code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=SCREAMING_SNAKE_CASE__ , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=SCREAMING_SNAKE_CASE__ )
return parser.parse_args()
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = parse_args()
# Import training_script as a module.
UpperCAmelCase__ = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
UpperCAmelCase__ = script_fpath.stem
UpperCAmelCase__ = importlib.import_module(SCREAMING_SNAKE_CASE__ )
# Patch sys.argv
UpperCAmelCase__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'}
UpperCAmelCase_ = {
'vocab_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt',
},
'emoji_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json',
},
}
UpperCAmelCase_ = {
'abeja/gpt-neox-japanese-2.7b': 2_0_4_8,
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f:
UpperCAmelCase__ = json.loads(f.read() )
UpperCAmelCase__ = collections.OrderedDict()
UpperCAmelCase__ = collections.OrderedDict()
UpperCAmelCase__ = collections.OrderedDict()
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f:
UpperCAmelCase__ = f.readlines()
UpperCAmelCase__ = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token]
for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = b
UpperCAmelCase__ = idx
for wd in b:
UpperCAmelCase__ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Dict = VOCAB_FILES_NAMES
lowerCAmelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ : Any = ["""input_ids""", """attention_mask"""]
def __init__( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]="<|endoftext|>" , _UpperCAmelCase : Optional[Any]="<|endoftext|>" , _UpperCAmelCase : str="<|startoftext|>" , _UpperCAmelCase : List[Any]="<|endoftext|>" , _UpperCAmelCase : Optional[int]=False , **_UpperCAmelCase : Union[str, Any] , ):
"""simple docstring"""
super().__init__(
unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , do_clean_text=_UpperCAmelCase , **_UpperCAmelCase , )
if not os.path.isfile(_UpperCAmelCase ):
raise ValueError(
f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
""" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
if not os.path.isfile(_UpperCAmelCase ):
raise ValueError(
f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
""" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
UpperCAmelCase__ = do_clean_text
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = load_vocab_and_emoji(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
return len(self.raw_vocab )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
return dict(self.raw_vocab , **self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return self.subword_tokenizer.tokenize(_UpperCAmelCase , clean=self.do_clean_text )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ):
"""simple docstring"""
return self.subword_tokenizer.convert_id_to_token(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : "Conversation" ):
"""simple docstring"""
UpperCAmelCase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] )
if len(_UpperCAmelCase ) > self.model_max_length:
UpperCAmelCase__ = input_ids[-self.model_max_length :]
return input_ids
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
UpperCAmelCase__ = 0
if os.path.isdir(_UpperCAmelCase ):
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] )
else:
UpperCAmelCase__ = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""]
)
UpperCAmelCase__ = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""]
)
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
""" Please check that the vocabulary is not corrupted!""" )
UpperCAmelCase__ = token_index
writer.write(""",""".join(_UpperCAmelCase ) + """\n""" )
index += 1
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer:
json.dump(self.emoji , _UpperCAmelCase )
return vocab_file, emoji_file
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = vocab # same as swe
UpperCAmelCase__ = ids_to_tokens # same as bpe
UpperCAmelCase__ = emoji
UpperCAmelCase__ = np.max([len(_UpperCAmelCase ) for w in self.vocab.keys()] )
UpperCAmelCase__ = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" )
UpperCAmelCase__ = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" )
UpperCAmelCase__ = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" )
UpperCAmelCase__ = re.compile(
r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
UpperCAmelCase__ = re.compile(
r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
UpperCAmelCase__ = re.compile(
r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" )
UpperCAmelCase__ = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"""
UpperCAmelCase__ = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"""
UpperCAmelCase__ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} )
def __len__( self : Union[str, Any] ):
"""simple docstring"""
