil(lowerCamelCase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCamelCase_ )
| 192 |
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class _snake_case :
'''simple docstring'''
def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]:
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : List[Any] = batch_size
UpperCAmelCase_ : Union[str, Any] = seq_length
UpperCAmelCase_ : Optional[int] = is_training
UpperCAmelCase_ : Dict = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Tuple = use_labels
UpperCAmelCase_ : List[Any] = vocab_size
UpperCAmelCase_ : str = hidden_size
UpperCAmelCase_ : List[str] = embedding_size
UpperCAmelCase_ : List[Any] = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : Tuple = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : List[str] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : List[str] = type_vocab_size
UpperCAmelCase_ : Any = type_sequence_label_size
UpperCAmelCase_ : Optional[Any] = initializer_range
UpperCAmelCase_ : Optional[int] = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : List[str] = scope
def A__ ( self: Any ) -> Optional[int]:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
UpperCAmelCase_ : List[str] = None
if self.use_input_mask:
UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Dict = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices )
UpperCAmelCase_ : Tuple = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def A__ ( self: Any ) -> Dict:
return MobileBertConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,)
def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int:
UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ )
UpperCAmelCase_ : Tuple = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int:
UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int:
UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) )
def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]:
UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[int] = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,)
self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) )
def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : int = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,)
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str:
UpperCAmelCase_ : Optional[Any] = self.num_labels
UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any:
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Union[str, Any] = self.num_choices
UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous()
UpperCAmelCase_ : Optional[int] = model(
lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,)
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) )
def A__ ( self: List[str] ) -> str:
UpperCAmelCase_ : str = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Union[str, Any] = config_and_inputs
UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _snake_case ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : Dict = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
A__ : List[str] = (
{
"feature-extraction": MobileBertModel,
"fill-mask": MobileBertForMaskedLM,
"question-answering": MobileBertForQuestionAnswering,
"text-classification": MobileBertForSequenceClassification,
"token-classification": MobileBertForTokenClassification,
"zero-shot": MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ : List[str] = True
def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]:
UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ )
if return_labels:
if model_class in get_values(lowerCamelCase_ ):
UpperCAmelCase_ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ )
UpperCAmelCase_ : List[str] = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ )
return inputs_dict
def A__ ( self: List[str] ) -> Any:
UpperCAmelCase_ : List[str] = MobileBertModelTester(self )
UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 )
def A__ ( self: Optional[Any] ) -> List[Any]:
self.config_tester.run_common_tests()
def A__ ( self: List[str] ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ )
def A__ ( self: Optional[int] ) -> Optional[int]:
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ )
def A__ ( self: Optional[Any] ) -> Tuple:
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ )
def A__ ( self: List[Any] ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ )
def A__ ( self: Optional[Any] ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ )
def A__ ( self: Optional[int] ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ )
def A__ ( self: Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ )
def A__ ( self: Any ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ )
def lowerCamelCase_ ( _a : Union[str, Any] ):
'''simple docstring'''
return torch.tensor(
_a , dtype=torch.long , device=_a , )
UpperCamelCase_ = 1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def A__ ( self: List[Any] ) -> str:
UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0]
UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) )
self.assertEqual(output.shape ,lowerCamelCase_ )
UpperCAmelCase_ : Tuple = torch.tensor(
[
[
[-2.473_6526e07, 8.269_1656e04, 1.652_1838e05],
[-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00],
[2.604_7359e00, 1.567_7652e00, -1.732_4188e-01],
]
] ,device=lowerCamelCase_ ,)
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound )
| 345 | 0 |
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowercase : Dict = None
try:
import msvcrt
except ImportError:
lowercase : Optional[int] = None
try:
import fcntl
except ImportError:
lowercase : Dict = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowercase : int = OSError
# Data
# ------------------------------------------------
lowercase : Dict = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
lowercase : Optional[int] = """3.0.12"""
lowercase : List[Any] = None
def _snake_case( ) -> Optional[int]:
global _logger
lowercase : str = _logger or logging.getLogger(__name__ )
return _logger
class __snake_case ( __snake_case ):
def __init__( self ,snake_case ):
'''simple docstring'''
lowercase : Dict = lock_file
return None
def __str__( self ):
'''simple docstring'''
lowercase : Union[str, Any] = f"The file lock \'{self.lock_file}\' could not be acquired."
return temp
class __snake_case :
def __init__( self ,snake_case ):
'''simple docstring'''
lowercase : Optional[int] = lock
return None
def __enter__( self ):
'''simple docstring'''
return self.lock
def __exit__( self ,snake_case ,snake_case ,snake_case ):
'''simple docstring'''
self.lock.release()
return None
class __snake_case :
def __init__( self ,snake_case ,snake_case=-1 ,snake_case=None ):
'''simple docstring'''
lowercase : Any = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
lowercase : List[Any] = self.hash_filename_if_too_long(lowerCamelCase_ ,lowerCamelCase_ )
# The path to the lock file.
lowercase : Optional[int] = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
lowercase : Dict = None
# The default timeout value.
lowercase : Optional[int] = timeout
# We use this lock primarily for the lock counter.
lowercase : List[str] = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
lowercase : Optional[Any] = 0
return None
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self._lock_file
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self._timeout
@timeout.setter
def _SCREAMING_SNAKE_CASE ( self ,snake_case ):
'''simple docstring'''
lowercase : Optional[int] = float(lowerCamelCase_ )
return None
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
raise NotImplementedError()
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
raise NotImplementedError()
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return self._lock_file_fd is not None
def _SCREAMING_SNAKE_CASE ( self ,snake_case=None ,snake_case=0.05 ):
'''simple docstring'''
if timeout is None:
lowercase : Dict = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
lowercase : int = id(self )
lowercase : List[str] = self._lock_file
lowercase : List[str] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" )
self._acquire()
if self.is_locked:
logger().debug(f"Lock {lock_id} acquired on {lock_filename}" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." )
time.sleep(lowerCamelCase_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
lowercase : List[Any] = max(0 ,self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def _SCREAMING_SNAKE_CASE ( self ,snake_case=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
lowercase : Any = id(self )
lowercase : List[Any] = self._lock_file
logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" )
self._release()
lowercase : int = 0
logger().debug(f"Lock {lock_id} released on {lock_filename}" )
return None
def __enter__( self ):
'''simple docstring'''
self.acquire()
return self
def __exit__( self ,snake_case ,snake_case ,snake_case ):
'''simple docstring'''
self.release()
return None
def __del__( self ):
'''simple docstring'''
self.release(force=lowerCamelCase_ )
return None
def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ):
'''simple docstring'''
lowercase : Optional[int] = os.path.basename(lowerCamelCase_ )
if len(lowerCamelCase_ ) > max_length and max_length > 0:
lowercase : List[Any] = os.path.dirname(lowerCamelCase_ )
lowercase : List[str] = str(hash(lowerCamelCase_ ) )
lowercase : int = filename[: max_length - len(lowerCamelCase_ ) - 8] + """...""" + hashed_filename + """.lock"""
return os.path.join(lowerCamelCase_ ,lowerCamelCase_ )
else:
return path
class __snake_case ( __snake_case ):
def __init__( self ,snake_case ,snake_case=-1 ,snake_case=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(lowerCamelCase_ ,timeout=lowerCamelCase_ ,max_filename_length=lowerCamelCase_ )
lowercase : str = """\\\\?\\""" + relative_to_absolute_path(self.lock_file )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
lowercase : Union[str, Any] = os.open(self._lock_file ,lowerCamelCase_ )
except OSError:
pass
else:
try:
msvcrt.locking(lowerCamelCase_ ,msvcrt.LK_NBLCK ,1 )
except OSError:
os.close(lowerCamelCase_ )
else:
lowercase : Optional[Any] = fd
return None
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = self._lock_file_fd
lowercase : Dict = None
msvcrt.locking(lowerCamelCase_ ,msvcrt.LK_UNLCK ,1 )
os.close(lowerCamelCase_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __snake_case ( __snake_case ):
def __init__( self ,snake_case ,snake_case=-1 ,snake_case=None ):
'''simple docstring'''
lowercase : Optional[Any] = os.statvfs(os.path.dirname(lowerCamelCase_ ) ).f_namemax
super().__init__(lowerCamelCase_ ,timeout=lowerCamelCase_ ,max_filename_length=lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = os.O_RDWR | os.O_CREAT | os.O_TRUNC
lowercase : Any = os.open(self._lock_file ,lowerCamelCase_ )
try:
fcntl.flock(lowerCamelCase_ ,fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(lowerCamelCase_ )
else:
lowercase : int = fd
return None
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = self._lock_file_fd
lowercase : str = None
fcntl.flock(lowerCamelCase_ ,fcntl.LOCK_UN )
os.close(lowerCamelCase_ )
return None
class __snake_case ( __snake_case ):
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
lowercase : List[str] = os.open(self._lock_file ,lowerCamelCase_ )
except OSError:
pass
else:
lowercase : str = fd
return None
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
os.close(self._lock_file_fd )
lowercase : Dict = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowercase : Optional[Any] = None
if msvcrt:
lowercase : List[Any] = WindowsFileLock
elif fcntl:
lowercase : Dict = UnixFileLock
else:
lowercase : Union[str, Any] = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 20 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: str ) -> int:
UpperCAmelCase_ : List[Any] = """ylacombe/bark-small"""
UpperCAmelCase_ : Tuple = tempfile.mkdtemp()
UpperCAmelCase_ : Union[str, Any] = """en_speaker_1"""
UpperCAmelCase_ : Optional[Any] = """This is a test string"""
UpperCAmelCase_ : int = """speaker_embeddings_path.json"""
UpperCAmelCase_ : Any = """speaker_embeddings"""
def A__ ( self: Tuple ,**lowerCamelCase_: List[str] ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint ,**lowerCamelCase_ )
def A__ ( self: str ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def A__ ( self: List[Any] ) -> int:
UpperCAmelCase_ : int = self.get_tokenizer()
UpperCAmelCase_ : Tuple = BarkProcessor(tokenizer=lowerCamelCase_ )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() )
@slow
def A__ ( self: List[Any] ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,)
processor.save_pretrained(
self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,)
UpperCAmelCase_ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" )
UpperCAmelCase_ : List[Any] = BarkProcessor.from_pretrained(
self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,)
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
def A__ ( self: List[str] ) -> Optional[Any]:
UpperCAmelCase_ : Any = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,)
UpperCAmelCase_ : Optional[int] = 35
UpperCAmelCase_ : Optional[int] = 2
UpperCAmelCase_ : Dict = 8
UpperCAmelCase_ : Optional[int] = {
"""semantic_prompt""": np.ones(lowerCamelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
UpperCAmelCase_ : str = processor(text=self.input_string ,voice_preset=lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() )
# test loading voice preset from npz file
UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname ,"""file.npz""" )
np.savez(lowerCamelCase_ ,**lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string ,voice_preset=lowerCamelCase_ )
UpperCAmelCase_ : int = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(lowerCamelCase_ ,np.array([] ) ).tolist() )
# test loading voice preset from the hub
UpperCAmelCase_ : Union[str, Any] = processor(text=self.input_string ,voice_preset=self.voice_preset )
def A__ ( self: Dict ) -> Tuple:
UpperCAmelCase_ : Any = self.get_tokenizer()
UpperCAmelCase_ : Dict = BarkProcessor(tokenizer=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = processor(text=self.input_string )
UpperCAmelCase_ : str = tokenizer(
self.input_string ,padding="""max_length""" ,max_length=256 ,add_special_tokens=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,return_token_type_ids=lowerCamelCase_ ,)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
| 345 | 0 |
"""simple docstring"""
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def snake_case ( A__ ,A__ ):
UpperCAmelCase_ : str = checkpoint
UpperCAmelCase_ : Any = {}
UpperCAmelCase_ : Optional[Any] = vae_state_dict["""encoder.conv_in.weight"""]
UpperCAmelCase_ : Optional[Any] = vae_state_dict["""encoder.conv_in.bias"""]
UpperCAmelCase_ : Union[str, Any] = vae_state_dict["""encoder.conv_out.weight"""]
UpperCAmelCase_ : List[Any] = vae_state_dict["""encoder.conv_out.bias"""]
UpperCAmelCase_ : Tuple = vae_state_dict["""encoder.norm_out.weight"""]
UpperCAmelCase_ : Tuple = vae_state_dict["""encoder.norm_out.bias"""]
UpperCAmelCase_ : Optional[int] = vae_state_dict["""decoder.conv_in.weight"""]
UpperCAmelCase_ : Optional[Any] = vae_state_dict["""decoder.conv_in.bias"""]
UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.conv_out.weight"""]
UpperCAmelCase_ : Tuple = vae_state_dict["""decoder.conv_out.bias"""]
UpperCAmelCase_ : Optional[Any] = vae_state_dict["""decoder.norm_out.weight"""]
UpperCAmelCase_ : str = vae_state_dict["""decoder.norm_out.bias"""]
UpperCAmelCase_ : Dict = vae_state_dict["""quant_conv.weight"""]
UpperCAmelCase_ : Union[str, Any] = vae_state_dict["""quant_conv.bias"""]
UpperCAmelCase_ : Tuple = vae_state_dict["""post_quant_conv.weight"""]
UpperCAmelCase_ : List[str] = vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
UpperCAmelCase_ : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} )
UpperCAmelCase_ : List[str] = {
layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(_a )
}
# Retrieves the keys for the decoder up blocks only
UpperCAmelCase_ : str = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} )
UpperCAmelCase_ : List[str] = {
layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(_a )
}
for i in range(_a ):
UpperCAmelCase_ : Optional[int] = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key]
if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict:
UpperCAmelCase_ : Optional[Any] = vae_state_dict.pop(
F"""encoder.down.{i}.downsample.conv.weight""" )
UpperCAmelCase_ : Any = vae_state_dict.pop(
F"""encoder.down.{i}.downsample.conv.bias""" )
UpperCAmelCase_ : Optional[Any] = renew_vae_resnet_paths(_a )
UpperCAmelCase_ : Tuple = {"""old""": F"""down.{i}.block""", """new""": F"""down_blocks.{i}.resnets"""}
assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a )
UpperCAmelCase_ : List[Any] = [key for key in vae_state_dict if """encoder.mid.block""" in key]
UpperCAmelCase_ : Tuple = 2
for i in range(1 ,num_mid_res_blocks + 1 ):
UpperCAmelCase_ : Any = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key]
UpperCAmelCase_ : Union[str, Any] = renew_vae_resnet_paths(_a )
UpperCAmelCase_ : Any = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a )
UpperCAmelCase_ : int = [key for key in vae_state_dict if """encoder.mid.attn""" in key]
UpperCAmelCase_ : str = renew_vae_attention_paths(_a )
UpperCAmelCase_ : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a )
conv_attn_to_linear(_a )
for i in range(_a ):
UpperCAmelCase_ : Optional[Any] = num_up_blocks - 1 - i
UpperCAmelCase_ : List[Any] = [
key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key
]
if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict:
UpperCAmelCase_ : Optional[int] = vae_state_dict[
F"""decoder.up.{block_id}.upsample.conv.weight"""
]
UpperCAmelCase_ : Optional[Any] = vae_state_dict[
F"""decoder.up.{block_id}.upsample.conv.bias"""
]
UpperCAmelCase_ : str = renew_vae_resnet_paths(_a )
UpperCAmelCase_ : Optional[int] = {"""old""": F"""up.{block_id}.block""", """new""": F"""up_blocks.{i}.resnets"""}
assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a )
UpperCAmelCase_ : Dict = [key for key in vae_state_dict if """decoder.mid.block""" in key]
UpperCAmelCase_ : Dict = 2
for i in range(1 ,num_mid_res_blocks + 1 ):
UpperCAmelCase_ : int = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key]
UpperCAmelCase_ : Union[str, Any] = renew_vae_resnet_paths(_a )
UpperCAmelCase_ : int = {"""old""": F"""mid.block_{i}""", """new""": F"""mid_block.resnets.{i - 1}"""}
assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a )
UpperCAmelCase_ : Union[str, Any] = [key for key in vae_state_dict if """decoder.mid.attn""" in key]
UpperCAmelCase_ : Dict = renew_vae_attention_paths(_a )
UpperCAmelCase_ : str = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(_a ,_a ,_a ,additional_replacements=[meta_path] ,config=_a )
conv_attn_to_linear(_a )
return new_checkpoint
def snake_case ( A__ ,A__ ,):
UpperCAmelCase_ : List[str] = requests.get(
" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" )
UpperCAmelCase_ : Union[str, Any] = io.BytesIO(r.content )
UpperCAmelCase_ : str = OmegaConf.load(_a )
UpperCAmelCase_ : Union[str, Any] = 5_12
UpperCAmelCase_ : List[str] = """cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("safetensors" ):
from safetensors import safe_open
UpperCAmelCase_ : int = {}
with safe_open(_a ,framework="pt" ,device="cpu" ) as f:
for key in f.keys():
UpperCAmelCase_ : Tuple = f.get_tensor(_a )
else:
UpperCAmelCase_ : Dict = torch.load(_a ,map_location=_a )["""state_dict"""]
# Convert the VAE model.
UpperCAmelCase_ : Optional[int] = create_vae_diffusers_config(_a ,image_size=_a )
UpperCAmelCase_ : List[Any] = custom_convert_ldm_vae_checkpoint(_a ,_a )
UpperCAmelCase_ : Any = AutoencoderKL(**_a )
vae.load_state_dict(_a )
vae.save_pretrained(_a )
if __name__ == "__main__":
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''')
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''')
lowerCamelCase_ = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 268 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[int] ) -> Any:
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : str = -1
UpperCAmelCase_ : Dict = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ )
UpperCAmelCase_ : Any = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ )
model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
UpperCAmelCase_ : Optional[int] = cs.out[:-1]
self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: Dict ) -> Optional[Any]:
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = -1
UpperCAmelCase_ : List[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ )
UpperCAmelCase_ : Dict = tokenizer.decode(greedy_ids[0] )
UpperCAmelCase_ : str = TextIteratorStreamer(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
UpperCAmelCase_ : str = Thread(target=model.generate ,kwargs=lowerCamelCase_ )
thread.start()
UpperCAmelCase_ : int = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: List[Any] ) -> Dict:
UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = -1
UpperCAmelCase_ : Tuple = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : Dict = model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ )
UpperCAmelCase_ : str = greedy_ids[:, input_ids.shape[1] :]
UpperCAmelCase_ : Dict = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
UpperCAmelCase_ : List[Any] = TextStreamer(lowerCamelCase_ ,skip_prompt=lowerCamelCase_ )
model.generate(lowerCamelCase_ ,max_new_tokens=10 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
UpperCAmelCase_ : List[str] = cs.out[:-1]
self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: str ) -> str:
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
UpperCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained("""distilgpt2""" )
UpperCAmelCase_ : Optional[Any] = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Any = -1
UpperCAmelCase_ : Union[str, Any] = torch.ones((1, 5) ,device=lowerCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
UpperCAmelCase_ : Union[str, Any] = TextStreamer(lowerCamelCase_ ,skip_special_tokens=lowerCamelCase_ )
model.generate(lowerCamelCase_ ,max_new_tokens=1 ,do_sample=lowerCamelCase_ ,streamer=lowerCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
UpperCAmelCase_ : List[str] = cs.out[:-1] # Remove the final "\n"
UpperCAmelCase_ : Dict = tokenizer(lowerCamelCase_ ,return_tensors="""pt""" )
self.assertEqual(streamer_text_tokenized.input_ids.shape ,(1, 1) )
def A__ ( self: List[str] ) -> Any:
UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
UpperCAmelCase_ : Any = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = -1
UpperCAmelCase_ : Optional[Any] = ids_tensor((1, 5) ,vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = TextIteratorStreamer(lowerCamelCase_ ,timeout=0.0_0_1 )
UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer}
UpperCAmelCase_ : Dict = Thread(target=model.generate ,kwargs=lowerCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCamelCase_ ):
UpperCAmelCase_ : Union[str, Any] = """"""
for new_text in streamer:
streamer_text += new_text
| 345 | 0 |
_snake_case = [
'''Audio''',
'''Array2D''',
'''Array3D''',
'''Array4D''',
'''Array5D''',
'''ClassLabel''',
'''Features''',
'''Sequence''',
'''Value''',
'''Image''',
'''Translation''',
'''TranslationVariableLanguages''',
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 283 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
@property
def A__ ( self: Optional[int] ) -> int:
torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = UNetaDModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,)
return model
@property
def A__ ( self: Tuple ) -> Optional[Any]:
torch.manual_seed(0 )
UpperCAmelCase_ : List[str] = VQModel(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,)
return model
@property
def A__ ( self: Tuple ) -> Any:
torch.manual_seed(0 )
UpperCAmelCase_ : int = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,)
return CLIPTextModel(lowerCamelCase_ )
def A__ ( self: str ) -> Optional[Any]:
UpperCAmelCase_ : str = self.dummy_uncond_unet
UpperCAmelCase_ : List[Any] = DDIMScheduler()
UpperCAmelCase_ : List[Any] = self.dummy_vq_model
UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ )
ldm.to(lowerCamelCase_ )
ldm.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images
UpperCAmelCase_ : List[str] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0]
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[int] ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(lowerCamelCase_ )
ldm.set_progress_bar_config(disable=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images
UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 345 | 0 |
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_SCREAMING_SNAKE_CASE = """\
"""
_SCREAMING_SNAKE_CASE = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
_SCREAMING_SNAKE_CASE = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE_ ( datasets.Metric ):
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int = 16 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Any=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCamelCase = """cuda"""
else:
UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCamelCase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ )
UpperCamelCase = model.to(lowerCamelCase_ )
UpperCamelCase = AutoTokenizer.from_pretrained(lowerCamelCase_ )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(lowerCamelCase_ ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCamelCase = model.config.max_length - 1
else:
UpperCamelCase = model.config.max_length
UpperCamelCase = tokenizer(
lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , return_tensors="""pt""" , return_attention_mask=lowerCamelCase_ , ).to(lowerCamelCase_ )
UpperCamelCase = encodings["""input_ids"""]
UpperCamelCase = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCamelCase = []
UpperCamelCase = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ) ):
UpperCamelCase = min(start_index + batch_size , len(lowerCamelCase_ ) )
UpperCamelCase = encoded_texts[start_index:end_index]
UpperCamelCase = attn_masks[start_index:end_index]
if add_start_token:
UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(lowerCamelCase_ )
UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCamelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(lowerCamelCase_ ), attn_mask] , dim=1 )
UpperCamelCase = encoded_batch
with torch.no_grad():
UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ).logits
UpperCamelCase = out_logits[..., :-1, :].contiguous()
UpperCamelCase = labels[..., 1:].contiguous()
UpperCamelCase = attn_mask[..., 1:].contiguous()
UpperCamelCase = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , lowerCamelCase_ ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(lowerCamelCase_ )}
| 343 |
def lowerCamelCase_ ( _a : List[str] ):
'''simple docstring'''
UpperCAmelCase_ : Tuple = [0] * len(_a )
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Dict = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_a ) ):
if indegree[i] == 0:
queue.append(_a )
while queue:
UpperCAmelCase_ : List[str] = queue.pop(0 )
cnt += 1
topo.append(_a )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(_a )
if cnt != len(_a ):
print("""Cycle exists""" )
else:
print(_a )
# Adjacency List of Graph
UpperCamelCase_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 345 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A__ = {
'''configuration_distilbert''': [
'''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''DistilBertConfig''',
'''DistilBertOnnxConfig''',
],
'''tokenization_distilbert''': ['''DistilBertTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = ['''DistilBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
'''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DistilBertForMaskedLM''',
'''DistilBertForMultipleChoice''',
'''DistilBertForQuestionAnswering''',
'''DistilBertForSequenceClassification''',
'''DistilBertForTokenClassification''',
'''DistilBertModel''',
'''DistilBertPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
'''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDistilBertForMaskedLM''',
'''TFDistilBertForMultipleChoice''',
'''TFDistilBertForQuestionAnswering''',
'''TFDistilBertForSequenceClassification''',
'''TFDistilBertForTokenClassification''',
'''TFDistilBertMainLayer''',
'''TFDistilBertModel''',
'''TFDistilBertPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
'''FlaxDistilBertForMaskedLM''',
'''FlaxDistilBertForMultipleChoice''',
'''FlaxDistilBertForQuestionAnswering''',
'''FlaxDistilBertForSequenceClassification''',
'''FlaxDistilBertForTokenClassification''',
'''FlaxDistilBertModel''',
'''FlaxDistilBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 230 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'''microsoft/swinv2-tiny-patch4-window8-256''': (
'''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'''
),
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = "swinv2"
A__ : int = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self: List[str] ,lowerCamelCase_: List[str]=224 ,lowerCamelCase_: List[str]=4 ,lowerCamelCase_: List[Any]=3 ,lowerCamelCase_: Optional[Any]=96 ,lowerCamelCase_: Any=[2, 2, 6, 2] ,lowerCamelCase_: Dict=[3, 6, 12, 24] ,lowerCamelCase_: str=7 ,lowerCamelCase_: Optional[Any]=4.0 ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.0 ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: str=False ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: Union[str, Any]=1e-5 ,lowerCamelCase_: str=32 ,**lowerCamelCase_: List[str] ,) -> Tuple:
super().__init__(**lowerCamelCase_ )
UpperCAmelCase_ : Tuple = image_size
UpperCAmelCase_ : Tuple = patch_size
UpperCAmelCase_ : Dict = num_channels
UpperCAmelCase_ : List[Any] = embed_dim
UpperCAmelCase_ : Dict = depths
UpperCAmelCase_ : Dict = len(lowerCamelCase_ )
UpperCAmelCase_ : str = num_heads
UpperCAmelCase_ : Tuple = window_size
UpperCAmelCase_ : int = mlp_ratio
UpperCAmelCase_ : str = qkv_bias
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : int = drop_path_rate
UpperCAmelCase_ : Optional[Any] = hidden_act
UpperCAmelCase_ : List[str] = use_absolute_embeddings
UpperCAmelCase_ : Dict = layer_norm_eps
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
UpperCAmelCase_ : Any = (0, 0, 0, 0)
| 345 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__ : Any = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : int = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 344 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: int ) -> str:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase_ : List[str] = mock.Mock()
UpperCAmelCase_ : List[Any] = 500
UpperCAmelCase_ : Union[str, Any] = {}
UpperCAmelCase_ : Union[str, Any] = HTTPError
UpperCAmelCase_ : Any = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head:
UpperCAmelCase_ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def A__ ( self: str ) -> int:
# A mock response for an HTTP head request to emulate server down
UpperCAmelCase_ : str = mock.Mock()
UpperCAmelCase_ : Optional[int] = 500
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : Union[str, Any] = HTTPError