return len(self.ids_to_tokens )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.content_repattera.sub("""<URL>""" , _UpperCAmelCase )
UpperCAmelCase__ = self.content_repattera.sub("""<EMAIL>""" , _UpperCAmelCase )
UpperCAmelCase__ = self.content_repattera.sub("""<TEL>""" , _UpperCAmelCase )
UpperCAmelCase__ = self.content_repattera.sub("""<DATE>""" , _UpperCAmelCase )
UpperCAmelCase__ = self.content_repattera.sub("""<DATE>""" , _UpperCAmelCase )
UpperCAmelCase__ = self.content_repattera.sub("""<PRICE>""" , _UpperCAmelCase )
UpperCAmelCase__ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
UpperCAmelCase__ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" )
return content
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple=False ):
"""simple docstring"""
UpperCAmelCase__ = text.replace(""" """ , """<SP>""" )
UpperCAmelCase__ = text.replace(""" """ , """<SP>""" )
UpperCAmelCase__ = text.replace("""\r\n""" , """<BR>""" )
UpperCAmelCase__ = text.replace("""\n""" , """<BR>""" )
UpperCAmelCase__ = text.replace("""\r""" , """<BR>""" )
UpperCAmelCase__ = text.replace("""\t""" , """<TAB>""" )
UpperCAmelCase__ = text.replace("""—""" , """ー""" )
UpperCAmelCase__ = text.replace("""−""" , """ー""" )
for k, v in self.emoji["emoji"].items():
if k in text:
UpperCAmelCase__ = text.replace(_UpperCAmelCase , _UpperCAmelCase )
if clean:
UpperCAmelCase__ = self.clean_text(_UpperCAmelCase )
def check_simbol(_UpperCAmelCase : Any ):
UpperCAmelCase__ = x.encode()
if len(_UpperCAmelCase ) == 1 and len(_UpperCAmelCase ) == 2:
UpperCAmelCase__ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC2A1 and c <= 0xC2BF)
or (c >= 0xC780 and c <= 0xC783)
or (c >= 0xCAB9 and c <= 0xCBBF)
or (c >= 0xCC80 and c <= 0xCDA2)
):
return True
return False
def checkuae(_UpperCAmelCase : Optional[Any] ):
UpperCAmelCase__ = x.encode()
if len(_UpperCAmelCase ) == 1 and len(_UpperCAmelCase ) == 3:
UpperCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE28080 and c <= 0xE2B07F:
return True
return False
UpperCAmelCase__ = 0
UpperCAmelCase__ = []
while pos < len(_UpperCAmelCase ):
UpperCAmelCase__ = min(len(_UpperCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3
UpperCAmelCase__ = [] # (token_id, token, pos)
for e in range(_UpperCAmelCase , _UpperCAmelCase , -1 ):
UpperCAmelCase__ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_UpperCAmelCase ) > 2:
UpperCAmelCase__ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_UpperCAmelCase ) > 0:
# the smallest token_id is adopted
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[0] )[0]
result.append(_UpperCAmelCase )
UpperCAmelCase__ = e
else:
UpperCAmelCase__ = pos + 1
UpperCAmelCase__ = text[pos:end]
if check_simbol(_UpperCAmelCase ):
result.append("""<KIGOU>""" )
elif checkuae(_UpperCAmelCase ):
result.append("""<U2000U2BFF>""" )
else:
for i in wd.encode("""utf-8""" ):
result.append("""<|byte%d|>""" % i )
UpperCAmelCase__ = end
return result
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]="\n" ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_UpperCAmelCase ) > 0:
words.append(bytearray(_UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) )
UpperCAmelCase__ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["""emoji_inv"""][word] )
elif word == "<SP>":
words.append(""" """ )
elif word == "<BR>":
words.append(_UpperCAmelCase )
elif word == "<TAB>":
words.append("""\t""" )
elif word == "<BLOCK>":
words.append("""▀""" )
elif word == "<KIGOU>":
words.append("""ǀ""" )
elif word == "<U2000U2BFF>":
words.append("""‖""" )
else:
words.append(_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
words.append(bytearray(_UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) )
UpperCAmelCase__ = """""".join(_UpperCAmelCase )
return text
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = ["""audio_values""", """audio_mask"""]
def __init__( self : List[str] , _UpperCAmelCase : List[str]=20_48 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Tuple=[16, 16] , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : Tuple=4_41_00 , _UpperCAmelCase : Optional[Any]=86 , _UpperCAmelCase : Optional[int]=20_48 , _UpperCAmelCase : List[Any]=0.0 , **_UpperCAmelCase : Tuple , ):
"""simple docstring"""
super().__init__(
feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase__ = spectrogram_length
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = feature_size // self.patch_size[1]
UpperCAmelCase__ = n_fft
UpperCAmelCase__ = sampling_rate // hop_length_to_sampling_rate
UpperCAmelCase__ = sampling_rate
UpperCAmelCase__ = padding_value
UpperCAmelCase__ = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_UpperCAmelCase , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=_UpperCAmelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : np.array ):
"""simple docstring"""
UpperCAmelCase__ = spectrogram(
_UpperCAmelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , )
UpperCAmelCase__ = log_spec[:, :-1]
UpperCAmelCase__ = log_spec - 20.0
UpperCAmelCase__ = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : int , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = True , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Tuple , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"""This feature extractor is set to support sampling rate"""
f''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled'''
f''' with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
UpperCAmelCase__ = isinstance(_UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
UpperCAmelCase__ = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
UpperCAmelCase__ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
UpperCAmelCase__ = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
UpperCAmelCase__ = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
UpperCAmelCase__ = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
UpperCAmelCase__ = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , _UpperCAmelCase ):
UpperCAmelCase__ = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
UpperCAmelCase__ = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
UpperCAmelCase__ = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
UpperCAmelCase__ = np.array(_UpperCAmelCase ).astype(np.floataa )
# convert into correct format for padding
UpperCAmelCase__ = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
UpperCAmelCase__ = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
UpperCAmelCase__ = padded_audio_features * self.padding_value
for i in range(len(_UpperCAmelCase ) ):
UpperCAmelCase__ = audio_features[i]
UpperCAmelCase__ = feature
# return as BatchFeature
if return_attention_mask:
UpperCAmelCase__ = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask}
else:
UpperCAmelCase__ = {"""audio_values""": padded_audio_features}
UpperCAmelCase__ = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
return encoded_inputs
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
import random
class lowerCAmelCase_ :
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = [ord(_UpperCAmelCase ) for i in text]
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for i in plain:
UpperCAmelCase__ = random.randint(1 , 3_00 )
UpperCAmelCase__ = (i + k) * k
cipher.append(_UpperCAmelCase )
key.append(_UpperCAmelCase )
return cipher, key
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
for i in range(len(_UpperCAmelCase ) ):
UpperCAmelCase__ = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(_UpperCAmelCase ) )
return "".join(_UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase_ , UpperCAmelCase_ = Onepad().encrypt('Hello')
print(c, k)
print(Onepad().decrypt(c, k))
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
UpperCAmelCase_ = trt.Logger(trt.Logger.WARNING)
UpperCAmelCase_ = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
UpperCAmelCase_ = logging.getLogger(__name__)
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--onnx_model_path',
default=None,
type=str,
required=True,
help='Path to ONNX model: ',
)
parser.add_argument(
'--output_dir',
default=None,
type=str,
required=True,
help='The output directory where the model checkpoints and predictions will be written.',
)
# Other parameters
parser.add_argument(
'--tokenizer_name',
default='',
type=str,
required=True,
help='Pretrained tokenizer name or path if not the same as model_name',
)
parser.add_argument(
'--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.',
)
parser.add_argument(
'--null_score_diff_threshold',
type=float,
default=0.0,
help='If null_score - best_non_null is greater than the threshold predict null.',
)
parser.add_argument(
'--max_seq_length',
default=3_8_4,
type=int,
help=(
'The maximum total input sequence length after WordPiece tokenization. Sequences '
'longer than this will be truncated, and sequences shorter than this will be padded.'
),
)
parser.add_argument(
'--doc_stride',
default=1_2_8,
type=int,
help='When splitting up a long document into chunks, how much stride to take between chunks.',
)
parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.')
parser.add_argument(
'--n_best_size',
default=2_0,
type=int,
help='The total number of n-best predictions to generate in the nbest_predictions.json output file.',
)
parser.add_argument(
'--max_answer_length',
default=3_0,
type=int,
help=(
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
),
)
parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization')
parser.add_argument(
'--dataset_name',
type=str,
default=None,
required=True,
help='The name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--dataset_config_name',
type=str,
default=None,
help='The configuration name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.'
)
parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets')
parser.add_argument(
'--fp16',
action='store_true',
help='Whether to use 16-bit (mixed) precision instead of 32-bit',
)
parser.add_argument(
'--int8',
action='store_true',
help='Whether to use INT8',
)
UpperCAmelCase_ = parser.parse_args()
if args.tokenizer_name:
UpperCAmelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.'
)
logger.info('Training/evaluation parameters %s', args)
UpperCAmelCase_ = args.per_device_eval_batch_size
UpperCAmelCase_ = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
UpperCAmelCase_ = True
UpperCAmelCase_ = 'temp_engine/bert-fp32.engine'
if args.fpaa:
UpperCAmelCase_ = 'temp_engine/bert-fp16.engine'
if args.inta:
UpperCAmelCase_ = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists('temp_engine'):
os.makedirs('temp_engine')
UpperCAmelCase_ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, 'rb') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
UpperCAmelCase_ = [network.get_input(i) for i in range(network.num_inputs)]
UpperCAmelCase_ = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
UpperCAmelCase_ = 1 << 5_0
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
UpperCAmelCase_ = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
UpperCAmelCase_ = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, 'wb') as f:
f.write(engine.serialize())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa )
UpperCAmelCase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa )
UpperCAmelCase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE__ )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE__ )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE__ )
# start time
UpperCAmelCase__ = time.time()
# Run inference
context.execute_async(
bindings=[int(SCREAMING_SNAKE_CASE__ ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE__ ), int(SCREAMING_SNAKE_CASE__ )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Synchronize the stream and take time
stream.synchronize()
# end time
UpperCAmelCase__ = time.time()
UpperCAmelCase__ = end_time - start_time
UpperCAmelCase__ = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
UpperCAmelCase_ = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCAmelCase_ = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('Evaluation requires a dataset name')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
UpperCAmelCase_ = raw_datasets['validation'].column_names
UpperCAmelCase_ = 'question' if 'question' in column_names else column_names[0]
UpperCAmelCase_ = 'context' if 'context' in column_names else column_names[1]
UpperCAmelCase_ = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
UpperCAmelCase_ = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
UpperCAmelCase_ = min(args.max_seq_length, tokenizer.model_max_length)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
UpperCAmelCase__ = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=SCREAMING_SNAKE_CASE__ , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
UpperCAmelCase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
UpperCAmelCase__ = []
for i in range(len(tokenized_examples["""input_ids"""] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
UpperCAmelCase__ = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
UpperCAmelCase__ = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
UpperCAmelCase__ = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] )
]
return tokenized_examples
UpperCAmelCase_ = raw_datasets['validation']
# Validation Feature Creation
UpperCAmelCase_ = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='Running tokenizer on validation dataset',
)
UpperCAmelCase_ = default_data_collator
UpperCAmelCase_ = eval_dataset.remove_columns(['example_id', 'offset_mapping'])
UpperCAmelCase_ = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]="eval" ):
'''simple docstring'''
UpperCAmelCase__ = postprocess_qa_predictions(
examples=SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , predictions=SCREAMING_SNAKE_CASE__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE__ , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
UpperCAmelCase__ = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
UpperCAmelCase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
UpperCAmelCase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=SCREAMING_SNAKE_CASE__ , label_ids=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ = load_metric('squad_v2' if args.version_2_with_negative else 'squad')
# Evaluation!
logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path)
with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE__ ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE__ ).itemsize