UpperCAmelCase_ : List[Any] = {}
# Download this model to make sure it's in the cache.
UpperCAmelCase_ : Optional[int] = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" ,return_value=lowerCamelCase_ ) as mock_head:
UpperCAmelCase_ : Any = GPTaTokenizerFast.from_pretrained("""gpt2""" )
# This check we did call the fake head request
mock_head.assert_called()
def A__ ( self: str ) -> Dict:
# This test is for deprecated behavior and can be removed in v5
try:
UpperCAmelCase_ : Any = tempfile.mktemp()
with open(lowerCamelCase_ ,"""wb""" ) as f:
http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,lowerCamelCase_ )
UpperCAmelCase_ : Tuple = AlbertTokenizer.from_pretrained(lowerCamelCase_ )
finally:
os.remove(lowerCamelCase_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("""tokenizer.json""" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("""tokenizer.json""" ,"""wb""" ) as f:
http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,lowerCamelCase_ )
UpperCAmelCase_ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size ,1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("""tokenizer.json""" )
def A__ ( self: List[str] ) -> Tuple:
# This test is for deprecated behavior and can be removed in v5
UpperCAmelCase_ : str = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" )
@is_staging_test
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
A__ : str = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def A__ ( cls: Dict ) -> Optional[int]:
UpperCAmelCase_ : List[str] = TOKEN
HfFolder.save_token(lowerCamelCase_ )
@classmethod
def A__ ( cls: Optional[Any] ) -> List[str]:
try:
delete_repo(token=cls._token ,repo_id="""test-tokenizer""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" )
except HTTPError:
pass
def A__ ( self: Any ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Tuple = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : List[Any] = BertTokenizer(lowerCamelCase_ )
tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token )
UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id="""test-tokenizer""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(lowerCamelCase_ ,repo_id="""test-tokenizer""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token )
UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
def A__ ( self: Optional[int] ) -> Any:
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : Dict = BertTokenizer(lowerCamelCase_ )
tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token )
UpperCAmelCase_ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
# Reset repo
delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
lowerCamelCase_ ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=lowerCamelCase_ ,use_auth_token=self._token )
UpperCAmelCase_ : List[Any] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" )
self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab )
@require_tokenizers
def A__ ( self: Optional[int] ) -> Optional[Any]:
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : Any = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : Optional[Any] = CustomTokenizer(lowerCamelCase_ )
# No fast custom tokenizer
tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token )
UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase_ : List[str] = os.path.join(lowerCamelCase_ ,"""vocab.txt""" )
with open(lowerCamelCase_ ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) )
UpperCAmelCase_ : str = BertTokenizerFast.from_pretrained(lowerCamelCase_ )
bert_tokenizer.save_pretrained(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = CustomTokenizerFast.from_pretrained(lowerCamelCase_ )
tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token )
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' ,trust_remote_code=lowerCamelCase_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" )
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(
F'''{USER}/test-dynamic-tokenizer''' ,use_fast=lowerCamelCase_ ,trust_remote_code=lowerCamelCase_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" )
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Optional[Any] ) -> Any:
UpperCAmelCase_ : Any = Trie()
trie.add("""Hello 友達""" )
self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
trie.add("""Hello""" )
trie.data
self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} )
def A__ ( self: Tuple ) -> Optional[int]:
UpperCAmelCase_ : str = Trie()
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] )
trie.add("""[CLS]""" )
trie.add("""extra_id_1""" )
trie.add("""extra_id_100""" )
self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] )
def A__ ( self: Optional[Any] ) -> Optional[int]:
UpperCAmelCase_ : Dict = Trie()
trie.add("""A""" )
self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] )
self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] )
def A__ ( self: Union[str, Any] ) -> int:
UpperCAmelCase_ : List[str] = Trie()
trie.add("""TOKEN]""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] )
def A__ ( self: int ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = Trie()
trie.add("""A""" )
trie.add("""P""" )
trie.add("""[SPECIAL_TOKEN]""" )
self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] )
def A__ ( self: int ) -> List[str]:
UpperCAmelCase_ : int = Trie()
trie.add("""AB""" )
trie.add("""B""" )
trie.add("""C""" )
self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] )
def A__ ( self: str ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = Trie()
trie.add("""ABC""" )
trie.add("""B""" )
trie.add("""CD""" )
self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] )
def A__ ( self: List[Any] ) -> Any:
# Even if the offsets are wrong, we necessarily output correct string
# parts.
UpperCAmelCase_ : Tuple = Trie()
UpperCAmelCase_ : Optional[Any] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] )
self.assertEqual(lowerCamelCase_ ,["""AB""", """C"""] )
| 345 | 0 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ):
'''simple docstring'''
if "img_encoder.pos_embed" in name:
lowercase = name.replace('img_encoder.pos_embed' , 'vision_model.embeddings.position_embeddings' )
if "img_encoder.patch_embed.proj" in name:
lowercase = name.replace('img_encoder.patch_embed.proj' , 'vision_model.embeddings.patch_embeddings.projection' )
if "img_encoder.patch_embed.norm" in name:
lowercase = name.replace('img_encoder.patch_embed.norm' , 'vision_model.embeddings.layernorm' )
if "img_encoder.layers" in name:
lowercase = name.replace('img_encoder.layers' , 'vision_model.encoder.stages' )
if "blocks" in name and "res" not in name:
lowercase = name.replace('blocks' , 'layers' )
if "attn" in name and "pre_assign" not in name:
lowercase = name.replace('attn' , 'self_attn' )
if "proj" in name and "self_attn" in name and "text" not in name:
lowercase = name.replace('proj' , 'out_proj' )
if "pre_assign_attn.attn.proj" in name:
lowercase = name.replace('pre_assign_attn.attn.proj' , 'pre_assign_attn.attn.out_proj' )
if "norm1" in name:
lowercase = name.replace('norm1' , 'layer_norm1' )
if "norm2" in name and "pre_assign" not in name:
lowercase = name.replace('norm2' , 'layer_norm2' )
if "img_encoder.norm" in name:
lowercase = name.replace('img_encoder.norm' , 'vision_model.layernorm' )
# text encoder
if "text_encoder.token_embedding" in name:
lowercase = name.replace('text_encoder.token_embedding' , 'text_model.embeddings.token_embedding' )
if "text_encoder.positional_embedding" in name:
lowercase = name.replace('text_encoder.positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "text_encoder.transformer.resblocks." in name:
lowercase = name.replace('text_encoder.transformer.resblocks.' , 'text_model.encoder.layers.' )
if "ln_1" in name:
lowercase = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
lowercase = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
lowercase = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
lowercase = name.replace('c_proj' , 'fc2' )
if "text_encoder" in name:
lowercase = name.replace('text_encoder' , 'text_model' )
if "ln_final" in name:
lowercase = name.replace('ln_final' , 'final_layer_norm' )
# projection layers
if "img_projector.linear_hidden." in name:
lowercase = name.replace('img_projector.linear_hidden.' , 'visual_projection.' )
if "img_projector.linear_out." in name:
lowercase = name.replace('img_projector.linear_out.' , 'visual_projection.3.' )
if "text_projector.linear_hidden" in name:
lowercase = name.replace('text_projector.linear_hidden' , 'text_projection' )
if "text_projector.linear_out" in name:
lowercase = name.replace('text_projector.linear_out' , 'text_projection.3' )
return name
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : Dict ):
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowercase = orig_state_dict.pop(_a )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split('.' )
lowercase = int(key_split[2] ), int(key_split[4] )
lowercase = config.vision_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[dim : dim * 2, :]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
lowercase = key.split('.' )
lowercase = int(key_split[3] )
lowercase = config.text_config.hidden_size
if "weight" in key:
lowercase = val[:dim, :]
lowercase = val[
dim : dim * 2, :
]
lowercase = val[-dim:, :]
else:
lowercase = val[:dim]
lowercase = val[dim : dim * 2]
lowercase = val[-dim:]
else:
lowercase = rename_key(_a )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
lowercase = val.squeeze_()
else:
lowercase = val
return orig_state_dict
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase = Image.open(requests.get(_a , stream=_a ).raw )
return im
@torch.no_grad()
def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str]="groupvit-gcc-yfcc" , __snake_case : Tuple=False ):
'''simple docstring'''
lowercase = GroupViTConfig()
lowercase = GroupViTModel(_a ).eval()
lowercase = torch.load(_a , map_location='cpu' )["""model"""]
lowercase = convert_state_dict(_a , _a )
lowercase = model.load_state_dict(_a , strict=_a )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_a ) == 0)
# verify result
lowercase = CLIPProcessor.from_pretrained('openai/clip-vit-base-patch32' )
lowercase = prepare_img()
lowercase = processor(text=['a photo of a cat', 'a photo of a dog'] , images=_a , padding=_a , return_tensors='pt' )
with torch.no_grad():
lowercase = model(**_a )
if model_name == "groupvit-gcc-yfcc":
lowercase = torch.tensor([[13.35_23, 6.3629]] )
elif model_name == "groupvit-gcc-redcaps":
lowercase = torch.tensor([[16.18_73, 8.6230]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , _a , atol=1e-3 )
processor.save_pretrained(_a )
model.save_pretrained(_a )
print('Successfully saved processor and model to' , _a )
if push_to_hub:
print('Pushing to the hub...' )
processor.push_to_hub(_a , organization='nielsr' )
model.push_to_hub(_a , organization='nielsr' )
if __name__ == "__main__":
_UpperCamelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.'
)
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint')
parser.add_argument(
'--model_name',
default='groupvit-gccy-fcc',
type=str,
help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.',
)
_UpperCamelCase : List[Any] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 220 |
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Tuple = ["flax"]
def __init__( self: str ,*lowerCamelCase_: int ,**lowerCamelCase_: List[str] ) -> str:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: List[str] ) -> Any:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: int ) -> Optional[int]:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Any = ["flax"]
def __init__( self: int ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Tuple ) -> Union[str, Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[int] ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[str] ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Any ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Dict = ["flax"]
def __init__( self: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: List[Any] ) -> Any:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: List[Any] ) -> str:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Optional[Any] ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : List[str] = ["flax"]
def __init__( self: str ,*lowerCamelCase_: List[str] ,**lowerCamelCase_: Optional[int] ) -> Union[str, Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Any:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : int = ["flax"]
def __init__( self: Dict ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: List[str] ) -> Optional[Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Union[str, Any] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[Any] ) -> str:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Optional[int] = ["flax"]
def __init__( self: str ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Optional[int] ) -> Tuple:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> List[str]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Optional[Any] ) -> Any:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : List[Any] = ["flax"]
def __init__( self: Union[str, Any] ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: int ) -> List[Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Dict:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Any:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Tuple = ["flax"]
def __init__( self: str ,*lowerCamelCase_: Any ,**lowerCamelCase_: int ) -> Tuple:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: Optional[int] ,**lowerCamelCase_: Union[str, Any] ) -> List[str]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: str ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: Dict ) -> Optional[int]:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : str = ["flax"]
def __init__( self: Optional[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: List[str] ) -> Optional[Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: int ) -> List[str]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: str ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: int ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Union[str, Any] = ["flax"]
def __init__( self: Any ,*lowerCamelCase_: Tuple ,**lowerCamelCase_: Optional[int] ) -> List[str]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[int] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: str ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: List[Any] ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Tuple = ["flax"]
def __init__( self: Any ,*lowerCamelCase_: Optional[Any] ,**lowerCamelCase_: Dict ) -> str:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Tuple ,*lowerCamelCase_: Union[str, Any] ,**lowerCamelCase_: List[str] ) -> int:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: List[Any] ,*lowerCamelCase_: str ,**lowerCamelCase_: str ) -> Any:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Optional[Any] = ["flax"]
def __init__( self: Dict ,*lowerCamelCase_: int ,**lowerCamelCase_: Optional[Any] ) -> Union[str, Any]:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: int ,**lowerCamelCase_: Tuple ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: Optional[Any] ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Optional[int] ) -> int:
requires_backends(cls ,["""flax"""] )
class _snake_case ( metaclass=__snake_case ):
'''simple docstring'''
A__ : Optional[int] = ["flax"]
def __init__( self: List[str] ,*lowerCamelCase_: Dict ,**lowerCamelCase_: Dict ) -> int:
requires_backends(self ,["""flax"""] )
@classmethod
def A__ ( cls: Dict ,*lowerCamelCase_: List[Any] ,**lowerCamelCase_: Dict ) -> Union[str, Any]:
requires_backends(cls ,["""flax"""] )
@classmethod
def A__ ( cls: int ,*lowerCamelCase_: Any ,**lowerCamelCase_: Any ) -> Optional[Any]:
requires_backends(cls ,["""flax"""] )
| 345 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_: Any ={
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class __A ( __snake_case ):
a__ : Tuple = "dpr"
def __init__(self : List[str] , __a : Tuple=30522 , __a : Union[str, Any]=768 , __a : Any=12 , __a : Optional[Any]=12 , __a : Optional[Any]=3072 , __a : Optional[Any]="gelu" , __a : Optional[int]=0.1 , __a : Union[str, Any]=0.1 , __a : str=512 , __a : Optional[int]=2 , __a : int=0.02 , __a : List[Any]=1E-12 , __a : Tuple=0 , __a : Dict="absolute" , __a : int = 0 , **__a : List[str] , ):
super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = projection_dim
UpperCAmelCase_ = position_embedding_type
| 1 |
import random
from typing import Any
def lowerCamelCase_ ( _a : list ):
'''simple docstring'''
for _ in range(len(_a ) ):
UpperCAmelCase_ : Tuple = random.randint(0 , len(_a ) - 1 )
UpperCAmelCase_ : List[Any] = random.randint(0 , len(_a ) - 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = data[b], data[a]
return data
if __name__ == "__main__":
UpperCamelCase_ = [0, 1, 2, 3, 4, 5, 6, 7]
UpperCamelCase_ = ['''python''', '''says''', '''hello''', '''!''']
print('''Fisher-Yates Shuffle:''')
print('''List''', integers, strings)
print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 345 | 0 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( __snake_case ):
__a : Union[str, Any] = ["image_processor", "tokenizer"]
__a : Union[str, Any] = "ViTImageProcessor"
__a : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : List[Any] , lowercase : Dict=None , lowercase : int=None , **lowercase : str ):
'''simple docstring'''
UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , lowerCamelCase_ , )
UpperCAmelCase = kwargs.pop('''feature_extractor''' )
UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(lowerCamelCase_ , lowerCamelCase_ )
def __call__( self : Union[str, Any] , lowercase : Dict=None , lowercase : Tuple=None , lowercase : Optional[Any]=None , lowercase : List[str]=None , **lowercase : str ):
'''simple docstring'''
if text is None and visual_prompt is None and images is None:
raise ValueError('''You have to specify either text, visual prompt or images.''' )
if text is not None and visual_prompt is not None:
raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' )
if text is not None:
UpperCAmelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if visual_prompt is not None:
UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if images is not None:
UpperCAmelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if visual_prompt is not None and images is not None:
UpperCAmelCase = {
"""pixel_values""": image_features.pixel_values,
"""conditional_pixel_values""": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
UpperCAmelCase = {
"""conditional_pixel_values""": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ )
def A ( self : Tuple , *lowercase : Optional[Any] , **lowercase : Union[str, Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ )
def A ( self : Union[str, Any] , *lowercase : List[str] , **lowercase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ )
@property
def A ( self : Any ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase_ , )
return self.image_processor_class
@property
def A ( self : Tuple ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase_ , )
return self.image_processor
| 34 |
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : int = 1
A__ : bool = True
A__ : bool = False
A__ : bool = False
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> List[str]:
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[int] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD(
in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = FlaxTransformeraDModel(
in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
attentions.append(lowerCamelCase_ )
UpperCAmelCase_ : int = resnets
UpperCAmelCase_ : Tuple = attentions
if self.add_downsample:
UpperCAmelCase_ : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Optional[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: int=True ) -> int:
UpperCAmelCase_ : List[Any] = ()
for resnet, attn in zip(self.resnets ,self.attentions ):
UpperCAmelCase_ : str = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase_ : List[Any] = self.downsamplers_a(lowerCamelCase_ )
output_states += (hidden_states,)
return hidden_states, output_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : bool = True
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> int:
UpperCAmelCase_ : List[str] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : int = self.in_channels if i == 0 else self.out_channels
UpperCAmelCase_ : Dict = FlaxResnetBlockaD(
in_channels=lowerCamelCase_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = resnets
if self.add_downsample:
UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any]=True ) -> Any:
UpperCAmelCase_ : Union[str, Any] = ()
for resnet in self.resnets:
UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
output_states += (hidden_states,)
if self.add_downsample:
UpperCAmelCase_ : List[str] = self.downsamplers_a(lowerCamelCase_ )
output_states += (hidden_states,)
return hidden_states, output_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : int = 1
A__ : bool = True
A__ : bool = False
A__ : bool = False
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
def A__ ( self: str ) -> Any:
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : List[str] = []
for i in range(self.num_layers ):
UpperCAmelCase_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase_ : int = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase_ : Optional[Any] = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : int = FlaxTransformeraDModel(
in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
attentions.append(lowerCamelCase_ )
UpperCAmelCase_ : List[str] = resnets
UpperCAmelCase_ : Dict = attentions
if self.add_upsample:
UpperCAmelCase_ : Optional[Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Optional[int] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: int ,lowerCamelCase_: Any ,lowerCamelCase_: str ,lowerCamelCase_: List[str]=True ) -> List[str]:
for resnet, attn in zip(self.resnets ,self.attentions ):
# pop res hidden states
UpperCAmelCase_ : List[str] = res_hidden_states_tuple[-1]
UpperCAmelCase_ : Union[str, Any] = res_hidden_states_tuple[:-1]
UpperCAmelCase_ : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 )
UpperCAmelCase_ : Tuple = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
if self.add_upsample:
UpperCAmelCase_ : Dict = self.upsamplers_a(lowerCamelCase_ )
return hidden_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : int
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : bool = True
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> Dict:
UpperCAmelCase_ : Any = []
for i in range(self.num_layers ):
UpperCAmelCase_ : str = self.in_channels if (i == self.num_layers - 1) else self.out_channels
UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels
UpperCAmelCase_ : Any = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : str = resnets
if self.add_upsample:
UpperCAmelCase_ : Union[str, Any] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype )
def __call__( self: Dict ,lowerCamelCase_: Dict ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any=True ) -> List[str]:
for resnet in self.resnets:
# pop res hidden states
UpperCAmelCase_ : Dict = res_hidden_states_tuple[-1]
UpperCAmelCase_ : str = res_hidden_states_tuple[:-1]
UpperCAmelCase_ : List[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 )
UpperCAmelCase_ : List[str] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
if self.add_upsample:
UpperCAmelCase_ : Optional[Any] = self.upsamplers_a(lowerCamelCase_ )
return hidden_states
class _snake_case ( nn.Module ):
'''simple docstring'''
A__ : int
A__ : float = 0.0
A__ : int = 1
A__ : int = 1
A__ : bool = False
A__ : bool = False
A__ : jnp.dtype = jnp.floataa
def A__ ( self: Dict ) -> List[str]:
# there is always at least one resnet
UpperCAmelCase_ : List[Any] = [
FlaxResnetBlockaD(
in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
]
UpperCAmelCase_ : Any = []
for _ in range(self.num_layers ):
UpperCAmelCase_ : Optional[Any] = FlaxTransformeraDModel(
in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,)
attentions.append(lowerCamelCase_ )
UpperCAmelCase_ : Any = FlaxResnetBlockaD(
in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,)
resnets.append(lowerCamelCase_ )
UpperCAmelCase_ : Dict = resnets
UpperCAmelCase_ : Any = attentions
def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any]=True ) -> List[Any]:
UpperCAmelCase_ : List[Any] = self.resnets[0](lowerCamelCase_ ,lowerCamelCase_ )
for attn, resnet in zip(self.attentions ,self.resnets[1:] ):
UpperCAmelCase_ : Optional[Any] = attn(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = resnet(lowerCamelCase_ ,lowerCamelCase_ ,deterministic=lowerCamelCase_ )
return hidden_states
| 345 | 0 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Union[str, Any] = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Optional[Any] = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Tuple = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Tuple = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Dict = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
lowercase_ : Dict = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Dict = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
lowercase_ : List[Any] = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
# pass variant but use the non-variant filenames
lowercase_ : Union[str, Any] = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
lowercase_ : Union[str, Any] = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : str = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : List[str] = """fp16"""
self.assertFalse(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Optional[Any] = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
lowercase_ : Optional[int] = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
# pass variant but use the non-variant filenames
lowercase_ : Optional[int] = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
lowercase_ : Any = """fp16"""
self.assertTrue(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Dict = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
lowercase_ : Any = """fp16"""
self.assertFalse(is_safetensors_compatible(lowerCamelCase_ , variant=lowerCamelCase_ ) )
| 239 |
import pickle
import numpy as np
from matplotlib import pyplot as plt
class _snake_case :
'''simple docstring'''
def __init__( self: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple=0.2 ,lowerCamelCase_: Union[str, Any]=0.2 ) -> List[str]:
UpperCAmelCase_ : List[Any] = bp_numa
UpperCAmelCase_ : str = bp_numa
UpperCAmelCase_ : List[Any] = bp_numa
UpperCAmelCase_ : Optional[int] = conva_get[:2]
UpperCAmelCase_ : List[Any] = conva_get[2]
UpperCAmelCase_ : str = size_pa
UpperCAmelCase_ : Optional[int] = rate_w
UpperCAmelCase_ : Dict = rate_t
UpperCAmelCase_ : List[Any] = [
np.mat(-1 * np.random.rand(self.conva[0] ,self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
UpperCAmelCase_ : int = np.mat(-1 * np.random.rand(self.num_bpa ,self.num_bpa ) + 0.5 )
UpperCAmelCase_ : Dict = -2 * np.random.rand(self.conva[1] ) + 1
UpperCAmelCase_ : str = -2 * np.random.rand(self.num_bpa ) + 1
UpperCAmelCase_ : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1
def A__ ( self: str ,lowerCamelCase_: Optional[Any] ) -> Tuple:
# save model dict with pickle
UpperCAmelCase_ : Dict = {
"""num_bp1""": self.num_bpa,
"""num_bp2""": self.num_bpa,
"""num_bp3""": self.num_bpa,
"""conv1""": self.conva,
"""step_conv1""": self.step_conva,
"""size_pooling1""": self.size_poolinga,
"""rate_weight""": self.rate_weight,
"""rate_thre""": self.rate_thre,
"""w_conv1""": self.w_conva,
"""wkj""": self.wkj,
"""vji""": self.vji,
"""thre_conv1""": self.thre_conva,
"""thre_bp2""": self.thre_bpa,
"""thre_bp3""": self.thre_bpa,
}
with open(lowerCamelCase_ ,"""wb""" ) as f:
pickle.dump(lowerCamelCase_ ,lowerCamelCase_ )
print(F'''Model saved: {save_path}''' )
@classmethod
def A__ ( cls: List[str] ,lowerCamelCase_: str ) -> List[str]:
# read saved model
with open(lowerCamelCase_ ,"""rb""" ) as f:
UpperCAmelCase_ : Any = pickle.load(lowerCamelCase_ ) # noqa: S301
UpperCAmelCase_ : Union[str, Any] = model_dic.get("""conv1""" )
conv_get.append(model_dic.get("""step_conv1""" ) )
UpperCAmelCase_ : List[str] = model_dic.get("""size_pooling1""" )
UpperCAmelCase_ : Tuple = model_dic.get("""num_bp1""" )
UpperCAmelCase_ : Optional[Any] = model_dic.get("""num_bp2""" )
UpperCAmelCase_ : List[str] = model_dic.get("""num_bp3""" )
UpperCAmelCase_ : List[Any] = model_dic.get("""rate_weight""" )
UpperCAmelCase_ : Dict = model_dic.get("""rate_thre""" )
# create model instance
UpperCAmelCase_ : List[Any] = CNN(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# modify model parameter
UpperCAmelCase_ : Any = model_dic.get("""w_conv1""" )
UpperCAmelCase_ : int = model_dic.get("""wkj""" )
UpperCAmelCase_ : int = model_dic.get("""vji""" )
UpperCAmelCase_ : Optional[int] = model_dic.get("""thre_conv1""" )
UpperCAmelCase_ : List[str] = model_dic.get("""thre_bp2""" )
UpperCAmelCase_ : Dict = model_dic.get("""thre_bp3""" )
return conv_ins
def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> Tuple:
return 1 / (1 + np.exp(-1 * x ))
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]:
return round(lowerCamelCase_ ,3 )
def A__ ( self: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Any:
# convolution process
UpperCAmelCase_ : Optional[Any] = convs[0]
UpperCAmelCase_ : int = convs[1]
UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )[0]
# get the data slice of original image data, data_focus
UpperCAmelCase_ : Dict = []
for i_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ):
for j_focus in range(0 ,size_data - size_conv + 1 ,lowerCamelCase_ ):
UpperCAmelCase_ : Union[str, Any] = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowerCamelCase_ )
# calculate the feature map of every single kernel, and saved as list of matrix
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Tuple = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowerCamelCase_ ):
UpperCAmelCase_ : Optional[int] = []
for i_focus in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : int = (
np.sum(np.multiply(data_focus[i_focus] ,w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowerCamelCase_ ) )
UpperCAmelCase_ : Union[str, Any] = np.asmatrix(lowerCamelCase_ ).reshape(
lowerCamelCase_ ,lowerCamelCase_ )
data_featuremap.append(lowerCamelCase_ )
# expanding the data slice to One dimenssion
UpperCAmelCase_ : Optional[Any] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) )
UpperCAmelCase_ : Optional[int] = np.asarray(lowerCamelCase_ )
return focus_list, data_featuremap
def A__ ( self: Tuple ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any]="average_pool" ) -> List[Any]:
# pooling process
UpperCAmelCase_ : Optional[Any] = len(featuremaps[0] )
UpperCAmelCase_ : Any = int(size_map / size_pooling )
UpperCAmelCase_ : Optional[int] = []
for i_map in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : Any = featuremaps[i_map]
UpperCAmelCase_ : Tuple = []
for i_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
for j_focus in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase_ : str = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowerCamelCase_ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowerCamelCase_ ) )
UpperCAmelCase_ : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ ,lowerCamelCase_ )
featuremap_pooled.append(lowerCamelCase_ )
return featuremap_pooled
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Tuple ) -> Optional[int]:
# expanding three dimension data to one dimension list
UpperCAmelCase_ : List[Any] = []
for i in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : Tuple = np.shape(data[i] )
UpperCAmelCase_ : Optional[int] = data[i].reshape(1 ,shapes[0] * shapes[1] )
UpperCAmelCase_ : Optional[int] = data_listed.getA().tolist()[0]
data_expanded.extend(lowerCamelCase_ )
UpperCAmelCase_ : int = np.asarray(lowerCamelCase_ )
return data_expanded
def A__ ( self: Optional[Any] ,lowerCamelCase_: Optional[int] ) -> Union[str, Any]:
# expanding matrix to one dimension list
UpperCAmelCase_ : List[Any] = np.asarray(lowerCamelCase_ )
UpperCAmelCase_ : str = np.shape(lowerCamelCase_ )
UpperCAmelCase_ : Dict = data_mat.reshape(1 ,shapes[0] * shapes[1] )
return data_expanded
def A__ ( self: str ,lowerCamelCase_: Dict ,lowerCamelCase_: int ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> Union[str, Any]:
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : Tuple = 0
for i_map in range(lowerCamelCase_ ):
UpperCAmelCase_ : Optional[Any] = np.ones((size_map, size_map) )
for i in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
for j in range(0 ,lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase_ : Any = pd_pool[
i_pool
]
UpperCAmelCase_ : List[str] = i_pool + 1
UpperCAmelCase_ : Optional[Any] = np.multiply(
lowerCamelCase_ ,np.multiply(out_map[i_map] ,(1 - out_map[i_map]) ) )
pd_all.append(lowerCamelCase_ )
return pd_all
def A__ ( self: str ,lowerCamelCase_: int ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any=bool ) -> Optional[int]:
# model traning
print("""----------------------Start Training-------------------------""" )
print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase_ )) )
print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase_ )) )
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : Tuple = []
UpperCAmelCase_ : Any = 10000
while rp < n_repeat and mse >= error_accuracy:
UpperCAmelCase_ : List[str] = 0
print(F'''-------------Learning Time {rp}--------------''' )
for p in range(len(lowerCamelCase_ ) ):
# print('------------Learning Image: %d--------------'%p)
UpperCAmelCase_ : str = np.asmatrix(datas_train[p] )
UpperCAmelCase_ : Optional[Any] = np.asarray(datas_teach[p] )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.convolute(
lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
UpperCAmelCase_ : List[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga )
UpperCAmelCase_ : int = np.shape(lowerCamelCase_ )
UpperCAmelCase_ : Dict = self._expand(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = data_bp_input
UpperCAmelCase_ : Optional[Any] = np.dot(lowerCamelCase_ ,self.vji.T ) - self.thre_bpa
UpperCAmelCase_ : int = self.sig(lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = np.dot(lowerCamelCase_ ,self.wkj.T ) - self.thre_bpa
UpperCAmelCase_ : Optional[Any] = self.sig(lowerCamelCase_ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
UpperCAmelCase_ : List[str] = np.multiply(
(data_teach - bp_outa) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) )
UpperCAmelCase_ : List[Any] = np.multiply(
np.dot(lowerCamelCase_ ,self.wkj ) ,np.multiply(lowerCamelCase_ ,(1 - bp_outa) ) )
UpperCAmelCase_ : Any = np.dot(lowerCamelCase_ ,self.vji )
UpperCAmelCase_ : Tuple = pd_i_all / (self.size_poolinga * self.size_poolinga)
UpperCAmelCase_ : List[str] = pd_conva_pooled.T.getA().tolist()
UpperCAmelCase_ : str = self._calculate_gradient_from_pool(
lowerCamelCase_ ,lowerCamelCase_ ,shape_featuremapa[0] ,shape_featuremapa[1] ,self.size_poolinga ,)
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
UpperCAmelCase_ : List[str] = self._expand_mat(pd_conva_all[k_conv] )
UpperCAmelCase_ : Optional[Any] = self.rate_weight * np.dot(lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : int = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
UpperCAmelCase_ : str = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
UpperCAmelCase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
UpperCAmelCase_ : Tuple = self.vji + pd_j_all.T * bp_outa * self.rate_weight
UpperCAmelCase_ : int = self.thre_bpa - pd_k_all * self.rate_thre
UpperCAmelCase_ : str = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
UpperCAmelCase_ : int = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
UpperCAmelCase_ : int = rp + 1
UpperCAmelCase_ : Any = error_count / patterns
all_mse.append(lowerCamelCase_ )
def draw_error():
UpperCAmelCase_ : Any = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowerCamelCase_ ,"""+-""" )
plt.plot(lowerCamelCase_ ,"""r--""" )
plt.xlabel("""Learning Times""" )
plt.ylabel("""All_mse""" )
plt.grid(lowerCamelCase_ ,alpha=0.5 )
plt.show()
print("""------------------Training Complished---------------------""" )
print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def A__ ( self: Optional[int] ,lowerCamelCase_: Any ) -> Tuple:
# model predict
UpperCAmelCase_ : Union[str, Any] = []
print("""-------------------Start Testing-------------------------""" )
print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase_ )) )
for p in range(len(lowerCamelCase_ ) ):
UpperCAmelCase_ : int = np.asmatrix(datas_test[p] )
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.convolute(
lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
UpperCAmelCase_ : Optional[Any] = self.pooling(lowerCamelCase_ ,self.size_poolinga )
UpperCAmelCase_ : str = self._expand(lowerCamelCase_ )
UpperCAmelCase_ : str = data_bp_input
UpperCAmelCase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa
UpperCAmelCase_ : Optional[int] = self.sig(lowerCamelCase_ )
UpperCAmelCase_ : Tuple = bp_outa * self.wkj.T - self.thre_bpa
UpperCAmelCase_ : List[Any] = self.sig(lowerCamelCase_ )
produce_out.extend(bp_outa.getA().tolist() )
UpperCAmelCase_ : int = [list(map(self.do_round ,lowerCamelCase_ ) ) for each in produce_out]
return np.asarray(lowerCamelCase_ )
def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Tuple:
# return the data of image after convoluting process so we can check it out
UpperCAmelCase_ : Optional[int] = np.asmatrix(lowerCamelCase_ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.convolute(
lowerCamelCase_ ,self.conva ,self.w_conva ,self.thre_conva ,conv_step=self.step_conva ,)
UpperCAmelCase_ : Dict = self.pooling(lowerCamelCase_ ,self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 345 | 0 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 192 |
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : Optional[Any] = CTRLTokenizer
A__ : Optional[Any] = False
A__ : str = False
def A__ ( self: Optional[int] ) -> List[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""]
UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) )
UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""]
UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""}
UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCamelCase_ ) + """\n""" )
with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCamelCase_ ) )
def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ )
def A__ ( self: int ,lowerCamelCase_: int ) -> str:
UpperCAmelCase_ : List[str] = """adapt react readapt apt"""
UpperCAmelCase_ : List[Any] = """adapt react readapt apt"""
return input_text, output_text
def A__ ( self: Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
UpperCAmelCase_ : List[Any] = """adapt react readapt apt"""
UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split()
UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ )
self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token]
UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
| 345 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : List[str] = logging.get_logger(__name__)
lowercase : Union[str, Any] = {
"""naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""",
# See all Donut models at https://huggingface.co/models?filter=donut-swin
}
class __snake_case ( __snake_case ):
_a : Optional[int]= "donut-swin"
_a : Union[str, Any]= {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self ,snake_case=224 ,snake_case=4 ,snake_case=3 ,snake_case=96 ,snake_case=[2, 2, 6, 2] ,snake_case=[3, 6, 12, 24] ,snake_case=7 ,snake_case=4.0 ,snake_case=True ,snake_case=0.0 ,snake_case=0.0 ,snake_case=0.1 ,snake_case="gelu" ,snake_case=False ,snake_case=0.02 ,snake_case=1e-5 ,**snake_case ,):
'''simple docstring'''
super().__init__(**lowerCamelCase_ )
lowercase : Any = image_size
lowercase : Optional[Any] = patch_size
lowercase : Union[str, Any] = num_channels
lowercase : List[Any] = embed_dim
lowercase : Dict = depths
lowercase : List[Any] = len(lowerCamelCase_ )
lowercase : Optional[Any] = num_heads
lowercase : Optional[Any] = window_size
lowercase : Optional[Any] = mlp_ratio
lowercase : Any = qkv_bias
lowercase : Union[str, Any] = hidden_dropout_prob
lowercase : Dict = attention_probs_dropout_prob
lowercase : str = drop_path_rate
lowercase : Dict = hidden_act
lowercase : List[Any] = use_absolute_embeddings
lowercase : Optional[int] = layer_norm_eps
lowercase : Any = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowercase : Any = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) )
| 20 |
from __future__ import annotations
from typing import Dict
from ...configuration_utils import PretrainedConfig
UpperCamelCase_ = {
'''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''',
'''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''',
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Union[str, Any] = "ernie_m"
A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"}
def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]:
super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = vocab_size
UpperCAmelCase_ : Any = hidden_size
UpperCAmelCase_ : Optional[Any] = num_hidden_layers
UpperCAmelCase_ : Union[str, Any] = num_attention_heads
UpperCAmelCase_ : List[Any] = intermediate_size
UpperCAmelCase_ : List[Any] = hidden_act
UpperCAmelCase_ : Any = hidden_dropout_prob
UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : str = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = initializer_range
UpperCAmelCase_ : Union[str, Any] = layer_norm_eps
UpperCAmelCase_ : List[Any] = classifier_dropout
UpperCAmelCase_ : str = is_decoder
UpperCAmelCase_ : List[str] = act_dropout
| 345 | 0 |
"""simple docstring"""
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ :
def __init__( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=13 , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[str]=32 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : List[Any]=4 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : int=512 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Tuple=0.0_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : List[Any]="last" , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=0 , ) -> str:
UpperCAmelCase_ : List[Any] = parent
UpperCAmelCase_ : str = batch_size
UpperCAmelCase_ : str = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : List[Any] = use_input_lengths
UpperCAmelCase_ : List[Any] = use_token_type_ids
UpperCAmelCase_ : str = use_labels
UpperCAmelCase_ : str = gelu_activation
UpperCAmelCase_ : Tuple = sinusoidal_embeddings
UpperCAmelCase_ : Any = causal
UpperCAmelCase_ : Tuple = asm
UpperCAmelCase_ : List[str] = n_langs
UpperCAmelCase_ : List[str] = vocab_size
UpperCAmelCase_ : Dict = n_special
UpperCAmelCase_ : int = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob
UpperCAmelCase_ : str = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase_ : Any = initializer_range
UpperCAmelCase_ : Union[str, Any] = num_labels
UpperCAmelCase_ : Dict = num_choices
UpperCAmelCase_ : Optional[int] = summary_type
UpperCAmelCase_ : Any = use_proj
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = bos_token_id
def _SCREAMING_SNAKE_CASE ( self : str ) -> int:
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : int = None
if self.use_input_lengths:
UpperCAmelCase_ : Union[str, Any] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCAmelCase_ : Tuple = None
if self.use_token_type_ids:
UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : List[Any] = None
if self.use_labels:
UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , 2 ).float()
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : str = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]:
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , ) -> Optional[int]:
UpperCAmelCase_ : List[str] = XLMModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ , lengths=lowerCamelCase_ , langs=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ , langs=lowerCamelCase_ )
UpperCAmelCase_ : str = model(lowerCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> str:
UpperCAmelCase_ : List[Any] = XLMWithLMHeadModel(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Dict = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , ) -> List[str]:
UpperCAmelCase_ : Tuple = XLMForQuestionAnsweringSimple(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Any = model(lowerCamelCase_ )
UpperCAmelCase_ : Tuple = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , ) -> Optional[int]:
UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnswering(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = model(
lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , p_mask=lowerCamelCase_ , )
UpperCAmelCase_ : int = model(
lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , )
(UpperCAmelCase_ ) : Optional[int] = result_with_labels.to_tuple()
UpperCAmelCase_ : Dict = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ )
(UpperCAmelCase_ ) : List[str] = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , ) -> str:
UpperCAmelCase_ : int = XLMForSequenceClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ )
UpperCAmelCase_ : int = model(lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , ) -> Any:
UpperCAmelCase_ : Tuple = self.num_labels
UpperCAmelCase_ : Union[str, Any] = XLMForTokenClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , ) -> Optional[Any]:
UpperCAmelCase_ : Union[str, Any] = self.num_choices
UpperCAmelCase_ : List[Any] = XLMForMultipleChoice(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase_ : Tuple = model(
lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]:
UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
(
UpperCAmelCase_
) : List[Any] = config_and_inputs