# Allocate device memory for inputs and outputs.
UpperCAmelCase_ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
UpperCAmelCase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
UpperCAmelCase_ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
UpperCAmelCase_ = cuda.mem_alloc(h_outputa.nbytes)
UpperCAmelCase_ = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
UpperCAmelCase_ = cuda.Stream()
# Evaluation
logger.info('***** Running Evaluation *****')
logger.info(f" Num examples = {len(eval_dataset)}")
logger.info(f" Batch size = {args.per_device_eval_batch_size}")
UpperCAmelCase_ = 0.0
UpperCAmelCase_ = 0
UpperCAmelCase_ = timeit.default_timer()
UpperCAmelCase_ = None
for step, batch in enumerate(eval_dataloader):
UpperCAmelCase_ , UpperCAmelCase_ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
UpperCAmelCase_ , UpperCAmelCase_ = outputs
UpperCAmelCase_ = torch.tensor(start_logits)
UpperCAmelCase_ = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
UpperCAmelCase_ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0)
UpperCAmelCase_ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0)
UpperCAmelCase_ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
UpperCAmelCase_ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0)
if all_preds is not None:
UpperCAmelCase_ = nested_truncate(all_preds, len(eval_dataset))
UpperCAmelCase_ = timeit.default_timer() - start_time
logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter))
logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0))
logger.info('Total Number of Inference = %d', niter)
UpperCAmelCase_ = post_processing_function(eval_examples, eval_dataset, all_preds)
UpperCAmelCase_ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"Evaluation metrics: {eval_metric}")
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = 10
UpperCAmelCase__ = datasets.Features(
{
"""tokens""": datasets.Sequence(datasets.Value("""string""" ) ),
"""labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ),
"""answers""": datasets.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
"""id""": datasets.Value("""int64""" ),
} )
UpperCAmelCase__ = datasets.Dataset.from_dict(
{
"""tokens""": [["""foo"""] * 5] * n,
"""labels""": [[1] * 5] * n,
"""answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10,
"""id""": list(range(SCREAMING_SNAKE_CASE__ ) ),
} , features=SCREAMING_SNAKE_CASE__ , )
return dataset
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" )
dataset.map(cache_file_name=SCREAMING_SNAKE_CASE__ )
return filename
# FILE_CONTENT + files
UpperCAmelCase_ = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt"""
UpperCAmelCase__ = FILE_CONTENT
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return filename
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
import bza
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2"""
UpperCAmelCase__ = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" )
with bza.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
import gzip
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" )
UpperCAmelCase__ = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" )
with gzip.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if datasets.config.LZ4_AVAILABLE:
import lza.frame
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4"""
UpperCAmelCase__ = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" )
with lza.frame.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z"""
with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as archive:
archive.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
import tarfile
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar"""
with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
import lzma
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz"""
UpperCAmelCase__ = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" )
with lzma.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
import zipfile
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst"""
UpperCAmelCase__ = bytes(SCREAMING_SNAKE_CASE__ , """utf-8""" )
with zstd.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """file.xml"""
UpperCAmelCase__ = textwrap.dedent(
"""\
<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<tmx version=\"1.4\">
<header segtype=\"sentence\" srclang=\"ca\" />
<body>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>
</tu>
</body>
</tmx>""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return filename
UpperCAmelCase_ = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
UpperCAmelCase_ = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
UpperCAmelCase_ = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
UpperCAmelCase_ = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
UpperCAmelCase_ = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ):
'''simple docstring'''
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.Dataset.from_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" )
dataset.map(cache_file_name=SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" )
with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con:
UpperCAmelCase__ = con.cursor()
cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" )
for item in DATA:
cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" , newline="""""" ) as f:
UpperCAmelCase__ = csv.DictWriter(SCREAMING_SNAKE_CASE__ , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" , newline="""""" ) as f:
UpperCAmelCase__ = csv.DictWriter(SCREAMING_SNAKE_CASE__ , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
import bza
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2"""
with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as f:
UpperCAmelCase__ = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""main_dir""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""main_dir""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" )
UpperCAmelCase__ = pa.schema(
{
"""col_1""": pa.string(),
"""col_2""": pa.intaa(),
"""col_3""": pa.floataa(),
} )
with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as f:
UpperCAmelCase__ = pq.ParquetWriter(SCREAMING_SNAKE_CASE__ , schema=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] for k in DATA[0]} , schema=SCREAMING_SNAKE_CASE__ )
writer.write_table(SCREAMING_SNAKE_CASE__ )
writer.close()
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
UpperCAmelCase__ = {"""data""": DATA}
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
UpperCAmelCase__ = {"""data""": DATA_DICT_OF_LISTS}
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in DATA:
f.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in DATA:
f.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in DATA_312:
f.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in DATA_STR:
f.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
import gzip
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" )
with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as orig_file:
with gzip.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as zipped_file:
zipped_file.writelines(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
import gzip
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" )
with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as orig_file:
with gzip.open(SCREAMING_SNAKE_CASE__ , """wb""" ) as zipped_file:
zipped_file.writelines(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""nested""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""main_dir""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""main_dir""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar"""
with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar"""
with tarfile.TarFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.add(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""nested""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = ["""0""", """1""", """2""", """3"""]
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = ["""0""", """1""", """2""", """3"""]
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = ["""0""", """1""", """2""", """3"""]
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.abc"""
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""main_dir""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.join("""main_dir""" , os.path.basename(SCREAMING_SNAKE_CASE__ ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename("""unsupported.ext""" ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename("""unsupported_2.ext""" ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] )
UpperCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" )
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ):
'''simple docstring'''
return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" )
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ):
'''simple docstring'''
return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" )
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip"""
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ) )
f.write(SCREAMING_SNAKE_CASE__ , arcname=os.path.basename(SCREAMING_SNAKE_CASE__ ).replace(""".jpg""" , """2.jpg""" ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = tmp_path_factory.mktemp("""data_dir""" )
(data_dir / "subdir").mkdir()
with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden file
with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 10 )
return data_dir
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Tuple = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Optional[int] = (
{
"""feature-extraction""": TFMobileBertModel,
"""fill-mask""": TFMobileBertForMaskedLM,
"""question-answering""": TFMobileBertForQuestionAnswering,
"""text-classification""": TFMobileBertForSequenceClassification,
"""token-classification""": TFMobileBertForTokenClassification,
"""zero-shot""": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase__ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Union[str, Any]=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = scope
UpperCAmelCase__ = embedding_size
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertModel(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertForMaskedLM(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertForNextSentencePrediction(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertForPreTraining(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFMobileBertForSequenceClassification(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFMobileBertForMultipleChoice(config=_UpperCAmelCase )
UpperCAmelCase__ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFMobileBertForTokenClassification(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertForQuestionAnswering(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertModelTest.TFMobileBertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for model_name in ["google/mobilebert-uncased"]:
UpperCAmelCase__ = TFMobileBertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(_UpperCAmelCase )[0]
UpperCAmelCase__ = [1, 6, 3_05_22]
self.assertEqual(output.shape , _UpperCAmelCase )
UpperCAmelCase__ = tf.constant(
[
[
[-4.591_9547, -9.24_8295, -9.64_5256],
[-6.730_6175, -6.44_0284, -6.605_2837],
[-7.274_3506, -6.784_7915, -6.02_4673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 )
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise ValueError("""iterations must be defined as integers""" )
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or not number >= 1:
raise ValueError(
"""starting number must be
and integer and be more than 0""" )
if not iterations >= 1:
raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" )
UpperCAmelCase__ = """"""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(SCREAMING_SNAKE_CASE__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase_ = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=99 , _UpperCAmelCase : Any=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Union[str, Any]=9 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : Dict=8 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : int=0.002 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Any=None , _UpperCAmelCase : str=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = encoder_seq_length
UpperCAmelCase__ = decoder_seq_length
# For common tests
UpperCAmelCase__ = self.decoder_seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_attention_mask
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = d_ff
UpperCAmelCase__ = relative_attention_num_buckets
UpperCAmelCase__ = dropout_rate
UpperCAmelCase__ = initializer_factor
UpperCAmelCase__ = eos_token_id
UpperCAmelCase__ = pad_token_id
UpperCAmelCase__ = decoder_start_token_id
UpperCAmelCase__ = None
UpperCAmelCase__ = decoder_layers
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
return TaConfig.from_pretrained("""google/umt5-base""" )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None , ):
"""simple docstring"""
if attention_mask is None:
UpperCAmelCase__ = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
UpperCAmelCase__ = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
UpperCAmelCase__ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_UpperCAmelCase )
if decoder_head_mask is None:
UpperCAmelCase__ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_UpperCAmelCase )
if cross_attn_head_mask is None:
UpperCAmelCase__ = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
UpperCAmelCase__ = input_ids.clamp(self.pad_token_id + 1 )
UpperCAmelCase__ = decoder_input_ids.clamp(self.pad_token_id + 1 )
UpperCAmelCase__ = self.get_config()
UpperCAmelCase__ = config.num_attention_heads
UpperCAmelCase__ = self.prepare_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, input_dict
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = UMTaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(
input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , )
UpperCAmelCase__ = model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase )
UpperCAmelCase__ = result.last_hidden_state
UpperCAmelCase__ = result.past_key_values
UpperCAmelCase__ = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , ):
"""simple docstring"""
UpperCAmelCase__ = UMTaModel(config=_UpperCAmelCase ).get_decoder().to(_UpperCAmelCase ).eval()
# first forward pass
UpperCAmelCase__ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , use_cache=_UpperCAmelCase )
self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) )
self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 )
UpperCAmelCase__ , UpperCAmelCase__ = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase__ = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
UpperCAmelCase__ = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase__ = model(_UpperCAmelCase )["""last_hidden_state"""]
UpperCAmelCase__ = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )["""last_hidden_state"""]
# select random slice
UpperCAmelCase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase__ = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase__ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = UMTaModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).half().eval()
UpperCAmelCase__ = model(**_UpperCAmelCase )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(_UpperCAmelCase ).any().item() )
@require_torch
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
lowerCAmelCase_ : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()
lowerCAmelCase_ : Any = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ : List[Any] = True
lowerCAmelCase_ : str = False
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : Union[str, Any] = True
lowerCAmelCase_ : Optional[int] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
lowerCAmelCase_ : List[Any] = [0.8, 0.9]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase__ = UMTaModel(config_and_inputs[0] ).to(_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_UpperCAmelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
UpperCAmelCase__ = config_and_inputs[0]
UpperCAmelCase__ = UMTaForConditionalGeneration(_UpperCAmelCase ).eval()
model.to(_UpperCAmelCase )
UpperCAmelCase__ = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_UpperCAmelCase ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCAmelCase ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(_UpperCAmelCase , head_masking.items() ):
UpperCAmelCase__ = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
UpperCAmelCase__ = torch.ones(
config.num_decoder_layers , config.num_heads , device=_UpperCAmelCase )
UpperCAmelCase__ = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_UpperCAmelCase , return_dict_in_generate=_UpperCAmelCase , **_UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
UpperCAmelCase__ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_UpperCAmelCase ).to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_UpperCAmelCase , legacy=_UpperCAmelCase )
UpperCAmelCase__ = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
UpperCAmelCase__ = tokenizer(_UpperCAmelCase , return_tensors="""pt""" , padding=_UpperCAmelCase ).input_ids
# fmt: off
UpperCAmelCase__ = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = model.generate(input_ids.to(_UpperCAmelCase ) )
UpperCAmelCase__ = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
UpperCAmelCase__ = tokenizer.batch_decode(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any=None ):
'''simple docstring'''
UpperCAmelCase__ = None
if token is not None:
UpperCAmelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
UpperCAmelCase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
UpperCAmelCase__ = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json()
UpperCAmelCase__ = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
UpperCAmelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=None ):
'''simple docstring'''
UpperCAmelCase__ = None
if token is not None:
UpperCAmelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
UpperCAmelCase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
UpperCAmelCase__ = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json()
UpperCAmelCase__ = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
UpperCAmelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = requests.get(url + F'''&page={i + 2}''' , headers=SCREAMING_SNAKE_CASE__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = None