UpperCAmelCase_ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class UpperCamelCase_ (__snake_case , __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__magic_name__ = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__magic_name__ = (
{
"feature-extraction": XLMModel,
"fill-mask": XLMWithLMHeadModel,
"question-answering": XLMForQuestionAnsweringSimple,
"text-classification": XLMForSequenceClassification,
"text-generation": XLMWithLMHeadModel,
"token-classification": XLMForTokenClassification,
"zero-shot": XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ) -> Any:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=False ) -> Tuple:
UpperCAmelCase_ : int = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
UpperCAmelCase_ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ )
UpperCAmelCase_ : int = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ )
return inputs_dict
def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]:
UpperCAmelCase_ : Dict = XLMModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase_ , emb_dim=37 )
def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]:
self.config_tester.run_common_tests()
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict:
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str:
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase_ )
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=1 ) -> Dict:
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
self.assertListEqual(
[isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase_ ) )
self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCamelCase_ ):
# adds PAD dummy token
UpperCAmelCase_ : List[str] = min_length + idx + 1
UpperCAmelCase_ : Dict = min_length + idx + 1
UpperCAmelCase_ : Optional[int] = (
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase_ ) )
def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[int]=1 ) -> Any:
self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ )
self.assertListEqual(
[isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase_ ) , )
self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCamelCase_ ):
# adds PAD dummy token
UpperCAmelCase_ : List[str] = min_length + idx + 1
UpperCAmelCase_ : Optional[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase_ ) , )
pass
@slow
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int:
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : int = XLMModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
@require_torch
class UpperCamelCase_ (unittest.TestCase ):
@slow
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]:
UpperCAmelCase_ : Any = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" )
model.to(lowerCamelCase_ )
UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=lowerCamelCase_ ) # the president
UpperCAmelCase_ : Optional[int] = [
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
14,
447,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
UpperCAmelCase_ : Union[str, Any] = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase_ )
| 268 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase_ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def lowerCamelCase_ ( _a : str , _a : Any=100 , _a : int=" " ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = text.split(_a )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_a ) , _a )]
def lowerCamelCase_ ( _a : dict ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Dict = [], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(_a ):
titles.append(title if title is not None else """""" )
texts.append(_a )
return {"title": titles, "text": texts}
def lowerCamelCase_ ( _a : dict , _a : DPRContextEncoder , _a : DPRContextEncoderTokenizerFast ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=_a , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""]
UpperCAmelCase_ : Tuple = ctx_encoder(input_ids.to(device=_a ) , return_dict=_a ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowerCamelCase_ ( _a : "RagExampleArguments" , _a : "ProcessingArguments" , _a : "IndexHnswArguments" , ):
'''simple docstring'''
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
UpperCAmelCase_ : Optional[int] = load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
UpperCAmelCase_ : Tuple = dataset.map(_a , batched=_a , num_proc=processing_args.num_proc )
# And compute the embeddings
UpperCAmelCase_ : List[str] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_a )
UpperCAmelCase_ : Dict = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
UpperCAmelCase_ : Any = Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
UpperCAmelCase_ : List[str] = dataset.map(
partial(_a , ctx_encoder=_a , ctx_tokenizer=_a ) , batched=_a , batch_size=processing_args.batch_size , features=_a , )
# And finally save your dataset
UpperCAmelCase_ : Union[str, Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(_a )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
UpperCAmelCase_ : Union[str, Any] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=_a )
# And save the index
UpperCAmelCase_ : Optional[Any] = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(_a )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class _snake_case :
'''simple docstring'''
A__ : str = field(
default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
A__ : Optional[str] = field(
default=__snake_case , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
A__ : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
A__ : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
A__ : Optional[str] = field(
default=str(Path(__snake_case ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class _snake_case :
'''simple docstring'''
A__ : Optional[int] = field(
default=__snake_case , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
A__ : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class _snake_case :
'''simple docstring'''
A__ : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
A__ : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase_ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 345 | 0 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
_snake_case = logging.get_logger(__name__)
class UpperCAmelCase_ ( __snake_case ):
'''simple docstring'''
def __init__( self , *__A , **__A ):
"""simple docstring"""
warnings.warn(
"The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use GLPNImageProcessor instead." , lowerCamelCase_ , )
super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
| 283 |
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class _snake_case ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : Dict = AutoencoderKL
A__ : Optional[int] = "sample"
A__ : Tuple = 1E-2
@property
def A__ ( self: List[Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = 4
UpperCAmelCase_ : str = 3
UpperCAmelCase_ : Any = (32, 32)
UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ )
return {"sample": image}
@property
def A__ ( self: List[str] ) -> Tuple:
return (3, 32, 32)
@property
def A__ ( self: Optional[Any] ) -> Any:
return (3, 32, 32)
def A__ ( self: Any ) -> Tuple:
UpperCAmelCase_ : List[Any] = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
UpperCAmelCase_ : int = self.dummy_input
return init_dict, inputs_dict
def A__ ( self: Optional[Any] ) -> int:
pass
def A__ ( self: str ) -> Any:
pass
@unittest.skipIf(torch_device == """mps""" ,"""Gradient checkpointing skipped on MPS""" )
def A__ ( self: Union[str, Any] ) -> Dict:
# enable deterministic behavior for gradient checkpointing
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.prepare_init_args_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase_ )
model.to(lowerCamelCase_ )
assert not model.is_gradient_checkpointing and model.training
UpperCAmelCase_ : Optional[Any] = model(**lowerCamelCase_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
UpperCAmelCase_ : Any = torch.randn_like(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
UpperCAmelCase_ : str = self.model_class(**lowerCamelCase_ )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(lowerCamelCase_ )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
UpperCAmelCase_ : Optional[int] = model_a(**lowerCamelCase_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
UpperCAmelCase_ : Dict = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
UpperCAmelCase_ : Dict = dict(model.named_parameters() )
UpperCAmelCase_ : Union[str, Any] = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data ,named_params_a[name].grad.data ,atol=5e-5 ) )
def A__ ( self: Optional[Any] ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : int = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ,output_loading_info=lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 )
model.to(lowerCamelCase_ )
UpperCAmelCase_ : Dict = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def A__ ( self: Optional[int] ) -> int:
UpperCAmelCase_ : Dict = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" )
UpperCAmelCase_ : Tuple = model.to(lowerCamelCase_ )
model.eval()
if torch_device == "mps":
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
else:
UpperCAmelCase_ : Optional[int] = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 )
UpperCAmelCase_ : str = torch.randn(
1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,)
UpperCAmelCase_ : int = image.to(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ,generator=lowerCamelCase_ ).sample
UpperCAmelCase_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
UpperCAmelCase_ : Tuple = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
] )
elif torch_device == "cpu":
UpperCAmelCase_ : List[str] = torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
UpperCAmelCase_ : List[str] = torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,rtol=1e-2 ) )
@slow
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
def A__ ( self: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]:
return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy'''
def A__ ( self: Union[str, Any] ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self: List[str] ,lowerCamelCase_: Optional[int]=0 ,lowerCamelCase_: List[Any]=(4, 3, 512, 512) ,lowerCamelCase_: Optional[Any]=False ) -> Optional[int]:
UpperCAmelCase_ : Tuple = torch.floataa if fpaa else torch.floataa
UpperCAmelCase_ : Tuple = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ ,lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ )
return image
def A__ ( self: List[Any] ,lowerCamelCase_: List[str]="CompVis/stable-diffusion-v1-4" ,lowerCamelCase_: Union[str, Any]=False ) -> Any:
UpperCAmelCase_ : Optional[Any] = """fp16""" if fpaa else None
UpperCAmelCase_ : str = torch.floataa if fpaa else torch.floataa
UpperCAmelCase_ : int = AutoencoderKL.from_pretrained(
lowerCamelCase_ ,subfolder="""vae""" ,torch_dtype=lowerCamelCase_ ,revision=lowerCamelCase_ ,)
model.to(lowerCamelCase_ ).eval()
return model
def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any]=0 ) -> Optional[int]:
if torch_device == "mps":
return torch.manual_seed(lowerCamelCase_ )
return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def A__ ( self: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ) -> Tuple:
UpperCAmelCase_ : List[Any] = self.get_sd_vae_model()
UpperCAmelCase_ : int = self.get_sd_image(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = self.get_generator(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample
assert sample.shape == image.shape
UpperCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
UpperCAmelCase_ : Tuple = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Tuple:
UpperCAmelCase_ : List[str] = self.get_sd_vae_model(fpaa=lowerCamelCase_ )
UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,fpaa=lowerCamelCase_ )
UpperCAmelCase_ : Union[str, Any] = self.get_generator(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,generator=lowerCamelCase_ ,sample_posterior=lowerCamelCase_ ).sample
assert sample.shape == image.shape
UpperCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu()
UpperCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase_ )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def A__ ( self: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str] ) -> Dict:
UpperCAmelCase_ : Optional[int] = self.get_sd_vae_model()
UpperCAmelCase_ : Dict = self.get_sd_image(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : str = model(lowerCamelCase_ ).sample
assert sample.shape == image.shape
UpperCAmelCase_ : List[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu()
UpperCAmelCase_ : Any = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def A__ ( self: Optional[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: str ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = self.get_sd_vae_model()
UpperCAmelCase_ : Optional[int] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) )
with torch.no_grad():
UpperCAmelCase_ : str = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
UpperCAmelCase_ : Any = sample[-1, -2:, :2, -2:].flatten().cpu()
UpperCAmelCase_ : Union[str, Any] = torch.tensor(lowerCamelCase_ )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def A__ ( self: str ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Any ) -> Optional[Any]:
UpperCAmelCase_ : Dict = self.get_sd_vae_model(fpaa=lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
UpperCAmelCase_ : str = sample[-1, -2:, :2, -2:].flatten().float().cpu()
UpperCAmelCase_ : str = torch.tensor(lowerCamelCase_ )
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" )
def A__ ( self: List[Any] ,lowerCamelCase_: Union[str, Any] ) -> int:
UpperCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ )
UpperCAmelCase_ : List[str] = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) ,fpaa=lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
UpperCAmelCase_ : List[str] = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() ,reason="""xformers is not required when using PyTorch 2.0.""" )
def A__ ( self: Optional[Any] ,lowerCamelCase_: Dict ) -> Union[str, Any]:
UpperCAmelCase_ : Tuple = self.get_sd_vae_model()
UpperCAmelCase_ : Any = self.get_sd_image(lowerCamelCase_ ,shape=(3, 4, 64, 64) )
with torch.no_grad():
UpperCAmelCase_ : Union[str, Any] = model.decode(lowerCamelCase_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = model.decode(lowerCamelCase_ ).sample
assert list(sample.shape ) == [3, 3, 512, 512]
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Dict = self.get_sd_vae_model()
UpperCAmelCase_ : Optional[Any] = self.get_sd_image(lowerCamelCase_ )
UpperCAmelCase_ : str = self.get_generator(lowerCamelCase_ )
with torch.no_grad():
UpperCAmelCase_ : int = model.encode(lowerCamelCase_ ).latent_dist
UpperCAmelCase_ : Optional[Any] = dist.sample(generator=lowerCamelCase_ )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
UpperCAmelCase_ : Tuple = sample[0, -1, -3:, -3:].flatten().cpu()
UpperCAmelCase_ : Optional[Any] = torch.tensor(lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = 3e-3 if torch_device != """mps""" else 1e-2
assert torch_all_close(lowerCamelCase_ ,lowerCamelCase_ ,atol=lowerCamelCase_ )
| 345 | 0 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class SCREAMING_SNAKE_CASE_ ( __snake_case ):
__lowerCAmelCase = ["image_processor", "tokenizer"]
__lowerCAmelCase = "AutoImageProcessor"
__lowerCAmelCase = "AutoTokenizer"
def __init__( self : List[str] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ):
"""simple docstring"""
super().__init__(lowerCamelCase_ , lowerCamelCase_ )
UpperCamelCase = self.image_processor
def __call__( self : Dict , lowerCamelCase_ : int=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Optional[Any]=None , **lowerCamelCase_ : Tuple ):
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
UpperCamelCase = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if images is not None:
UpperCamelCase = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ )
if text is not None and images is not None:
UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ )
def lowerCamelCase_ ( self : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ )
def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[str] ):
"""simple docstring"""
return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ )
@property
def lowerCamelCase_ ( self : Tuple ):
"""simple docstring"""
return ["input_ids", "attention_mask", "pixel_values"]
| 343 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__snake_case )
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} )
A__ : ClassVar[Features] = Features({"audio": Audio()} )
A__ : ClassVar[Features] = Features({"transcription": Value("string" )} )
A__ : str = "audio"
A__ : str = "transcription"
def A__ ( self: int ,lowerCamelCase_: Union[str, Any] ) -> Optional[Any]:
if self.audio_column not in features:
raise ValueError(F'''Column {self.audio_column} is not present in features.''' )
if not isinstance(features[self.audio_column] ,lowerCamelCase_ ):
raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' )
UpperCAmelCase_ : Any = copy.deepcopy(self )
UpperCAmelCase_ : Union[str, Any] = self.input_schema.copy()
UpperCAmelCase_ : Any = features[self.audio_column]
UpperCAmelCase_ : Union[str, Any] = input_schema
return task_template
@property
def A__ ( self: List[str] ) -> Dict[str, str]:
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 345 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 230 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''',
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = "layoutlmv3"
def __init__( self: str ,lowerCamelCase_: Any=50265 ,lowerCamelCase_: int=768 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: Any=12 ,lowerCamelCase_: List[Any]=3072 ,lowerCamelCase_: str="gelu" ,lowerCamelCase_: List[str]=0.1 ,lowerCamelCase_: Any=0.1 ,lowerCamelCase_: Tuple=512 ,lowerCamelCase_: Union[str, Any]=2 ,lowerCamelCase_: Dict=0.0_2 ,lowerCamelCase_: List[str]=1e-5 ,lowerCamelCase_: int=1 ,lowerCamelCase_: int=0 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Dict=1024 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Tuple=128 ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=32 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=64 ,lowerCamelCase_: Tuple=256 ,lowerCamelCase_: List[str]=True ,lowerCamelCase_: Optional[int]=True ,lowerCamelCase_: Any=True ,lowerCamelCase_: Dict=224 ,lowerCamelCase_: Optional[int]=3 ,lowerCamelCase_: Optional[int]=16 ,lowerCamelCase_: Dict=None ,**lowerCamelCase_: str ,) -> List[Any]:
super().__init__(
vocab_size=lowerCamelCase_ ,hidden_size=lowerCamelCase_ ,num_hidden_layers=lowerCamelCase_ ,num_attention_heads=lowerCamelCase_ ,intermediate_size=lowerCamelCase_ ,hidden_act=lowerCamelCase_ ,hidden_dropout_prob=lowerCamelCase_ ,attention_probs_dropout_prob=lowerCamelCase_ ,max_position_embeddings=lowerCamelCase_ ,type_vocab_size=lowerCamelCase_ ,initializer_range=lowerCamelCase_ ,layer_norm_eps=lowerCamelCase_ ,pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ,)
UpperCAmelCase_ : List[Any] = max_ad_position_embeddings
UpperCAmelCase_ : Optional[int] = coordinate_size
UpperCAmelCase_ : Optional[int] = shape_size
UpperCAmelCase_ : Optional[Any] = has_relative_attention_bias
UpperCAmelCase_ : Optional[int] = rel_pos_bins
UpperCAmelCase_ : Union[str, Any] = max_rel_pos
UpperCAmelCase_ : Dict = has_spatial_attention_bias
UpperCAmelCase_ : Optional[int] = rel_ad_pos_bins
UpperCAmelCase_ : Tuple = max_rel_ad_pos
UpperCAmelCase_ : Union[str, Any] = text_embed
UpperCAmelCase_ : Optional[Any] = visual_embed
UpperCAmelCase_ : List[str] = input_size
UpperCAmelCase_ : str = num_channels
UpperCAmelCase_ : Optional[int] = patch_size
UpperCAmelCase_ : Tuple = classifier_dropout
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Optional[Any] = version.parse("1.12" )
@property
def A__ ( self: Dict ) -> Mapping[str, Mapping[int, str]]:
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def A__ ( self: Any ) -> float:
return 1e-5
@property
def A__ ( self: int ) -> int:
return 12
def A__ ( self: List[str] ,lowerCamelCase_: "ProcessorMixin" ,lowerCamelCase_: int = -1 ,lowerCamelCase_: int = -1 ,lowerCamelCase_: bool = False ,lowerCamelCase_: Optional["TensorType"] = None ,lowerCamelCase_: int = 3 ,lowerCamelCase_: int = 40 ,lowerCamelCase_: int = 40 ,) -> Mapping[str, Any]:
setattr(processor.image_processor ,"""apply_ocr""" ,lowerCamelCase_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
UpperCAmelCase_ : List[str] = compute_effective_axis_dimension(
lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
UpperCAmelCase_ : int = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ )
UpperCAmelCase_ : int = compute_effective_axis_dimension(
lowerCamelCase_ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowerCamelCase_ )
# Generate dummy inputs according to compute batch and sequence
UpperCAmelCase_ : Optional[int] = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
UpperCAmelCase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
UpperCAmelCase_ : Any = self._generate_dummy_images(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = dict(
processor(
lowerCamelCase_ ,text=lowerCamelCase_ ,boxes=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,) )
return inputs
| 345 | 0 |
'''simple docstring'''
import os
def UpperCAmelCase ( a_ = "input.txt" ) -> Any:
"""simple docstring"""
with open(os.path.join(os.path.dirname(_a ) , _a ) ) as input_file:
A_ : List[Any] = [
[int(_a ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
A_ : int = len(_a )
A_ : Optional[int] = len(matrix[0] )
A_ : Any = [[-1 for _ in range(_a )] for _ in range(_a )]
for i in range(_a ):
A_ : Dict = matrix[i][0]
for j in range(1 , _a ):
for i in range(_a ):
A_ : Dict = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _a ):
A_ : Any = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
A_ : Optional[int] = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 344 |
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def lowerCamelCase_ ( _a : List[Any] ):
'''simple docstring'''
UpperCAmelCase_ : Optional[int] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_a , _a )
def lowerCamelCase_ ( _a : Any ):
'''simple docstring'''
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape
UpperCAmelCase_ : Tuple = nn.Linear(_a , _a , bias=_a )
UpperCAmelCase_ : List[Any] = emb.weight.data
return lin_layer
def lowerCamelCase_ ( _a : Dict ):
'''simple docstring'''
UpperCAmelCase_ : int = torch.load(_a , map_location="""cpu""" )
UpperCAmelCase_ : Dict = Namespace(**checkpoint["""cfg"""]["""model"""] )
UpperCAmelCase_ : Optional[int] = checkpoint["""model"""]
remove_ignore_keys_(_a )
UpperCAmelCase_ : str = state_dict["""decoder.embed_tokens.weight"""].shape[0]
UpperCAmelCase_ : List[str] = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()}
UpperCAmelCase_ : int = XGLMConfig(
vocab_size=_a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
UpperCAmelCase_ : List[str] = XGLMForCausalLM(_a )
UpperCAmelCase_ : Tuple = model.load_state_dict(_a , strict=_a )
print(_a )
UpperCAmelCase_ : Optional[Any] = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase_ = parser.parse_args()
UpperCamelCase_ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 345 | 0 |
"""simple docstring"""
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class a ( unittest.TestCase ):
def UpperCamelCase_ ( self ):
lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
lowercase = -1
lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
lowercase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ )
lowercase = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
lowercase = TextStreamer(lowerCamelCase_ )
model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowercase = cs.out[:-1]
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def UpperCamelCase_ ( self ):
lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
lowercase = -1
lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
lowercase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ )
lowercase = tokenizer.decode(greedy_ids[0] )
lowercase = TextIteratorStreamer(lowerCamelCase_ )
lowercase = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer}
lowercase = Thread(target=model.generate , kwargs=lowerCamelCase_ )
thread.start()
lowercase = """"""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def UpperCamelCase_ ( self ):
lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
lowercase = -1
lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
lowercase = model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ )
lowercase = greedy_ids[:, input_ids.shape[1] :]
lowercase = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
lowercase = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ )
model.generate(lowerCamelCase_ , max_new_tokens=1_0 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
lowercase = cs.out[:-1]
self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
def UpperCamelCase_ ( self ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
lowercase = AutoTokenizer.from_pretrained('distilgpt2' )
lowercase = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(lowerCamelCase_ )
lowercase = -1
lowercase = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
lowercase = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )
model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
lowercase = cs.out[:-1] # Remove the final "\n"
lowercase = tokenizer(lowerCamelCase_ , return_tensors='pt' )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def UpperCamelCase_ ( self ):
lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowercase = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCamelCase_ )
lowercase = -1
lowercase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ )
lowercase = TextIteratorStreamer(lowerCamelCase_ , timeout=0.0_0_1 )
lowercase = {"""input_ids""": input_ids, """max_new_tokens""": 1_0, """do_sample""": False, """streamer""": streamer}
lowercase = Thread(target=model.generate , kwargs=lowerCamelCase_ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCamelCase_ ):
lowercase = """"""
for new_text in streamer:
streamer_text += new_text
| 220 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
'''simple docstring'''
def __init__( self: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any]=13 ,lowerCamelCase_: Optional[int]=32 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: int=16 ,lowerCamelCase_: Optional[Any]=[32, 64, 128] ,lowerCamelCase_: Optional[int]=[1, 2, 1] ,lowerCamelCase_: Union[str, Any]=[2, 2, 4] ,lowerCamelCase_: int=2 ,lowerCamelCase_: List[str]=2.0 ,lowerCamelCase_: List[Any]=True ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: List[str]=0.0 ,lowerCamelCase_: Optional[int]=0.1 ,lowerCamelCase_: Optional[int]="gelu" ,lowerCamelCase_: Any=False ,lowerCamelCase_: Dict=True ,lowerCamelCase_: Union[str, Any]=0.0_2 ,lowerCamelCase_: int=1e-5 ,lowerCamelCase_: int=True ,lowerCamelCase_: Tuple=None ,lowerCamelCase_: str=True ,lowerCamelCase_: Dict=10 ,lowerCamelCase_: str=8 ,lowerCamelCase_: Union[str, Any]=["stage1", "stage2"] ,lowerCamelCase_: Optional[Any]=[1, 2] ,) -> str:
UpperCAmelCase_ : List[Any] = parent
UpperCAmelCase_ : Tuple = batch_size
UpperCAmelCase_ : Any = image_size
UpperCAmelCase_ : str = patch_size
UpperCAmelCase_ : List[str] = num_channels
UpperCAmelCase_ : Dict = embed_dim
UpperCAmelCase_ : Dict = hidden_sizes
UpperCAmelCase_ : str = depths
UpperCAmelCase_ : int = num_heads
UpperCAmelCase_ : List[Any] = window_size
UpperCAmelCase_ : Union[str, Any] = mlp_ratio
UpperCAmelCase_ : int = qkv_bias
UpperCAmelCase_ : List[str] = hidden_dropout_prob
UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Optional[int] = drop_path_rate
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : List[Any] = use_absolute_embeddings
UpperCAmelCase_ : List[Any] = patch_norm
UpperCAmelCase_ : int = layer_norm_eps
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Optional[Any] = is_training
UpperCAmelCase_ : Optional[Any] = scope
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size
UpperCAmelCase_ : Optional[int] = encoder_stride
UpperCAmelCase_ : Optional[int] = out_features
UpperCAmelCase_ : Optional[int] = out_indices
def A__ ( self: Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ : int = None
if self.use_labels:
UpperCAmelCase_ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase_ : Any = self.get_config()
return config, pixel_values, labels
def A__ ( self: List[Any] ) -> Tuple:
return FocalNetConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,)
def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> List[str]:
UpperCAmelCase_ : Optional[int] = FocalNetModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ )
UpperCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
UpperCAmelCase_ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) )
def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[int] ) -> List[str]:
UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Tuple = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
UpperCAmelCase_ : Union[str, Any] = None
UpperCAmelCase_ : List[str] = FocalNetBackbone(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Tuple = model(lowerCamelCase_ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def A__ ( self: Optional[int] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : Any = FocalNetForMaskedImageModeling(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ )
self.parent.assertEqual(
result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
UpperCAmelCase_ : int = 1
UpperCAmelCase_ : List[str] = FocalNetForMaskedImageModeling(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ )
self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) )
def A__ ( self: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ) -> int:
UpperCAmelCase_ : List[Any] = self.type_sequence_label_size
UpperCAmelCase_ : int = FocalNetForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ : List[Any] = 1
UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ : List[str] = model(lowerCamelCase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) )
def A__ ( self: Union[str, Any] ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = config_and_inputs
UpperCAmelCase_ : int = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : List[Any] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
A__ : Union[str, Any] = (
{"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification}
if is_torch_available()
else {}
)
A__ : Optional[Any] = False
A__ : Any = False
A__ : List[str] = False
A__ : Any = False
A__ : Any = False
def A__ ( self: List[str] ) -> Tuple:
UpperCAmelCase_ : Dict = FocalNetModelTester(self )
UpperCAmelCase_ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,embed_dim=37 ,has_text_modality=lowerCamelCase_ )
def A__ ( self: List[str] ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A__ ( self: List[str] ) -> Union[str, Any]:
return
def A__ ( self: str ) -> List[str]:
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def A__ ( self: Tuple ) -> int:
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCamelCase_ )
def A__ ( self: Dict ) -> List[str]:
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ )
def A__ ( self: int ) -> int:
UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def A__ ( self: int ) -> Dict:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def A__ ( self: Optional[Any] ) -> Optional[Any]:
pass
def A__ ( self: Optional[Any] ) -> List[str]:
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : Optional[Any] = model_class(lowerCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
UpperCAmelCase_ : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase_ ,nn.Linear ) )
def A__ ( self: str ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : str = model_class(lowerCamelCase_ )
UpperCAmelCase_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ : Any = [*signature.parameters.keys()]
UpperCAmelCase_ : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase_ )
def A__ ( self: Dict ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> List[str]:
UpperCAmelCase_ : Tuple = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
UpperCAmelCase_ : Any = outputs.hidden_states
UpperCAmelCase_ : List[Any] = getattr(
self.model_tester ,"""expected_num_hidden_layers""" ,len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# FocalNet has a different seq_length
UpperCAmelCase_ : int = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
UpperCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = reshaped_hidden_states[0].shape
UpperCAmelCase_ : List[Any] = (
reshaped_hidden_states[0].view(lowerCamelCase_ ,lowerCamelCase_ ,height * width ).permute(0 ,2 ,1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,)
def A__ ( self: Any ) -> List[Any]:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : str = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Union[str, Any] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
def A__ ( self: List[str] ) -> str:
UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Tuple = 3
UpperCAmelCase_ : Tuple = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size ,collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
UpperCAmelCase_ : Union[str, Any] = (
config.patch_size
if isinstance(config.patch_size ,collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
UpperCAmelCase_ : Union[str, Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
UpperCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
UpperCAmelCase_ : Optional[Any] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCAmelCase_ : Optional[int] = True
self.check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,(padded_height, padded_width) )
@slow
def A__ ( self: Optional[int] ) -> Optional[Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Tuple = FocalNetModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def A__ ( self: Optional[Any] ) -> Optional[int]:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : Optional[int] = _config_zero_init(lowerCamelCase_ )
for model_class in self.all_model_classes:
UpperCAmelCase_ : List[Any] = model_class(config=lowerCamelCase_ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() ,[0.0, 1.0] ,msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' ,)
@require_vision
@require_torch
class _snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def A__ ( self: Optional[int] ) -> str:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def A__ ( self: List[Any] ) -> List[str]:
UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ )
UpperCAmelCase_ : Tuple = self.default_image_processor
UpperCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
UpperCAmelCase_ : Dict = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" ).to(lowerCamelCase_ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**lowerCamelCase_ )
# verify the logits
UpperCAmelCase_ : str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase_ )
UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase_ ,atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 )
@require_torch
class _snake_case ( __snake_case , unittest.TestCase ):
'''simple docstring'''
A__ : List[Any] = (FocalNetBackbone,) if is_torch_available() else ()
A__ : int = FocalNetConfig
A__ : List[str] = False
def A__ ( self: Any ) -> Optional[int]:
UpperCAmelCase_ : str = FocalNetModelTester(self )
| 345 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
lowerCAmelCase_ : torch.Tensor # [batch_size x 3]
lowerCAmelCase_ : torch.Tensor # [batch_size x 3]
lowerCAmelCase_ : torch.Tensor # [batch_size x 3]
lowerCAmelCase_ : torch.Tensor # [batch_size x 3]
lowerCAmelCase_ : int
lowerCAmelCase_ : int
lowerCAmelCase_ : float
lowerCAmelCase_ : float
lowerCAmelCase_ : Tuple[int]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = torch.arange(self.height * self.width )
UpperCAmelCase__ = torch.stack(
[
pixel_indices % self.width,
torch.div(_UpperCAmelCase , self.width , rounding_mode="""trunc""" ),
] , axis=1 , )
return coords
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ , *UpperCAmelCase__ = self.shape
UpperCAmelCase__ = int(np.prod(_UpperCAmelCase ) )
UpperCAmelCase__ = self.get_image_coords()
UpperCAmelCase__ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
UpperCAmelCase__ = self.get_camera_rays(_UpperCAmelCase )
UpperCAmelCase__ = rays.view(_UpperCAmelCase , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : torch.Tensor ):
"""simple docstring"""
UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__ = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
UpperCAmelCase__ = coords.view(_UpperCAmelCase , -1 , 2 )
UpperCAmelCase__ = self.resolution()
UpperCAmelCase__ = self.fov()
UpperCAmelCase__ = (flat.float() / (res - 1)) * 2 - 1
UpperCAmelCase__ = fracs * torch.tan(fov / 2 )
UpperCAmelCase__ = fracs.view(_UpperCAmelCase , -1 , 2 )
UpperCAmelCase__ = (
self.z.view(_UpperCAmelCase , 1 , 3 )
+ self.x.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, 1:]
)
UpperCAmelCase__ = directions / directions.norm(dim=-1 , keepdim=_UpperCAmelCase )
UpperCAmelCase__ = torch.stack(
[
torch.broadcast_to(self.origin.view(_UpperCAmelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_UpperCAmelCase , *_UpperCAmelCase , 2 , 3 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCAmelCase , height=_UpperCAmelCase , x_fov=self.x_fov , y_fov=self.y_fov , )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
UpperCAmelCase__ = np.array([np.sin(SCREAMING_SNAKE_CASE__ ), np.cos(SCREAMING_SNAKE_CASE__ ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
UpperCAmelCase__ = -z * 4
UpperCAmelCase__ = np.array([np.cos(SCREAMING_SNAKE_CASE__ ), -np.sin(SCREAMING_SNAKE_CASE__ ), 0.0] )
UpperCAmelCase__ = np.cross(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
origins.append(SCREAMING_SNAKE_CASE__ )
xs.append(SCREAMING_SNAKE_CASE__ )
ys.append(SCREAMING_SNAKE_CASE__ )
zs.append(SCREAMING_SNAKE_CASE__ )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE__ , axis=0 ) ).float() , width=SCREAMING_SNAKE_CASE__ , height=SCREAMING_SNAKE_CASE__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(SCREAMING_SNAKE_CASE__ )) , )
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
if gpta_config_file == "":
UpperCAmelCase__ = GPTaConfig()
else:
UpperCAmelCase__ = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = GPTaModel(SCREAMING_SNAKE_CASE__ )
# Load weights from numpy
load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Save pytorch-model
UpperCAmelCase__ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
UpperCAmelCase__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
UpperCAmelCase_ = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : str = """wavlm"""
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=32 , _UpperCAmelCase : int=7_68 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[str]=1E-5 , _UpperCAmelCase : int="group" , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase : Tuple=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : str=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=1_28 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : List[str]=3_20 , _UpperCAmelCase : List[str]=8_00 , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Any=0.05 , _UpperCAmelCase : Any=10 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Optional[Any]=3_20 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=1_00 , _UpperCAmelCase : int=2_56 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]="mean" , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : List[Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase : Optional[int]=(5, 3, 3, 1, 1) , _UpperCAmelCase : Dict=(1, 2, 3, 1, 1) , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : Tuple=80 , _UpperCAmelCase : str=0 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : int=3 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = feat_extract_norm
UpperCAmelCase__ = feat_extract_activation
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = conv_bias
UpperCAmelCase__ = num_buckets
UpperCAmelCase__ = max_bucket_distance
UpperCAmelCase__ = num_conv_pos_embeddings
UpperCAmelCase__ = num_conv_pos_embedding_groups
UpperCAmelCase__ = len(self.conv_dim )
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = feat_proj_dropout
UpperCAmelCase__ = final_dropout
UpperCAmelCase__ = layerdrop
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_ctc_classes
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = do_stable_layer_norm
UpperCAmelCase__ = use_weighted_layer_sum
UpperCAmelCase__ = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase__ = apply_spec_augment
UpperCAmelCase__ = mask_time_prob
UpperCAmelCase__ = mask_time_length
UpperCAmelCase__ = mask_time_min_masks
UpperCAmelCase__ = mask_feature_prob
UpperCAmelCase__ = mask_feature_length
# parameters for pretraining with codevector quantized representations
UpperCAmelCase__ = num_codevectors_per_group
UpperCAmelCase__ = num_codevector_groups
UpperCAmelCase__ = contrastive_logits_temperature
UpperCAmelCase__ = num_negatives
UpperCAmelCase__ = codevector_dim
UpperCAmelCase__ = proj_codevector_dim
UpperCAmelCase__ = diversity_loss_weight
# ctc loss
UpperCAmelCase__ = ctc_loss_reduction
UpperCAmelCase__ = ctc_zero_infinity
# adapter
UpperCAmelCase__ = add_adapter
UpperCAmelCase__ = adapter_kernel_size
UpperCAmelCase__ = adapter_stride
UpperCAmelCase__ = num_adapter_layers
UpperCAmelCase__ = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase__ = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = list(_UpperCAmelCase )
UpperCAmelCase__ = xvector_output_dim
@property
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = 0
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(_UpperCAmelCase ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(_UpperCAmelCase ) , 0 )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
# Check that tokenizer_type ≠ model_type
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_UpperCAmelCase , """vocab.txt""" ) )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""bert""" , use_fast=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_UpperCAmelCase , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_UpperCAmelCase , """merges.txt""" ) )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""gpt2""" , use_fast=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(_UpperCAmelCase , """vocab.txt""" ) )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""bert""" )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(_UpperCAmelCase , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(_UpperCAmelCase , """merges.txt""" ) )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , tokenizer_type="""gpt2""" )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
with pytest.raises(_UpperCAmelCase ):
AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
UpperCAmelCase__ = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" )
self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _UpperCAmelCase )
else:
self.assertEqual(tokenizer.do_lower_case , _UpperCAmelCase )
self.assertEqual(tokenizer.model_max_length , 5_12 )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
_UpperCAmelCase , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ):
UpperCAmelCase__ = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = TOKENIZER_MAPPING.values()
UpperCAmelCase__ = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(_UpperCAmelCase )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_UpperCAmelCase ) , _UpperCAmelCase )
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , _UpperCAmelCase )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=_UpperCAmelCase )
UpperCAmelCase__ = """Hello, world. How are you?"""
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
self.assertEqual("""[UNK]""" , tokens[0] )
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
self.assertEqual("""[UNK]""" , tokens[0] )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" )
self.assertEqual(type(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(tokenizer.model_max_length , 5_12 )
self.assertEqual(tokenizer.vocab_size , 3_00_00 )
self.assertEqual(tokenizer.unk_token , """[UNK]""" )
self.assertEqual(tokenizer.padding_side , """right""" )
self.assertEqual(tokenizer.truncation_side , """right""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""ctrl""" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = get_tokenizer_config("""bert-base-cased""" )
UpperCAmelCase__ = config.pop("""_commit_hash""" , _UpperCAmelCase )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(_UpperCAmelCase , {"""do_lower_case""": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
UpperCAmelCase__ = get_tokenizer_config(_UpperCAmelCase )
self.assertDictEqual(_UpperCAmelCase , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = get_tokenizer_config(_UpperCAmelCase )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
try:
AutoConfig.register("""custom""" , _UpperCAmelCase )
AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_UpperCAmelCase ):
AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase )
UpperCAmelCase__ = CustomTokenizer.from_pretrained(_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
try:
AutoConfig.register("""custom""" , _UpperCAmelCase )
# Can register in two steps
AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_UpperCAmelCase ):
AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = BertTokenizerFast.from_pretrained(_UpperCAmelCase )
bert_tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = CustomTokenizerFast.from_pretrained(_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
@require_tokenizers
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Dict = False
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : int = NewTokenizer
lowerCAmelCase_ : Any = False
try:
AutoConfig.register("""custom""" , _UpperCAmelCase )
AutoTokenizer.register(_UpperCAmelCase , slow_tokenizer_class=_UpperCAmelCase )
AutoTokenizer.register(_UpperCAmelCase , fast_tokenizer_class=_UpperCAmelCase )
# If remote code is not set, the default is to use local
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=_UpperCAmelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertTrue(tokenizer.special_attribute_present )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_UpperCAmelCase )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
UpperCAmelCase__ = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=_UpperCAmelCase , use_fast=_UpperCAmelCase )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
with self.assertRaisesRegex(
_UpperCAmelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base""" )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
with self.assertRaisesRegex(
_UpperCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase , revision="""aaaaaa""" )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ = 9, 14 # noqa: F841
UpperCAmelCase__ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
UpperCAmelCase__ = defaultdict(SCREAMING_SNAKE_CASE__ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
UpperCAmelCase__ = mst(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
UpperCAmelCase__ = tuple(answer[:2] )
UpperCAmelCase__ = tuple(edge[::-1] )
assert edge in result or reverse in result
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import Counter
from random import random
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = {}
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : float ):
"""simple docstring"""
if nodea not in self.connections:
self.add_node(_UpperCAmelCase )
if nodea not in self.connections:
self.add_node(_UpperCAmelCase )
UpperCAmelCase__ = probability
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return list(self.connections )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[tuple[str, str, float]] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = Counter(graph.get_nodes() )
UpperCAmelCase__ = start
for _ in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = graph.transition(SCREAMING_SNAKE_CASE__ )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Optional[NestedDataStructureLike[PathLike]] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Dict , ):
"""simple docstring"""
UpperCAmelCase__ = path_or_paths
UpperCAmelCase__ = split if split or isinstance(_UpperCAmelCase , _UpperCAmelCase ) else """train"""
UpperCAmelCase__ = features
UpperCAmelCase__ = cache_dir
UpperCAmelCase__ = keep_in_memory
UpperCAmelCase__ = streaming
UpperCAmelCase__ = num_proc
UpperCAmelCase__ = kwargs
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
pass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = features
UpperCAmelCase__ = cache_dir
UpperCAmelCase__ = keep_in_memory
UpperCAmelCase__ = streaming
UpperCAmelCase__ = num_proc
UpperCAmelCase__ = kwargs
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
pass
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
UpperCAmelCase_ = '\nimport os\n'
UpperCAmelCase_ = '\ndef foo():\n import os\n return False\n'
UpperCAmelCase_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n'
UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n'
UpperCAmelCase_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n'
UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n'
UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n'
UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n'
UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n'
UpperCAmelCase_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n'
UpperCAmelCase_ = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """test_file.py""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as _tmp_file:
_tmp_file.write(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = get_imports(SCREAMING_SNAKE_CASE__ )
assert parsed_imports == ["os"]
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return int(input_a == input_a == 0 )
def _UpperCamelCase ( ):
'''simple docstring'''
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' )
print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' )
print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' )
print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'vocab.json'}
UpperCAmelCase_ = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
UpperCAmelCase_ = {'mgp-str': 2_7}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : int = VOCAB_FILES_NAMES
lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str]="[GO]" , _UpperCAmelCase : Dict="[GO]" , _UpperCAmelCase : str="[s]" , _UpperCAmelCase : Dict="[GO]" , **_UpperCAmelCase : str ):
"""simple docstring"""
super().__init__(
unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , )
with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
UpperCAmelCase__ = json.load(_UpperCAmelCase )
UpperCAmelCase__ = {v: k for k, v in self.vocab.items()}
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.vocab )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
for s in text:
char_tokens.extend(_UpperCAmelCase )
return char_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : int ):
"""simple docstring"""
return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
return self.decoder.get(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error("""Vocabulary path ({}) should be a directory""".format(_UpperCAmelCase ) )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + """\n""" )
return (vocab_file,)
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
UpperCAmelCase_ = False
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe.dual_guided(
prompt="""first prompt""" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = generator.manual_seed(0 )
UpperCAmelCase__ = pipe.dual_guided(
prompt="""first prompt""" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = """cyberpunk 2077"""
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe.dual_guided(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase__ = """A painting of a squirrel eating a burger """
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe.text_to_image(
prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase__ = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""numpy""" ).images
UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
UpperCAmelCase_ = None
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
UpperCAmelCase_ = {
'vocab_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model',
},
'tokenizer_file': {
'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json',
'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json',
'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json',
'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json',
'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json',
'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json',
'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json',
'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json',
},
}
UpperCAmelCase_ = {
'albert-base-v1': 5_1_2,
'albert-large-v1': 5_1_2,
'albert-xlarge-v1': 5_1_2,
'albert-xxlarge-v1': 5_1_2,
'albert-base-v2': 5_1_2,
'albert-large-v2': 5_1_2,
'albert-xlarge-v2': 5_1_2,
'albert-xxlarge-v2': 5_1_2,
}
UpperCAmelCase_ = '▁'
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = VOCAB_FILES_NAMES
lowerCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ : int = AlbertTokenizer
def __init__( self : Tuple , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=False , _UpperCAmelCase : str="[CLS]" , _UpperCAmelCase : Optional[Any]="[SEP]" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : List[str]="[SEP]" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : List[Any]="[CLS]" , _UpperCAmelCase : Tuple="[MASK]" , **_UpperCAmelCase : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase__ = (
AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase )
else mask_token
)
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return EnvironmentCommand()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
return EnvironmentCommand(args.accelerate_config_file )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : ArgumentParser ):
"""simple docstring"""
UpperCAmelCase__ = parser.add_parser("""env""" )
download_parser.set_defaults(func=_UpperCAmelCase )
download_parser.add_argument(
"""--accelerate-config_file""" , default=_UpperCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , )
download_parser.set_defaults(func=_UpperCAmelCase )
def __init__( self : str , _UpperCAmelCase : int , *_UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = accelerate_config_file
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = """not installed"""
if is_safetensors_available():
import safetensors
UpperCAmelCase__ = safetensors.__version__
elif importlib.util.find_spec("""safetensors""" ) is not None:
import safetensors
UpperCAmelCase__ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.'''
UpperCAmelCase__ = """not installed"""
UpperCAmelCase__ = UpperCAmelCase__ = """not found"""
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
UpperCAmelCase__ = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(_UpperCAmelCase ):
UpperCAmelCase__ = load_config_from_file(self._accelerate_config_file ).to_dict()
UpperCAmelCase__ = (
"""\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] )
if isinstance(_UpperCAmelCase , _UpperCAmelCase )
else f'''\t{accelerate_config}'''
)
UpperCAmelCase__ = """not installed"""
UpperCAmelCase__ = """NA"""
if is_torch_available():
import torch
UpperCAmelCase__ = torch.__version__
UpperCAmelCase__ = torch.cuda.is_available()
UpperCAmelCase__ = """not installed"""
UpperCAmelCase__ = """NA"""
if is_tf_available():
import tensorflow as tf
UpperCAmelCase__ = tf.__version__
try:
# deprecated in v2.1
UpperCAmelCase__ = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
UpperCAmelCase__ = bool(tf.config.list_physical_devices("""GPU""" ) )
UpperCAmelCase__ = """not installed"""
UpperCAmelCase__ = """not installed"""
UpperCAmelCase__ = """not installed"""
UpperCAmelCase__ = """NA"""
if is_flax_available():
import flax
import jax
import jaxlib
UpperCAmelCase__ = flax.__version__
UpperCAmelCase__ = jax.__version__
UpperCAmelCase__ = jaxlib.__version__
UpperCAmelCase__ = jax.lib.xla_bridge.get_backend().platform
UpperCAmelCase__ = {
"""`transformers` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""Huggingface_hub version""": huggingface_hub.__version__,
"""Safetensors version""": f'''{safetensors_version}''',
"""Accelerate version""": f'''{accelerate_version}''',
"""Accelerate config""": f'''{accelerate_config_str}''',
"""PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''',
"""Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''',
"""Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''',
"""Jax version""": f'''{jax_version}''',
"""JaxLib version""": f'''{jaxlib_version}''',
"""Using GPU in script?""": """<fill in>""",
"""Using distributed or parallel set-up in script?""": """<fill in>""",
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(_UpperCAmelCase ) )
return info
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : Dict ):
"""simple docstring"""
return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ = 'examples/'
UpperCAmelCase_ = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCAmelCase_ = {
'init': 'src/diffusers/__init__.py',
'setup': 'setup.py',
}
UpperCAmelCase_ = 'README.md'
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
UpperCAmelCase__ = f.read()
UpperCAmelCase__ , UpperCAmelCase__ = REPLACE_PATTERNS[pattern]
UpperCAmelCase__ = replace.replace("""VERSION""" , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = re_pattern.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , pattern="""examples""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str=False ):
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not patch:
update_version_in_examples(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """🤗 Transformers currently provides the following architectures"""
UpperCAmelCase__ = """1. Want to contribute a new model?"""
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
UpperCAmelCase__ = f.readlines()
# Find the start of the list.
UpperCAmelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
UpperCAmelCase__ = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
UpperCAmelCase__ = f.read()
UpperCAmelCase__ = REPLACE_PATTERNS["""init"""][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0]
return packaging.version.parse(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any]=False ):
'''simple docstring'''
UpperCAmelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
UpperCAmelCase__ = default_version.base_version
elif patch:
UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
UpperCAmelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
UpperCAmelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(SCREAMING_SNAKE_CASE__ , patch=SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = get_version()
UpperCAmelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
UpperCAmelCase__ = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
UpperCAmelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(SCREAMING_SNAKE_CASE__ )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCAmelCase_ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = StableDiffusionInpaintPipeline
lowerCAmelCase_ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
lowerCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
lowerCAmelCase_ : Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
lowerCAmelCase_ : Union[str, Any] = frozenset([] )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , )
UpperCAmelCase__ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
torch.manual_seed(0 )
UpperCAmelCase__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
UpperCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
UpperCAmelCase__ = CLIPTextModel(_UpperCAmelCase )
UpperCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
UpperCAmelCase__ = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=0 ):
"""simple docstring"""
UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCAmelCase__ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ).resize((64, 64) )
UpperCAmelCase__ = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(_UpperCAmelCase ).startswith("""mps""" ):
UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase )
else:
UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
UpperCAmelCase__ = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase__ = self.get_dummy_components()
UpperCAmelCase__ = StableDiffusionInpaintPipeline(**_UpperCAmelCase )
UpperCAmelCase__ = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = self.get_dummy_inputs(_UpperCAmelCase )
UpperCAmelCase__ = sd_pipe(**_UpperCAmelCase ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase__ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCAmelCase__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
UpperCAmelCase__ = """stabilityai/stable-diffusion-2-inpainting"""
UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""np""" , )
UpperCAmelCase__ = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCAmelCase__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
UpperCAmelCase__ = """stabilityai/stable-diffusion-2-inpainting"""
UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
UpperCAmelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""np""" , )
UpperCAmelCase__ = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCAmelCase__ = """stabilityai/stable-diffusion-2-inpainting"""
UpperCAmelCase__ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder="""scheduler""" )
UpperCAmelCase__ = StableDiffusionInpaintPipeline.from_pretrained(
_UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
UpperCAmelCase__ = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""np""" , )
UpperCAmelCase__ = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[List, PIL.Image.Image, torch.Tensor] ):
'''simple docstring'''
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , SCREAMING_SNAKE_CASE__ , )
if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
return image
elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ):
UpperCAmelCase__ = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCAmelCase__ , UpperCAmelCase__ = image[0].size
UpperCAmelCase__ , UpperCAmelCase__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
UpperCAmelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
UpperCAmelCase__ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 )
UpperCAmelCase__ = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 2_55.0
UpperCAmelCase__ = image.transpose(0 , 3 , 1 , 2 )
UpperCAmelCase__ = 2.0 * image - 1.0
UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
elif isinstance(image[0] , torch.Tensor ):
UpperCAmelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 )
return image
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[List, PIL.Image.Image, torch.Tensor] ):
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ):
return mask
elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ):
UpperCAmelCase__ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
UpperCAmelCase__ , UpperCAmelCase__ = mask[0].size
UpperCAmelCase__ , UpperCAmelCase__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCAmelCase__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
UpperCAmelCase__ = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 )
UpperCAmelCase__ = mask.astype(np.floataa ) / 2_55.0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
elif isinstance(mask[0] , torch.Tensor ):
UpperCAmelCase__ = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 )
return mask
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : UNetaDModel
lowerCAmelCase_ : RePaintScheduler
def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : int , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , _UpperCAmelCase : int = 2_50 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = image
UpperCAmelCase__ = _preprocess_image(_UpperCAmelCase )
UpperCAmelCase__ = original_image.to(device=self.device , dtype=self.unet.dtype )
UpperCAmelCase__ = _preprocess_mask(_UpperCAmelCase )
UpperCAmelCase__ = mask_image.to(device=self.device , dtype=self.unet.dtype )
UpperCAmelCase__ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
UpperCAmelCase__ = original_image.shape
UpperCAmelCase__ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.device )
UpperCAmelCase__ = eta
UpperCAmelCase__ = self.scheduler.timesteps[0] + 1
UpperCAmelCase__ = generator[0] if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
UpperCAmelCase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute previous image: x_t -> x_t-1
UpperCAmelCase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
UpperCAmelCase__ = self.scheduler.undo_step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = t
UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase__ = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=os.environ.get('LOGLEVEL', 'INFO').upper(),
stream=sys.stdout,
)
UpperCAmelCase_ = logging.getLogger(__name__)
UpperCAmelCase_ = {'facebook/bart-base': BartForConditionalGeneration}
UpperCAmelCase_ = {'facebook/bart-base': BartTokenizer}
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=SCREAMING_SNAKE_CASE__ , )
parser.add_argument(
"""--config_name""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=SCREAMING_SNAKE_CASE__ , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""Where to store the final ONNX file.""" )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple="cpu" ):
'''simple docstring'''
UpperCAmelCase__ = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE__ )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase__ = 0
UpperCAmelCase__ = None
UpperCAmelCase__ = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
model.eval()
UpperCAmelCase__ = None
UpperCAmelCase__ = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE__ ) )
with torch.no_grad():
UpperCAmelCase__ = """My friends are cool but they eat too many carbs."""
UpperCAmelCase__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device )
UpperCAmelCase__ = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , early_stopping=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
SCREAMING_SNAKE_CASE__ , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , SCREAMING_SNAKE_CASE__ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=SCREAMING_SNAKE_CASE__ , )
logger.info("""Model exported to {}""".format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE__ ) )
logger.info("""Deduplicated and optimized model written to {}""".format(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = ort_sess.run(
SCREAMING_SNAKE_CASE__ , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(SCREAMING_SNAKE_CASE__ ),
"""max_length""": np.array(SCREAMING_SNAKE_CASE__ ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = parse_args()
UpperCAmelCase__ = 5
UpperCAmelCase__ = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase__ = torch.device(args.device )
UpperCAmelCase__ , UpperCAmelCase__ = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE__ )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(SCREAMING_SNAKE_CASE__ )
if args.max_length:
UpperCAmelCase__ = args.max_length
if args.num_beams:
UpperCAmelCase__ = args.num_beams
if args.output_file_path:
UpperCAmelCase__ = args.output_file_path
else:
UpperCAmelCase__ = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCAmelCase_ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt')
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int = 16000 ):
'''simple docstring'''
UpperCAmelCase__ = int(round(sample_rate * max_length ) )
if len(SCREAMING_SNAKE_CASE__ ) <= sample_length:
return wav
UpperCAmelCase__ = randint(0 , len(SCREAMING_SNAKE_CASE__ ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
lowerCAmelCase_ : Optional[str] = field(default=lowerCamelCase_ , metadata={"""help""": """Name of a dataset from the datasets package"""} )
lowerCAmelCase_ : Optional[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
lowerCAmelCase_ : Optional[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """A file containing the training audio paths and labels."""} )
lowerCAmelCase_ : Optional[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """A file containing the validation audio paths and labels."""} )
lowerCAmelCase_ : str = field(
default="""train""" , metadata={
"""help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'"""
} , )
lowerCAmelCase_ : str = field(
default="""validation""" , metadata={
"""help""": (
"""The name of the training data set split to use (via the datasets library). Defaults to 'validation'"""
)
} , )
lowerCAmelCase_ : str = field(
default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , )
lowerCAmelCase_ : str = field(
default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} )
lowerCAmelCase_ : Optional[int] = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
lowerCAmelCase_ : Optional[int] = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
lowerCAmelCase_ : float = field(
default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
lowerCAmelCase_ : str = field(
default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , )
lowerCAmelCase_ : Optional[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
lowerCAmelCase_ : Optional[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} )
lowerCAmelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
lowerCAmelCase_ : Optional[str] = field(
default=lowerCamelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} )
lowerCAmelCase_ : bool = field(
default=lowerCamelCase_ , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} )
lowerCAmelCase_ : bool = field(
default=lowerCamelCase_ , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} )
lowerCAmelCase_ : bool = field(
default=lowerCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
lowerCAmelCase_ : Optional[bool] = field(
default=lowerCamelCase_ , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} )
lowerCAmelCase_ : bool = field(
default=lowerCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""will be removed in a future version. Use `--freeze_feature_encoder`"""
"""instead. Setting `freeze_feature_encoder==True`.""" , _UpperCAmelCase , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""should not be used in combination with `--freeze_feature_encoder`."""
"""Only make use of `--freeze_feature_encoder`.""" )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_audio_classification""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase__ = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} '''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
UpperCAmelCase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to train from scratch.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset and prepare it for the audio classification task.
UpperCAmelCase__ = DatasetDict()
UpperCAmelCase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase__ = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"""Make sure to set `--audio_column_name` to the correct audio column - one of """
F'''{', '.join(raw_datasets['train'].column_names )}.''' )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. '''
"""Make sure to set `--label_column_name` to the correct text column - one of """
F'''{', '.join(raw_datasets['train'].column_names )}.''' )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
UpperCAmelCase__ = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
UpperCAmelCase__ = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
UpperCAmelCase__ = feature_extractor.model_input_names[0]
def train_transforms(SCREAMING_SNAKE_CASE__ : str ):
UpperCAmelCase__ = []
for audio in batch[data_args.audio_column_name]:
UpperCAmelCase__ = random_subsample(
audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase__ = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )}
UpperCAmelCase__ = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
UpperCAmelCase__ = [audio["""array"""] for audio in batch[data_args.audio_column_name]]
UpperCAmelCase__ = feature_extractor(SCREAMING_SNAKE_CASE__ , sampling_rate=feature_extractor.sampling_rate )
UpperCAmelCase__ = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE__ )}
UpperCAmelCase__ = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
UpperCAmelCase__ = raw_datasets["""train"""].features[data_args.label_column_name].names
UpperCAmelCase__ , UpperCAmelCase__ = {}, {}
for i, label in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = str(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = label
# Load the accuracy metric from the datasets package
UpperCAmelCase__ = evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE__ : Any ):
UpperCAmelCase__ = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=SCREAMING_SNAKE_CASE__ , references=eval_pred.label_ids )
UpperCAmelCase__ = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
UpperCAmelCase__ = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
UpperCAmelCase__ = (
raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
UpperCAmelCase__ = (
raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE__ , output_all_columns=SCREAMING_SNAKE_CASE__ )
# Initialize our trainer
UpperCAmelCase__ = Trainer(
model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , )
# Training
if training_args.do_train:
UpperCAmelCase__ = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase__ = last_checkpoint
UpperCAmelCase__ = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCAmelCase__ = trainer.evaluate()
trainer.log_metrics("""eval""" , SCREAMING_SNAKE_CASE__ )
trainer.save_metrics("""eval""" , SCREAMING_SNAKE_CASE__ )
# Write model card and (optionally) push to hub
UpperCAmelCase__ = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """audio-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""audio-classification"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
UpperCAmelCase_ = 1.0_5457_1817E-34 # unit of ℏ : J * s
UpperCAmelCase_ = 3E8 # unit of c : m * s^-1
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
UpperCAmelCase__ = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
UpperCAmelCase__ = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
UpperCAmelCase__ = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
from typing import List
from .keymap import KEYMAP, get_character
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
def decorator(SCREAMING_SNAKE_CASE__ : str ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] )
handle += [key]
setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ )
return func
return decorator
def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
def decorator(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , [] )
handle += keys
setattr(SCREAMING_SNAKE_CASE__ , """handle_key""" , SCREAMING_SNAKE_CASE__ )
return func
return decorator
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __new__( cls : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = super().__new__(cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not hasattr(_UpperCAmelCase , """key_handler""" ):
setattr(_UpperCAmelCase , """key_handler""" , {} )
setattr(_UpperCAmelCase , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
UpperCAmelCase__ = getattr(_UpperCAmelCase , """handle_key""" , [] )
for key in handled_keys:
UpperCAmelCase__ = value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE__ ( cls : Any ):
"""simple docstring"""
UpperCAmelCase__ = get_character()
if char != KEYMAP["undefined"]:
UpperCAmelCase__ = ord(_UpperCAmelCase )
UpperCAmelCase__ = cls.key_handler.get(_UpperCAmelCase )
if handler:
UpperCAmelCase__ = char
return handler(cls )
else:
return None
def _UpperCamelCase ( cls : Dict ):
'''simple docstring'''
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
import numpy as np
UpperCAmelCase_ = [
['a', 'b', 'c', 'd', 'e'],
['f', 'g', 'h', 'i', 'k'],
['l', 'm', 'n', 'o', 'p'],
['q', 'r', 's', 't', 'u'],
['v', 'w', 'x', 'y', 'z'],
]
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = np.array(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = np.where(letter == self.SQUARE )
UpperCAmelCase__ = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.SQUARE[indexa - 1, indexa - 1]
return letter
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = message.lower()
UpperCAmelCase__ = message.replace(""" """ , """""" )
UpperCAmelCase__ = message.replace("""j""" , """i""" )
UpperCAmelCase__ = np.empty((2, len(_UpperCAmelCase )) )
for letter_index in range(len(_UpperCAmelCase ) ):
UpperCAmelCase__ = self.letter_to_numbers(message[letter_index] )
UpperCAmelCase__ = numbers[0]
UpperCAmelCase__ = numbers[1]
UpperCAmelCase__ = first_step.reshape(2 * len(_UpperCAmelCase ) )
UpperCAmelCase__ = """"""
for numbers_index in range(len(_UpperCAmelCase ) ):
UpperCAmelCase__ = int(second_step[numbers_index * 2] )
UpperCAmelCase__ = int(second_step[(numbers_index * 2) + 1] )
UpperCAmelCase__ = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = encoded_message + letter
return encoded_message
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = message.lower()
message.replace(""" """ , """""" )
UpperCAmelCase__ = np.empty(2 * len(_UpperCAmelCase ) )
for letter_index in range(len(_UpperCAmelCase ) ):
UpperCAmelCase__ = self.letter_to_numbers(message[letter_index] )
UpperCAmelCase__ = numbers[0]
UpperCAmelCase__ = numbers[1]
UpperCAmelCase__ = first_step.reshape((2, len(_UpperCAmelCase )) )
UpperCAmelCase__ = """"""
for numbers_index in range(len(_UpperCAmelCase ) ):
UpperCAmelCase__ = int(second_step[0, numbers_index] )
UpperCAmelCase__ = int(second_step[1, numbers_index] )
UpperCAmelCase__ = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = decoded_message + letter
return decoded_message
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json',
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """instructblip_vision_model"""
def __init__( self : List[str] , _UpperCAmelCase : Dict=14_08 , _UpperCAmelCase : int=61_44 , _UpperCAmelCase : List[str]=39 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : Dict=14 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=1E-6 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Union[str, Any]=1E-10 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Tuple , ):
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = qkv_bias
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : Tuple , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : int ):
"""simple docstring"""
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
UpperCAmelCase__ = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = """instructblip_qformer"""
def __init__( self : List[str] , _UpperCAmelCase : Any=3_05_22 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Tuple="absolute" , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : int=14_08 , **_UpperCAmelCase : Union[str, Any] , ):
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = cross_attention_frequency
UpperCAmelCase__ = encoder_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : Dict , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
cls._set_token_in_kwargs(_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
UpperCAmelCase__ = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Tuple = """instructblip"""
lowerCAmelCase_ : str = True
def __init__( self : int , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple=32 , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
if vision_config is None:
UpperCAmelCase__ = {}
logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" )
if qformer_config is None:
UpperCAmelCase__ = {}
logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" )
if text_config is None:
UpperCAmelCase__ = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
UpperCAmelCase__ = InstructBlipVisionConfig(**_UpperCAmelCase )
UpperCAmelCase__ = InstructBlipQFormerConfig(**_UpperCAmelCase )
UpperCAmelCase__ = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
UpperCAmelCase__ = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase )
UpperCAmelCase__ = self.text_config.tie_word_embeddings
UpperCAmelCase__ = self.text_config.is_encoder_decoder
UpperCAmelCase__ = num_query_tokens
UpperCAmelCase__ = self.vision_config.hidden_size
UpperCAmelCase__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
UpperCAmelCase__ = 1.0
UpperCAmelCase__ = 0.02
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : int , _UpperCAmelCase : InstructBlipVisionConfig , _UpperCAmelCase : InstructBlipQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ = self.vision_config.to_dict()
UpperCAmelCase__ = self.qformer_config.to_dict()
UpperCAmelCase__ = self.text_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegaForCausalLM',
'MegaForMaskedLM',
'MegaForMultipleChoice',
'MegaForQuestionAnswering',
'MegaForSequenceClassification',
'MegaForTokenClassification',
'MegaModel',
'MegaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = list(range(len(SCREAMING_SNAKE_CASE__ ) ) )
UpperCAmelCase__ = [v / w for v, w in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )]
index.sort(key=lambda SCREAMING_SNAKE_CASE__ : ratio[i] , reverse=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = 0
UpperCAmelCase__ = [0] * len(SCREAMING_SNAKE_CASE__ )
for i in index:
if weight[i] <= capacity:
UpperCAmelCase__ = 1
max_value += value[i]
capacity -= weight[i]
else:
UpperCAmelCase__ = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : int=16 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : str=4 , _UpperCAmelCase : Tuple=[0, 1, 2, 3] , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=[1, 3_84, 24, 24] , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = backbone_out_indices
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = backbone_featmap_shape
UpperCAmelCase__ = scope
UpperCAmelCase__ = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase__ = (image_size // patch_size) ** 2
UpperCAmelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = DPTModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = DPTForDepthEstimation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = DPTForSemanticSegmentation(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowerCAmelCase_ : Dict = (
{
"""depth-estimation""": DPTForDepthEstimation,
"""feature-extraction""": DPTModel,
"""image-segmentation""": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ : str = False
lowerCAmelCase_ : str = False
lowerCAmelCase_ : Optional[Any] = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = DPTModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = True
if model_class in get_values(_UpperCAmelCase ):
continue
UpperCAmelCase__ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
UpperCAmelCase__ = model(**_UpperCAmelCase ).loss
loss.backward()
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = False
UpperCAmelCase__ = True
if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing:
continue
UpperCAmelCase__ = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.gradient_checkpointing_enable()
model.train()
UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
UpperCAmelCase__ = model(**_UpperCAmelCase ).loss
loss.backward()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=_UpperCAmelCase )
# Skip the check for the backbone
UpperCAmelCase__ = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
UpperCAmelCase__ = [f'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
UpperCAmelCase__ = DPTModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = """add"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = DPTForDepthEstimation(_UpperCAmelCase )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
UpperCAmelCase__ = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_UpperCAmelCase )
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**_UpperCAmelCase )
UpperCAmelCase__ = outputs.predicted_depth
# verify the predicted depth
UpperCAmelCase__ = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , _UpperCAmelCase )
UpperCAmelCase__ = torch.tensor(
[[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , _UpperCAmelCase , atol=1E-4 ) )
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ )
if decimal in (0, 1): # Exit cases for the recursion
return str(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ = divmod(SCREAMING_SNAKE_CASE__ , 2 )
return binary_recursive(SCREAMING_SNAKE_CASE__ ) + str(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = str(SCREAMING_SNAKE_CASE__ ).strip()
if not number:
raise ValueError("""No input value was provided""" )
UpperCAmelCase__ = """-""" if number.startswith("""-""" ) else """"""
UpperCAmelCase__ = number.lstrip("""-""" )
if not number.isnumeric():
raise ValueError("""Input value is not an integer""" )
return F'''{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE__ ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
UpperCAmelCase_ = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class lowerCAmelCase_ :
'''simple docstring'''
lowerCAmelCase_ : int = PegasusConfig
lowerCAmelCase_ : Dict = {}
lowerCAmelCase_ : Optional[int] = """gelu"""
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=13 , _UpperCAmelCase : int=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : str=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : List[str]=20 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : int=0 , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = eos_token_id
UpperCAmelCase__ = pad_token_id
UpperCAmelCase__ = bos_token_id
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
UpperCAmelCase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
UpperCAmelCase__ = np.concatenate([input_ids, eos_tensor] , axis=1 )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCAmelCase__ = prepare_pegasus_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = 20
UpperCAmelCase__ = model_class_name(_UpperCAmelCase )
UpperCAmelCase__ = model.encode(inputs_dict["""input_ids"""] )
UpperCAmelCase__ , UpperCAmelCase__ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
UpperCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
UpperCAmelCase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
UpperCAmelCase__ = model.decode(
decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
UpperCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
UpperCAmelCase__ = model.decode(
decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , )
UpperCAmelCase__ = model.decode(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = 20
UpperCAmelCase__ = model_class_name(_UpperCAmelCase )
UpperCAmelCase__ = model.encode(inputs_dict["""input_ids"""] )
UpperCAmelCase__ , UpperCAmelCase__ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
UpperCAmelCase__ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
UpperCAmelCase__ = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
UpperCAmelCase__ = model.decode(
decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
UpperCAmelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
UpperCAmelCase__ = model.decode(
decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
UpperCAmelCase__ = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase )
UpperCAmelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ):
'''simple docstring'''
if attention_mask is None:
UpperCAmelCase__ = np.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
UpperCAmelCase__ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Any = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ : Dict = False
lowerCAmelCase_ : Optional[Any] = False
lowerCAmelCase_ : Dict = False
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = FlaxPegasusModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = model_class(_UpperCAmelCase )
@jax.jit
def encode_jitted(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : str ):
return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
UpperCAmelCase__ = encode_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCAmelCase__ = encode_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
UpperCAmelCase__ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(_UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ):
return model.decode(
decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
UpperCAmelCase__ = decode_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCAmelCase__ = decode_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
for model_class_name in self.all_model_classes:
UpperCAmelCase__ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=_UpperCAmelCase )
UpperCAmelCase__ = np.ones((1, 1) )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
UpperCAmelCase__ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
UpperCAmelCase__ = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
UpperCAmelCase__ = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""np""" , truncation=_UpperCAmelCase , max_length=5_12 , padding=_UpperCAmelCase )
UpperCAmelCase__ = model.generate(**_UpperCAmelCase , num_beams=2 ).sequences
UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
assert tgt_text == decoded
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
import PIL.Image
UpperCAmelCase__ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=_UpperCAmelCase ) as mock_cast_to_python_objects:
UpperCAmelCase__ = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) )
UpperCAmelCase__ , UpperCAmelCase__ = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , _UpperCAmelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferReader(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , pa.Buffer ) else pa.memory_map(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = pa.ipc.open_stream(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None
with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
UpperCAmelCase__ = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ = pa.ipc.open_stream(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = f.read_all()
UpperCAmelCase__ = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(
stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt="""split_name""" , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(
stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt="""split_name""" , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(
stream=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ , hash_salt="""split_name""" , check_duplicates=SCREAMING_SNAKE_CASE__ , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None
with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None
with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
UpperCAmelCase__ = pa.schema(SCREAMING_SNAKE_CASE__ ) if fields else None
with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ , writer_batch_size=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCAmelCase__ = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """test.arrow""" )
with ArrowWriter(path=SCREAMING_SNAKE_CASE__ , schema=pa.schema(SCREAMING_SNAKE_CASE__ ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(SCREAMING_SNAKE_CASE__ , metadata=writer._schema.metadata )
_check_output(SCREAMING_SNAKE_CASE__ , 1 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
if pa.types.is_list(SCREAMING_SNAKE_CASE__ ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
if isinstance(lst[0] , SCREAMING_SNAKE_CASE__ ):
change_first_primitive_element_in_list(lst[0] , SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.array(TypedSequence(SCREAMING_SNAKE_CASE__ , optimized_int_type=SCREAMING_SNAKE_CASE__ ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE__ , col=SCREAMING_SNAKE_CASE__ ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
UpperCAmelCase__ = copy.deepcopy(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = pa.array(OptimizedTypedSequence(SCREAMING_SNAKE_CASE__ , col=SCREAMING_SNAKE_CASE__ ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=SCREAMING_SNAKE_CASE__ ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = """mock://dataset-train.arrow"""
with ArrowWriter(path=SCREAMING_SNAKE_CASE__ , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(SCREAMING_SNAKE_CASE__ ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = pa.BufferOutputStream()
with ParquetWriter(stream=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
UpperCAmelCase__ , UpperCAmelCase__ = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
UpperCAmelCase__ = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ = pq.read_table(SCREAMING_SNAKE_CASE__ )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
import PIL.Image
UpperCAmelCase__ = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(SCREAMING_SNAKE_CASE__ , format="""png""" )
UpperCAmelCase__ = pa.BufferOutputStream()
with ParquetWriter(
stream=SCREAMING_SNAKE_CASE__ , features=Features({"""image""": Image()} ) , embed_local_files=SCREAMING_SNAKE_CASE__ ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
UpperCAmelCase__ = pa.BufferReader(output.getvalue() )
UpperCAmelCase__ = pq.read_table(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = pa.schema([pa.field("""col_1""" , pa.string() , nullable=SCREAMING_SNAKE_CASE__ )] )
UpperCAmelCase__ = pa.BufferOutputStream()
with ArrowWriter(stream=SCREAMING_SNAKE_CASE__ ) as writer:
writer._build_writer(inferred_schema=SCREAMING_SNAKE_CASE__ )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = [1]
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 0, 0, 0
UpperCAmelCase__ = ugly_nums[ia] * 2
UpperCAmelCase__ = ugly_nums[ia] * 3
UpperCAmelCase__ = ugly_nums[ia] * 5
for _ in range(1 , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
ugly_nums.append(SCREAMING_SNAKE_CASE__ )
if next_num == next_a:
ia += 1
UpperCAmelCase__ = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
UpperCAmelCase__ = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
UpperCAmelCase__ = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f"{ugly_numbers(2_0_0) = }")
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Dict = None
lowerCAmelCase_ : List[str] = None
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_UpperCAmelCase , """feature_size""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """sampling_rate""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """padding_value""" ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase )
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" )
UpperCAmelCase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase )
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" )
UpperCAmelCase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase )
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" )
UpperCAmelCase__ = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCAmelCase__ = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
def _inputs_have_equal_length(_UpperCAmelCase : int ):
UpperCAmelCase__ = len(input[0] )
for input_slice in input[1:]:
if len(_UpperCAmelCase ) != length:
return False
return True
def _inputs_are_equal(_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
return False
for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ):
if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ):
return False
return True
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase )
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ = self.feat_extract_tester.seq_length_diff
UpperCAmelCase__ = self.feat_extract_tester.max_seq_length + pad_diff
UpperCAmelCase__ = self.feat_extract_tester.min_seq_length
UpperCAmelCase__ = self.feat_extract_tester.batch_size
UpperCAmelCase__ = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )
UpperCAmelCase__ = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(_UpperCAmelCase ):
feat_extract.pad(_UpperCAmelCase , padding="""max_length""" )[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , return_tensors="""np""" )
UpperCAmelCase__ = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10 )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , pad_to_multiple_of=10 )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_UpperCAmelCase )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors="""np""" , )
UpperCAmelCase__ = input_a[input_name]
self.assertTrue(all(len(_UpperCAmelCase ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) )
UpperCAmelCase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(_UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
UpperCAmelCase__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1E-3 )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=False ):
"""simple docstring"""
def _inputs_have_equal_length(_UpperCAmelCase : int ):
UpperCAmelCase__ = len(input[0] )
for input_slice in input[1:]:
if len(_UpperCAmelCase ) != length:
return False
return True
def _inputs_are_equal(_UpperCAmelCase : str , _UpperCAmelCase : Tuple ):
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
return False
for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ):
if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ):
return False
return True
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase )
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_UpperCAmelCase )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) )
UpperCAmelCase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) )
# truncate to smallest with np
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_UpperCAmelCase , )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" )
UpperCAmelCase__ = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) )
# truncate to middle
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase , return_tensors="""np""" , )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" )
UpperCAmelCase__ = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(_UpperCAmelCase ):
feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(_UpperCAmelCase ):
feat_extract.pad(_UpperCAmelCase , padding="""longest""" , truncation=_UpperCAmelCase )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(_UpperCAmelCase ):
feat_extract.pad(_UpperCAmelCase , padding="""longest""" , truncation=_UpperCAmelCase )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(_UpperCAmelCase ):
feat_extract.pad(_UpperCAmelCase , padding="""max_length""" , truncation=_UpperCAmelCase )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
UpperCAmelCase__ = 12
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , )
UpperCAmelCase__ = input_a[input_name]
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , )
UpperCAmelCase__ = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
UpperCAmelCase__ = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
UpperCAmelCase__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) )
self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
self._check_padding(numpify=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
self._check_padding(numpify=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
self._check_truncation(numpify=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
self._check_truncation(numpify=_UpperCAmelCase )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.feature_extraction_class(**self.feat_extract_dict )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )[input_name]
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""tf""" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.feat_extract_dict
UpperCAmelCase__ = True
UpperCAmelCase__ = self.feature_extraction_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase__ = [len(_UpperCAmelCase ) for x in speech_inputs]
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ = feat_extract.pad(_UpperCAmelCase , padding="""longest""" , return_tensors="""np""" )
self.assertIn("""attention_mask""" , _UpperCAmelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.feat_extract_dict
UpperCAmelCase__ = True
UpperCAmelCase__ = self.feature_extraction_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.feat_extract_tester.prepare_inputs_for_common()
UpperCAmelCase__ = [len(_UpperCAmelCase ) for x in speech_inputs]
UpperCAmelCase__ = feat_extract.model_input_names[0]
UpperCAmelCase__ = BatchFeature({input_name: speech_inputs} )
UpperCAmelCase__ = min(_UpperCAmelCase )
UpperCAmelCase__ = feat_extract.pad(
_UpperCAmelCase , padding="""max_length""" , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors="""np""" )
self.assertIn("""attention_mask""" , _UpperCAmelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
UpperCAmelCase_ = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(4_2)
UpperCAmelCase_ = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
UpperCAmelCase_ = 'zero2'
UpperCAmelCase_ = 'zero3'
UpperCAmelCase_ = [ZEROa, ZEROa]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = parameterized.to_safe_name("""_""".join(str(SCREAMING_SNAKE_CASE__ ) for x in param.args ) )
return F'''{func.__name__}_{param_based_name}'''
# Cartesian-product of zero stages with models to test
UpperCAmelCase_ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : str ):
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
@require_torch_multi_gpu
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ):
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
@require_torch_multi_gpu
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ):
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = models[model]
UpperCAmelCase__ = self.run_trainer(
stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
self.do_checks(_UpperCAmelCase )
return output_dir
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = self.get_auto_remove_tmp_dir("""./xxx""" , after=_UpperCAmelCase )
UpperCAmelCase__ = f'''
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(_UpperCAmelCase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
'''.split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
UpperCAmelCase__ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split()
UpperCAmelCase__ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py''']
UpperCAmelCase__ = self.get_launcher(_UpperCAmelCase )
UpperCAmelCase__ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(_UpperCAmelCase , env=self.get_env() )
return output_dir
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[str]=False ):
"""simple docstring"""
UpperCAmelCase__ = min(2 , get_gpu_count() ) if distributed else 1
return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
import math
import sys
import cva
import numpy as np
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
UpperCAmelCase__ = math.sqrt(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
UpperCAmelCase__ = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE__ ):
for j in range(0 , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int , ):
'''simple docstring'''
UpperCAmelCase__ = np.zeros(img.shape )
UpperCAmelCase__ = get_gauss_kernel(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
UpperCAmelCase__ = get_slice(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = img_s - img_s[kernel_size // 2, kernel_size // 2]
UpperCAmelCase__ = vec_gaussian(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = np.multiply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = np.multiply(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = np.sum(SCREAMING_SNAKE_CASE__ ) / np.sum(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = val
return imga
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list ):
'''simple docstring'''
UpperCAmelCase__ = args[1] if args[1:] else """../image_data/lena.jpg"""
UpperCAmelCase__ = float(args[2] ) if args[2:] else 1.0
UpperCAmelCase__ = float(args[3] ) if args[3:] else 1.0
if args[4:]:
UpperCAmelCase__ = int(args[4] )
UpperCAmelCase__ = kernel_size + abs(kernel_size % 2 - 1 )
else:
UpperCAmelCase__ = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parse_args(sys.argv)
UpperCAmelCase_ = cva.imread(filename, 0)
cva.imshow('input image', img)
UpperCAmelCase_ = img / 2_5_5
UpperCAmelCase_ = out.astype('float32')
UpperCAmelCase_ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
UpperCAmelCase_ = out * 2_5_5
UpperCAmelCase_ = np.uinta(out)
cva.imshow('output image', out)
cva.waitKey(0)
cva.destroyAllWindows()
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 600851475143 ):
'''simple docstring'''
try:
UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
UpperCAmelCase__ = i
while n % i == 0:
UpperCAmelCase__ = n // i
i += 1
return int(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(f"{solution() = }")
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = '▁'
UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCAmelCase_ = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
}
}
UpperCAmelCase_ = {
'facebook/mbart-large-en-ro': 1_0_2_4,
'facebook/mbart-large-cc25': 1_0_2_4,
}
# fmt: off
UpperCAmelCase_ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = VOCAB_FILES_NAMES
lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""]
lowerCAmelCase_ : List[int] = []
lowerCAmelCase_ : List[int] = []
def __init__( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : int="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : int=None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
UpperCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCAmelCase__ = 1
UpperCAmelCase__ = len(self.sp_model )
UpperCAmelCase__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase )
}
UpperCAmelCase__ = {v: k for k, v in self.lang_code_to_id.items()}
UpperCAmelCase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
UpperCAmelCase__ = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
UpperCAmelCase__ = src_lang if src_lang is not None else """en_XX"""
UpperCAmelCase__ = self.lang_code_to_id[self._src_lang]
UpperCAmelCase__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Tuple , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = [1] * len(self.prefix_tokens )
UpperCAmelCase__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : str ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
UpperCAmelCase__ = src_lang
UpperCAmelCase__ = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = self.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase__ = self.sp_model.PieceToId(_UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = src_lang
UpperCAmelCase__ = tgt_lang
return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.lang_code_to_id[src_lang]
UpperCAmelCase__ = []
UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.lang_code_to_id[lang]
UpperCAmelCase__ = []
UpperCAmelCase__ = [self.eos_token_id, self.cur_lang_code]
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = """"""
for i in table:
res += inp[i - 1]
return res
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return data[1:] + data[0]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = """"""
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = int("""0b""" + data[0] + data[-1] , 2 )
UpperCAmelCase__ = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = message[:4]
UpperCAmelCase__ = message[4:]
UpperCAmelCase__ = apply_table(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = xor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = apply_sbox(SCREAMING_SNAKE_CASE__ , temp[:4] ) # noqa: E741
UpperCAmelCase__ = apply_sbox(SCREAMING_SNAKE_CASE__ , temp[4:] )
UpperCAmelCase__ = """0""" * (2 - len(SCREAMING_SNAKE_CASE__ )) + l # noqa: E741
UpperCAmelCase__ = """0""" * (2 - len(SCREAMING_SNAKE_CASE__ )) + r
UpperCAmelCase__ = apply_table(l + r , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = xor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return temp + right
if __name__ == "__main__":
UpperCAmelCase_ = input('Enter 10 bit key: ')
UpperCAmelCase_ = input('Enter 8 bit message: ')
UpperCAmelCase_ = [6, 3, 7, 4, 8, 5, 1_0, 9]
UpperCAmelCase_ = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6]
UpperCAmelCase_ = [2, 4, 3, 1]
UpperCAmelCase_ = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCAmelCase_ = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCAmelCase_ = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCAmelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCAmelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCAmelCase_ = apply_table(key, paa_table)
UpperCAmelCase_ = temp[:5]
UpperCAmelCase_ = temp[5:]
UpperCAmelCase_ = left_shift(left)
UpperCAmelCase_ = left_shift(right)
UpperCAmelCase_ = apply_table(left + right, pa_table)
UpperCAmelCase_ = left_shift(left)
UpperCAmelCase_ = left_shift(right)
UpperCAmelCase_ = left_shift(left)
UpperCAmelCase_ = left_shift(right)
UpperCAmelCase_ = apply_table(left + right, pa_table)
# encryption
UpperCAmelCase_ = apply_table(message, IP)
UpperCAmelCase_ = function(expansion, sa, sa, keya, temp)
UpperCAmelCase_ = temp[4:] + temp[:4]
UpperCAmelCase_ = function(expansion, sa, sa, keya, temp)
UpperCAmelCase_ = apply_table(temp, IP_inv)
print('Cipher text is:', CT)
# decryption
UpperCAmelCase_ = apply_table(CT, IP)
UpperCAmelCase_ = function(expansion, sa, sa, keya, temp)
UpperCAmelCase_ = temp[4:] + temp[:4]
UpperCAmelCase_ = function(expansion, sa, sa, keya, temp)
UpperCAmelCase_ = apply_table(temp, IP_inv)
print('Plain text after decypting is:', PT)
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
UpperCAmelCase_ = '0.12' # assumed parallelism: 8
if is_torch_available():
import torch
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
if rng is None:
UpperCAmelCase__ = random.Random()
UpperCAmelCase__ = 1
for dim in shape:
total_dims *= dim
UpperCAmelCase__ = []
for _ in range(SCREAMING_SNAKE_CASE__ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
UpperCAmelCase__ = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE__ )
return output
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None ):
'''simple docstring'''
UpperCAmelCase__ = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__ )
# make sure that at least one token is attended to for each batch
UpperCAmelCase__ = 1
return attn_mask
@require_flax
class lowerCAmelCase_ :
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = None
lowerCAmelCase_ : str = ()
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
UpperCAmelCase__ = 2
UpperCAmelCase__ = inputs["""input_ids"""].shape[-1] // 2
UpperCAmelCase__ = inputs["""input_ids"""][:max_batch_size, :sequence_length]
UpperCAmelCase__ = jnp.ones_like(_UpperCAmelCase )
UpperCAmelCase__ = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
UpperCAmelCase__ = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
UpperCAmelCase__ = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 0
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model_class.__name__[4:] # Skip the "Flax" at the beginning
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = pt_model_class(_UpperCAmelCase ).eval()
UpperCAmelCase__ = load_flax_weights_in_pytorch_model(_UpperCAmelCase , flax_model.params )
UpperCAmelCase__ = flax_model.generate(_UpperCAmelCase ).sequences
UpperCAmelCase__ = pt_model.generate(torch.tensor(_UpperCAmelCase , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
UpperCAmelCase__ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = True
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 2
UpperCAmelCase__ = 2
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = True
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 0.8
UpperCAmelCase__ = 10
UpperCAmelCase__ = 0.3
UpperCAmelCase__ = 1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
UpperCAmelCase__ = max_length
UpperCAmelCase__ = 2
UpperCAmelCase__ = 1
UpperCAmelCase__ = 8
UpperCAmelCase__ = 9
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCAmelCase__ = False
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCAmelCase__ = True
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self._get_input_ids_and_config()
# pad attention mask on the left
UpperCAmelCase__ = attention_mask.at[(0, 0)].set(0 )
UpperCAmelCase__ = 2
UpperCAmelCase__ = max_length
for model_class in self.all_generative_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , _UpperCAmelCase )
UpperCAmelCase__ = jit(model.generate )
UpperCAmelCase__ = jit_generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" )
UpperCAmelCase__ = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
UpperCAmelCase__ = """Hello world"""
UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""np""" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(_UpperCAmelCase , """do_samples""" ):
model.generate(_UpperCAmelCase , do_samples=_UpperCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(_UpperCAmelCase , """foo""" ):
UpperCAmelCase__ = {"""foo""": """bar"""}
model.generate(_UpperCAmelCase , **_UpperCAmelCase )
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Dict = """detr"""
lowerCAmelCase_ : Tuple = ["""past_key_values"""]
lowerCAmelCase_ : Optional[Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=1_00 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : int=20_48 , _UpperCAmelCase : List[str]=8 , _UpperCAmelCase : int=6 , _UpperCAmelCase : Union[str, Any]=20_48 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]="relu" , _UpperCAmelCase : int=2_56 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[str]="sine" , _UpperCAmelCase : List[str]="resnet50" , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : int=1 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=0.1 , **_UpperCAmelCase : Any , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
UpperCAmelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ = backbone_config.get("""model_type""" )
UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase__ = config_class.from_dict(_UpperCAmelCase )
# set timm attributes to None
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None, None, None
UpperCAmelCase__ = use_timm_backbone
UpperCAmelCase__ = backbone_config
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = num_queries
UpperCAmelCase__ = d_model
UpperCAmelCase__ = encoder_ffn_dim
UpperCAmelCase__ = encoder_layers
UpperCAmelCase__ = encoder_attention_heads
UpperCAmelCase__ = decoder_ffn_dim
UpperCAmelCase__ = decoder_layers
UpperCAmelCase__ = decoder_attention_heads
UpperCAmelCase__ = dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = activation_function
UpperCAmelCase__ = init_std
UpperCAmelCase__ = init_xavier_std
UpperCAmelCase__ = encoder_layerdrop
UpperCAmelCase__ = decoder_layerdrop
UpperCAmelCase__ = encoder_layers
UpperCAmelCase__ = auxiliary_loss
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = backbone
UpperCAmelCase__ = use_pretrained_backbone
UpperCAmelCase__ = dilation
# Hungarian matcher
UpperCAmelCase__ = class_cost
UpperCAmelCase__ = bbox_cost
UpperCAmelCase__ = giou_cost
# Loss coefficients
UpperCAmelCase__ = mask_loss_coefficient
UpperCAmelCase__ = dice_loss_coefficient
UpperCAmelCase__ = bbox_loss_coefficient
UpperCAmelCase__ = giou_loss_coefficient
UpperCAmelCase__ = eos_coefficient
super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase )
@property
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
return self.d_model
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : Optional[Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
UpperCAmelCase__ = self.backbone_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Tuple = version.parse("""1.11""" )
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return 1E-5
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return 12
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[int] ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ):
if numbers[j] < numbers[i]:
UpperCAmelCase__ , UpperCAmelCase__ = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
UpperCAmelCase_ = input('Enter numbers separated by a comma:\n').strip()
UpperCAmelCase_ = [int(item) for item in user_input.split(',')]
print(exchange_sort(unsorted))
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = name
UpperCAmelCase__ = val
def __str__( self : Union[str, Any] ):
"""simple docstring"""
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self : Optional[int] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
return self.val < other.val
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = self.build_heap(_UpperCAmelCase )
def __getitem__( self : int , _UpperCAmelCase : List[str] ):
"""simple docstring"""
return self.get_value(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
return (idx - 1) // 2
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
"""simple docstring"""
return idx * 2 + 1
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Tuple ):
"""simple docstring"""
return idx * 2 + 2
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.heap_dict[key]
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = len(_UpperCAmelCase ) - 1
UpperCAmelCase__ = self.get_parent_idx(_UpperCAmelCase )
for idx, i in enumerate(_UpperCAmelCase ):
UpperCAmelCase__ = idx
UpperCAmelCase__ = i.val
for i in range(_UpperCAmelCase , -1 , -1 ):
self.sift_down(_UpperCAmelCase , _UpperCAmelCase )
return array
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ):
"""simple docstring"""
while True:
UpperCAmelCase__ = self.get_left_child_idx(_UpperCAmelCase ) # noqa: E741
UpperCAmelCase__ = self.get_right_child_idx(_UpperCAmelCase )
UpperCAmelCase__ = idx
if l < len(_UpperCAmelCase ) and array[l] < array[idx]:
UpperCAmelCase__ = l
if r < len(_UpperCAmelCase ) and array[r] < array[smallest]:
UpperCAmelCase__ = r
if smallest != idx:
UpperCAmelCase__ , UpperCAmelCase__ = array[smallest], array[idx]
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
UpperCAmelCase__ = smallest
else:
break
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_parent_idx(_UpperCAmelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
UpperCAmelCase__ , UpperCAmelCase__ = self.heap[idx], self.heap[p]
UpperCAmelCase__ , UpperCAmelCase__ = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
UpperCAmelCase__ = p
UpperCAmelCase__ = self.get_parent_idx(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
return self.heap[0]
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.heap[-1], self.heap[0]
UpperCAmelCase__ , UpperCAmelCase__ = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
UpperCAmelCase__ = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
self.heap.append(_UpperCAmelCase )
UpperCAmelCase__ = len(self.heap ) - 1
UpperCAmelCase__ = node.val
self.sift_up(len(self.heap ) - 1 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
return len(self.heap ) == 0
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
UpperCAmelCase__ = new_value
UpperCAmelCase__ = new_value
self.sift_up(self.idx_of_element[node] )
UpperCAmelCase_ = Node('R', -1)
UpperCAmelCase_ = Node('B', 6)
UpperCAmelCase_ = Node('A', 3)
UpperCAmelCase_ = Node('X', 1)
UpperCAmelCase_ = Node('E', 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
UpperCAmelCase_ = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print('Min Heap - before decrease key')
for i in my_min_heap.heap:
print(i)
print('Min Heap - After decrease key of node [B -> -17]')
my_min_heap.decrease_key(b, -1_7)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = original_name.split(""".""" )[0]
UpperCAmelCase__ = key.split(""".""" )
UpperCAmelCase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] )
UpperCAmelCase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] )
UpperCAmelCase__ = orig_block_num - offset
UpperCAmelCase__ = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = OrderedDict()
UpperCAmelCase__ , UpperCAmelCase__ = 0, 0
for key, value in state_dict.items():
if key.startswith("""network""" ):
UpperCAmelCase__ = key.replace("""network""" , """poolformer.encoder""" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("""bias""" ) and "patch_embed" not in key:
patch_emb_offset += 1
UpperCAmelCase__ = key[: key.find("""proj""" )]
UpperCAmelCase__ = key.replace(SCREAMING_SNAKE_CASE__ , F'''patch_embeddings.{total_embed_found}.''' )
UpperCAmelCase__ = key.replace("""proj""" , """projection""" )
if key.endswith("""bias""" ):
total_embed_found += 1
if "patch_embeddings" in key:
UpperCAmelCase__ = """poolformer.encoder.""" + key
if "mlp.fc1" in key:
UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """mlp.fc1""" , """output.conv1""" )
if "mlp.fc2" in key:
UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """mlp.fc2""" , """output.conv2""" )
if "norm1" in key:
UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """norm1""" , """before_norm""" )
if "norm2" in key:
UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """norm2""" , """after_norm""" )
if "layer_scale_1" in key:
UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """layer_scale_1""" , """layer_scale_1""" )
if "layer_scale_2" in key:
UpperCAmelCase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """layer_scale_2""" , """layer_scale_2""" )
if "head" in key:
UpperCAmelCase__ = key.replace("""head""" , """classifier""" )
UpperCAmelCase__ = value
return new_state_dict
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw )
return image
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = PoolFormerConfig()
# set attributes based on model_name
UpperCAmelCase__ = """huggingface/label-files"""
UpperCAmelCase__ = model_name[-3:]
UpperCAmelCase__ = 1000
UpperCAmelCase__ = """imagenet-1k-id2label.json"""
UpperCAmelCase__ = (1, 1000)
# set config attributes
UpperCAmelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = {v: k for k, v in idalabel.items()}
if size == "s12":
UpperCAmelCase__ = [2, 2, 6, 2]
UpperCAmelCase__ = [64, 128, 320, 512]
UpperCAmelCase__ = 4.0
UpperCAmelCase__ = 0.9
elif size == "s24":
UpperCAmelCase__ = [4, 4, 12, 4]
UpperCAmelCase__ = [64, 128, 320, 512]
UpperCAmelCase__ = 4.0
UpperCAmelCase__ = 0.9
elif size == "s36":
UpperCAmelCase__ = [6, 6, 18, 6]
UpperCAmelCase__ = [64, 128, 320, 512]
UpperCAmelCase__ = 4.0
UpperCAmelCase__ = 1e-6
UpperCAmelCase__ = 0.9
elif size == "m36":
UpperCAmelCase__ = [6, 6, 18, 6]
UpperCAmelCase__ = [96, 192, 384, 768]
UpperCAmelCase__ = 4.0
UpperCAmelCase__ = 1e-6
UpperCAmelCase__ = 0.95
elif size == "m48":
UpperCAmelCase__ = [8, 8, 24, 8]
UpperCAmelCase__ = [96, 192, 384, 768]
UpperCAmelCase__ = 4.0
UpperCAmelCase__ = 1e-6
UpperCAmelCase__ = 0.95
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor
UpperCAmelCase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ )
# Prepare image
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device("""cpu""" ) )
# rename keys
UpperCAmelCase__ = rename_keys(SCREAMING_SNAKE_CASE__ )
# create HuggingFace model and load state dict
UpperCAmelCase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
model.eval()
# Define image processor
UpperCAmelCase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values
# forward pass
UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = outputs.logits
# define expected logit slices for different models
if size == "s12":
UpperCAmelCase__ = torch.tensor([-0.30_45, -0.67_58, -0.48_69] )
elif size == "s24":
UpperCAmelCase__ = torch.tensor([0.44_02, -0.13_74, -0.80_45] )
elif size == "s36":
UpperCAmelCase__ = torch.tensor([-0.60_80, -0.51_33, -0.58_98] )
elif size == "m36":
UpperCAmelCase__ = torch.tensor([0.39_52, 0.22_63, -1.26_68] )
elif size == "m48":
UpperCAmelCase__ = torch.tensor([0.11_67, -0.06_56, -0.34_23] )
else:
raise ValueError(F'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
UpperCAmelCase_ = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
UpperCAmelCase_ = 2_0_0
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
UpperCAmelCase_ = 5_0
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
UpperCAmelCase_ = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_0_0_0))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len([g for position, g in enumerate(SCREAMING_SNAKE_CASE__ ) if g == main_target[position]] )
return (item, float(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
UpperCAmelCase__ = parent_a[:random_slice] + parent_a[random_slice:]
UpperCAmelCase__ = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] ):
'''simple docstring'''
UpperCAmelCase__ = list(SCREAMING_SNAKE_CASE__ )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
UpperCAmelCase__ = random.choice(SCREAMING_SNAKE_CASE__ )
return "".join(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : tuple[str, float] , SCREAMING_SNAKE_CASE__ : list[tuple[str, float]] , SCREAMING_SNAKE_CASE__ : list[str] , ):
'''simple docstring'''
UpperCAmelCase__ = []
# Generate more children proportionally to the fitness score.
UpperCAmelCase__ = int(parent_a[1] * 100 ) + 1
UpperCAmelCase__ = 10 if child_n >= 10 else child_n
for _ in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = population_score[random.randint(0 , SCREAMING_SNAKE_CASE__ )][0]
UpperCAmelCase__ , UpperCAmelCase__ = crossover(parent_a[0] , SCREAMING_SNAKE_CASE__ )
# Append new string to the population list.
pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
pop.append(mutate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
return pop
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : list[str] , SCREAMING_SNAKE_CASE__ : bool = True ):
'''simple docstring'''
if N_POPULATION < N_SELECTED:
UpperCAmelCase__ = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(SCREAMING_SNAKE_CASE__ )
# Verify that the target contains no genes besides the ones inside genes variable.
UpperCAmelCase__ = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
UpperCAmelCase__ = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(SCREAMING_SNAKE_CASE__ )
# Generate random starting population.
UpperCAmelCase__ = []
for _ in range(SCREAMING_SNAKE_CASE__ ):
population.append("""""".join([random.choice(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) )
# Just some logs to know what the algorithms is doing.
UpperCAmelCase__ , UpperCAmelCase__ = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(SCREAMING_SNAKE_CASE__ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
UpperCAmelCase__ = [evaluate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for item in population]
# Check if there is a matching evolution.
UpperCAmelCase__ = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
UpperCAmelCase__ = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(SCREAMING_SNAKE_CASE__ )
# Normalize population score to be between 0 and 1.
UpperCAmelCase__ = [
(item, score / len(SCREAMING_SNAKE_CASE__ )) for item, score in population_score
]
# This is selection
for i in range(SCREAMING_SNAKE_CASE__ ):
population.extend(select(population_score[int(SCREAMING_SNAKE_CASE__ )] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(SCREAMING_SNAKE_CASE__ ) > N_POPULATION:
break
if __name__ == "__main__":
UpperCAmelCase_ = (
'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'
)
UpperCAmelCase_ = list(
' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'
'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'
)
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list)
print(
f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"
)
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : Optional[int]=4_00 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=[0.5, 0.5, 0.5] , _UpperCAmelCase : str=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
UpperCAmelCase__ = size if size is not None else {"""shortest_edge""": 18}
UpperCAmelCase__ = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = image_size
UpperCAmelCase__ = min_resolution
UpperCAmelCase__ = max_resolution
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = size
UpperCAmelCase__ = do_center_crop
UpperCAmelCase__ = crop_size
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = image_mean
UpperCAmelCase__ = image_std
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Dict = LevitImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = LevitImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , """image_mean""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """image_std""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """do_normalize""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """do_resize""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
UpperCAmelCase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
UpperCAmelCase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCAmelCase__ = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = ["""pixel_values"""]
def __init__( self : Any , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 32 , _UpperCAmelCase : Any=PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Any , ):
"""simple docstring"""
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = do_rescale
UpperCAmelCase__ = size_divisor
UpperCAmelCase__ = resample
super().__init__(**_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[ChannelDimension] = None , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = get_image_size(_UpperCAmelCase )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase__ = height // size_divisor * size_divisor
UpperCAmelCase__ = width // size_divisor * size_divisor
UpperCAmelCase__ = resize(_UpperCAmelCase , (new_h, new_w) , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
return image
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[ChannelDimension] = None , **_UpperCAmelCase : str ):
"""simple docstring"""
return rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[TensorType, str]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase__ = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase__ = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("""size_divisor is required for resizing""" )
UpperCAmelCase__ = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError("""Invalid image(s)""" )
# All transformations expect numpy arrays.
UpperCAmelCase__ = [to_numpy_array(_UpperCAmelCase ) for img in images]
if do_resize:
UpperCAmelCase__ = [self.resize(_UpperCAmelCase , size_divisor=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase__ = [self.rescale(_UpperCAmelCase , scale=1 / 2_55 ) for image in images]
UpperCAmelCase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase__ = {"""pixel_values""": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' )
if tokenizer_name is None:
UpperCAmelCase__ = TOKENIZER_CLASSES
else:
UpperCAmelCase__ = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE__ , tokenizer_name + """Fast""" )}
logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' )
for tokenizer_name in tokenizer_names:
UpperCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name]
UpperCAmelCase__ = True
if checkpoint_name is None:
UpperCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() )
else:
UpperCAmelCase__ = [checkpoint_name]
logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' )
for checkpoint in checkpoint_names:
logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' )
# Load tokenizer
UpperCAmelCase__ = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ )
# Save fast tokenizer
logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' )
# For organization names we create sub-directories
if "/" in checkpoint:
UpperCAmelCase__ , UpperCAmelCase__ = checkpoint.split("""/""" )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif add_prefix:
UpperCAmelCase__ = checkpoint
UpperCAmelCase__ = dump_path
else:
UpperCAmelCase__ = None
UpperCAmelCase__ = dump_path
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
UpperCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
UpperCAmelCase__ = file_path.split(SCREAMING_SNAKE_CASE__ )[-1][0]
if next_char == "/":
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' )
UpperCAmelCase__ = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ , filename_prefix=SCREAMING_SNAKE_CASE__ )
logger.info(F'''=> File names {file_names}''' )
for file_name in file_names:
if not file_name.endswith("""tokenizer.json""" ):
os.remove(SCREAMING_SNAKE_CASE__ )
logger.info(F'''=> removing {file_name}''' )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.'
)
parser.add_argument(
'--tokenizer_name',
default=None,
type=str,
help=(
f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'download and convert all the checkpoints from AWS.'
),
)
parser.add_argument(
'--checkpoint_name',
default=None,
type=str,
help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.',
)
parser.add_argument(
'--force_download',
action='store_true',
help='Re-download checkpoints.',
)
UpperCAmelCase_ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """deberta-v2"""
def __init__( self : str , _UpperCAmelCase : Tuple=12_81_00 , _UpperCAmelCase : str=15_36 , _UpperCAmelCase : List[Any]=24 , _UpperCAmelCase : List[Any]=24 , _UpperCAmelCase : List[str]=61_44 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : str=1E-7 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Tuple=-1 , _UpperCAmelCase : str=0 , _UpperCAmelCase : int=True , _UpperCAmelCase : str=None , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Union[str, Any]="gelu" , **_UpperCAmelCase : str , ):
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = max_relative_positions
UpperCAmelCase__ = pad_token_id
UpperCAmelCase__ = position_biased_input
# Backwards compatibility
if type(_UpperCAmelCase ) == str:
UpperCAmelCase__ = [x.strip() for x in pos_att_type.lower().split("""|""" )]
UpperCAmelCase__ = pos_att_type
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = kwargs.get("""pooler_hidden_size""" , _UpperCAmelCase )
UpperCAmelCase__ = pooler_dropout
UpperCAmelCase__ = pooler_hidden_act
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
if self.task == "multiple-choice":
UpperCAmelCase__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
UpperCAmelCase__ = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return 12
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : "PreTrainedTokenizerBase" = None , ):
"""simple docstring"""
UpperCAmelCase__ = super().generate_dummy_inputs(preprocessor=_UpperCAmelCase , framework=_UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Callable , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
UpperCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) )
UpperCAmelCase__ = np.zeros((n + 1,) )
UpperCAmelCase__ = ya
UpperCAmelCase__ = xa
for k in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = y[k] + step_size * ode_func(SCREAMING_SNAKE_CASE__ , y[k] )
UpperCAmelCase__ = y[k] + (
(step_size / 2) * (ode_func(SCREAMING_SNAKE_CASE__ , y[k] ) + ode_func(x + step_size , SCREAMING_SNAKE_CASE__ ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
while num > 0:
UpperCAmelCase__ = num % 8
UpperCAmelCase__ = octal + (remainder * math.floor(math.pow(10 , SCREAMING_SNAKE_CASE__ ) ))
counter += 1
UpperCAmelCase__ = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return F'''0o{int(SCREAMING_SNAKE_CASE__ )}'''
def _UpperCamelCase ( ):
'''simple docstring'''
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(65 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(216 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(512 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
UpperCAmelCase_ = {}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
UpperCAmelCase__ = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
UpperCAmelCase__ = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
UpperCAmelCase__ = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
UpperCAmelCase__ = _calculate(days - 1 , SCREAMING_SNAKE_CASE__ , 0 )
UpperCAmelCase__ = state_late + state_absent + state_ontime
UpperCAmelCase__ = prizestrings
return prizestrings
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 30 ):
'''simple docstring'''
return _calculate(SCREAMING_SNAKE_CASE__ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_config(SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).save_pretrained(SCREAMING_SNAKE_CASE__ )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = ["""pixel_values"""]
def __init__( self : int , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Dict , ):
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
UpperCAmelCase__ = size if size is not None else {"""height""": 2_24, """width""": 2_24}
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase )
UpperCAmelCase__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name="""crop_size""" )
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = do_rescale
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = do_center_crop
UpperCAmelCase__ = crop_size
UpperCAmelCase__ = size
UpperCAmelCase__ = resample
UpperCAmelCase__ = rescale_factor
UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase__ = get_resize_output_image_size(_UpperCAmelCase , size=size["""shortest_edge"""] , default_to_square=_UpperCAmelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
UpperCAmelCase__ = (size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ):
"""simple docstring"""
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : int = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : str , ):
"""simple docstring"""
UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" , default_to_square=_UpperCAmelCase )
UpperCAmelCase__ = resample if resample is not None else self.resample
UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase__ = image_std if image_std is not None else self.image_std
UpperCAmelCase__ = size if size is not None else self.size
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase )
if not is_batched(_UpperCAmelCase ):
UpperCAmelCase__ = [images]
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
UpperCAmelCase__ = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
UpperCAmelCase__ = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_center_crop:
UpperCAmelCase__ = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images]
if do_rescale:
UpperCAmelCase__ = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
UpperCAmelCase__ = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
UpperCAmelCase__ = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
UpperCAmelCase__ = {"""pixel_values""": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape
UpperCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = emb.weight.data
return lin_layer
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
UpperCAmelCase__ = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
UpperCAmelCase__ = mam_aaa["""model"""]
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = state_dict["""encoder.embed_tokens.weight"""].shape[0]
UpperCAmelCase__ = MaMaaaConfig(
vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
UpperCAmelCase__ = state_dict["""decoder.embed_tokens.weight"""]
UpperCAmelCase__ = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE__ )
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'b0': efficientnet.EfficientNetBa,
'b1': efficientnet.EfficientNetBa,
'b2': efficientnet.EfficientNetBa,
'b3': efficientnet.EfficientNetBa,
'b4': efficientnet.EfficientNetBa,
'b5': efficientnet.EfficientNetBa,
'b6': efficientnet.EfficientNetBa,
'b7': efficientnet.EfficientNetBa,
}
UpperCAmelCase_ = {
'b0': {
'hidden_dim': 1_2_8_0,
'width_coef': 1.0,
'depth_coef': 1.0,
'image_size': 2_2_4,
'dropout_rate': 0.2,
'dw_padding': [],
},
'b1': {
'hidden_dim': 1_2_8_0,
'width_coef': 1.0,
'depth_coef': 1.1,
'image_size': 2_4_0,
'dropout_rate': 0.2,
'dw_padding': [1_6],
},
'b2': {
'hidden_dim': 1_4_0_8,
'width_coef': 1.1,
'depth_coef': 1.2,
'image_size': 2_6_0,
'dropout_rate': 0.3,
'dw_padding': [5, 8, 1_6],
},
'b3': {
'hidden_dim': 1_5_3_6,
'width_coef': 1.2,
'depth_coef': 1.4,
'image_size': 3_0_0,
'dropout_rate': 0.3,
'dw_padding': [5, 1_8],
},
'b4': {
'hidden_dim': 1_7_9_2,
'width_coef': 1.4,
'depth_coef': 1.8,
'image_size': 3_8_0,
'dropout_rate': 0.4,
'dw_padding': [6],
},
'b5': {
'hidden_dim': 2_0_4_8,
'width_coef': 1.6,
'depth_coef': 2.2,
'image_size': 4_5_6,
'dropout_rate': 0.4,
'dw_padding': [1_3, 2_7],
},
'b6': {
'hidden_dim': 2_3_0_4,
'width_coef': 1.8,
'depth_coef': 2.6,
'image_size': 5_2_8,
'dropout_rate': 0.5,
'dw_padding': [3_1],
},
'b7': {
'hidden_dim': 2_5_6_0,
'width_coef': 2.0,
'depth_coef': 3.1,
'image_size': 6_0_0,
'dropout_rate': 0.5,
'dw_padding': [1_8],
},
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = EfficientNetConfig()
UpperCAmelCase__ = CONFIG_MAP[model_name]["""hidden_dim"""]
UpperCAmelCase__ = CONFIG_MAP[model_name]["""width_coef"""]
UpperCAmelCase__ = CONFIG_MAP[model_name]["""depth_coef"""]
UpperCAmelCase__ = CONFIG_MAP[model_name]["""image_size"""]
UpperCAmelCase__ = CONFIG_MAP[model_name]["""dropout_rate"""]
UpperCAmelCase__ = CONFIG_MAP[model_name]["""dw_padding"""]
UpperCAmelCase__ = """huggingface/label-files"""
UpperCAmelCase__ = """imagenet-1k-id2label.json"""
UpperCAmelCase__ = 1000
UpperCAmelCase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type="""dataset""" ) , """r""" ) )
UpperCAmelCase__ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
UpperCAmelCase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw )
return im
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = CONFIG_MAP[model_name]["""image_size"""]
UpperCAmelCase__ = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=SCREAMING_SNAKE_CASE__ , )
return preprocessor
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
UpperCAmelCase__ = sorted(set(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = {b: str(SCREAMING_SNAKE_CASE__ ) for b, i in zip(SCREAMING_SNAKE_CASE__ , range(SCREAMING_SNAKE_CASE__ ) )}
UpperCAmelCase__ = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
UpperCAmelCase__ = block_name_mapping[b]
rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') )
rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') )
rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') )
rename_keys.append(
(F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') )
rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') )
rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') )
rename_keys.append(
(F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') )
rename_keys.append(
(F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') )
rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') )
rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') )
rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') )
rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') )
rename_keys.append(
(F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') )
rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') )
rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') )
rename_keys.append(
(F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
UpperCAmelCase__ = {}
for item in rename_keys:
if item[0] in original_param_names:
UpperCAmelCase__ = """efficientnet.""" + item[1]
UpperCAmelCase__ = """classifier.weight"""
UpperCAmelCase__ = """classifier.bias"""
return key_mapping
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
UpperCAmelCase__ = key_mapping[key]
if "_conv" in key and "kernel" in key:
UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
UpperCAmelCase__ = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE__ ) )
else:
UpperCAmelCase__ = torch.from_numpy(SCREAMING_SNAKE_CASE__ )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = model_classes[model_name](
include_top=SCREAMING_SNAKE_CASE__ , weights="""imagenet""" , input_tensor=SCREAMING_SNAKE_CASE__ , input_shape=SCREAMING_SNAKE_CASE__ , pooling=SCREAMING_SNAKE_CASE__ , classes=1000 , classifier_activation="""softmax""" , )
UpperCAmelCase__ = original_model.trainable_variables
UpperCAmelCase__ = original_model.non_trainable_variables
UpperCAmelCase__ = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
UpperCAmelCase__ = param.numpy()
UpperCAmelCase__ = list(tf_params.keys() )
# Load HuggingFace model
UpperCAmelCase__ = get_efficientnet_config(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE__ ).eval()
UpperCAmelCase__ = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
UpperCAmelCase__ = rename_keys(SCREAMING_SNAKE_CASE__ )
replace_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Initialize preprocessor and preprocess input image
UpperCAmelCase__ = convert_image_processor(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
UpperCAmelCase__ = hf_model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = outputs.logits.detach().numpy()
# Original model inference
UpperCAmelCase__ = False
UpperCAmelCase__ = CONFIG_MAP[model_name]["""image_size"""]
UpperCAmelCase__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
UpperCAmelCase__ = image.img_to_array(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = np.expand_dims(SCREAMING_SNAKE_CASE__ , axis=0 )
UpperCAmelCase__ = original_model.predict(SCREAMING_SNAKE_CASE__ )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
os.mkdir(SCREAMING_SNAKE_CASE__ )
# Save converted model and image processor
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
preprocessor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if push_to_hub:
# Push model and image processor to hub
print(F'''Pushing converted {model_name} to the hub...''' )
UpperCAmelCase__ = F'''efficientnet-{model_name}'''
preprocessor.push_to_hub(SCREAMING_SNAKE_CASE__ )
hf_model.push_to_hub(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='b0',
type=str,
help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='hf_model',
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--save_model', action='store_true', help='Save model to local')
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
UpperCAmelCase_ = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json',
'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json',
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Dict = """encodec"""
def __init__( self : Any , _UpperCAmelCase : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase : Tuple=2_40_00 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=[8, 5, 4, 2] , _UpperCAmelCase : Union[str, Any]="weight_norm" , _UpperCAmelCase : int=7 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]="reflect" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=1.0 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Any=None , _UpperCAmelCase : int=True , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = target_bandwidths
UpperCAmelCase__ = sampling_rate
UpperCAmelCase__ = audio_channels
UpperCAmelCase__ = normalize
UpperCAmelCase__ = chunk_length_s
UpperCAmelCase__ = overlap
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_filters
UpperCAmelCase__ = num_residual_layers
UpperCAmelCase__ = upsampling_ratios
UpperCAmelCase__ = norm_type
UpperCAmelCase__ = kernel_size
UpperCAmelCase__ = last_kernel_size
UpperCAmelCase__ = residual_kernel_size
UpperCAmelCase__ = dilation_growth_rate
UpperCAmelCase__ = use_causal_conv
UpperCAmelCase__ = pad_mode
UpperCAmelCase__ = compress
UpperCAmelCase__ = num_lstm_layers
UpperCAmelCase__ = trim_right_ratio
UpperCAmelCase__ = codebook_size
UpperCAmelCase__ = codebook_dim if codebook_dim is not None else hidden_size
UpperCAmelCase__ = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**_UpperCAmelCase )
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
Subsets and Splits