if token is not None:
UpperCAmelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F'''Bearer {token}'''}
UpperCAmelCase__ = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ , allow_redirects=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = result.headers["""Location"""]
UpperCAmelCase__ = requests.get(SCREAMING_SNAKE_CASE__ , allow_redirects=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{artifact_name}.zip''' )
with open(SCREAMING_SNAKE_CASE__ , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=None ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = None
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
for line in f:
UpperCAmelCase__ = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
UpperCAmelCase__ = line[: line.index(""": """ )]
UpperCAmelCase__ = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
UpperCAmelCase__ = line[len("""FAILED """ ) :]
failed_tests.append(SCREAMING_SNAKE_CASE__ )
elif filename == "job_name.txt":
UpperCAmelCase__ = line
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(SCREAMING_SNAKE_CASE__ )} for `errors` '''
F'''and {len(SCREAMING_SNAKE_CASE__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
UpperCAmelCase__ = None
if job_name and job_links:
UpperCAmelCase__ = job_links.get(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# A list with elements of the form (line of error, error, failed test)
UpperCAmelCase__ = [x + [y] + [job_link] for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )]
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(SCREAMING_SNAKE_CASE__ , job_links=SCREAMING_SNAKE_CASE__ ) )
return errors
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ):
'''simple docstring'''
UpperCAmelCase__ = Counter()
counter.update([x[1] for x in logs] )
UpperCAmelCase__ = counter.most_common()
UpperCAmelCase__ = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
UpperCAmelCase__ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
UpperCAmelCase__ = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
UpperCAmelCase__ = test.split("""/""" )[2]
else:
UpperCAmelCase__ = None
return test
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = [(x[0], x[1], get_model(x[2] )) for x in logs]
UpperCAmelCase__ = [x for x in logs if x[2] is not None]
UpperCAmelCase__ = {x[2] for x in logs}
UpperCAmelCase__ = {}
for test in tests:
UpperCAmelCase__ = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
UpperCAmelCase__ = counter.most_common()
UpperCAmelCase__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
UpperCAmelCase__ = sum(error_counts.values() )
if n_errors > 0:
UpperCAmelCase__ = {"""count""": n_errors, """errors""": error_counts}
UpperCAmelCase__ = dict(sorted(r.items() , key=lambda SCREAMING_SNAKE_CASE__ : item[1]["count"] , reverse=SCREAMING_SNAKE_CASE__ ) )
return r
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = """| no. | error | status |"""
UpperCAmelCase__ = """|-:|:-|:-|"""
UpperCAmelCase__ = [header, sep]
for error in reduced_by_error:
UpperCAmelCase__ = reduced_by_error[error]["""count"""]
UpperCAmelCase__ = F'''| {count} | {error[:100]} | |'''
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = """| model | no. of errors | major error | count |"""
UpperCAmelCase__ = """|-:|-:|-:|-:|"""
UpperCAmelCase__ = [header, sep]
for model in reduced_by_model:
UpperCAmelCase__ = reduced_by_model[model]["""count"""]
UpperCAmelCase__ , UpperCAmelCase__ = list(reduced_by_model[model]["""errors"""].items() )[0]
UpperCAmelCase__ = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(SCREAMING_SNAKE_CASE__ )
return "\n".join(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
UpperCAmelCase_ = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
UpperCAmelCase_ = get_job_links(args.workflow_run_id, token=args.token)
UpperCAmelCase_ = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
UpperCAmelCase_ = k.find(' / ')
UpperCAmelCase_ = k[index + len(' / ') :]
UpperCAmelCase_ = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
UpperCAmelCase_ = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
UpperCAmelCase_ = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
UpperCAmelCase_ = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
UpperCAmelCase_ = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
UpperCAmelCase_ = reduce_by_error(errors)
UpperCAmelCase_ = reduce_by_model(errors)
UpperCAmelCase_ = make_github_table(reduced_by_error)
UpperCAmelCase_ = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCAmelCase_ = abspath(join(dirname(dirname(__file__)), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
from diffusers.utils.testing_utils import pytest_terminal_summary_main
UpperCAmelCase__ = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ )
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = cva.getAffineTransform(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return cva.warpAffine(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , (rows, cols) )
if __name__ == "__main__":
# read original image
UpperCAmelCase_ = cva.imread(
str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg')
)
# turn image in gray scale value
UpperCAmelCase_ = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
UpperCAmelCase_ , UpperCAmelCase_ = gray_img.shape
# set different points to rotate image
UpperCAmelCase_ = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa)
UpperCAmelCase_ = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa)
UpperCAmelCase_ = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa)
UpperCAmelCase_ = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa)
# add all rotated images in a list
UpperCAmelCase_ = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
UpperCAmelCase_ = plt.figure(1)
UpperCAmelCase_ = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3']
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray')
plt.title(titles[i])
plt.axis('off')
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
UpperCAmelCase_ = [0, 2, 4, 6, 8]
UpperCAmelCase_ = [1, 3, 5, 7, 9]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
UpperCAmelCase__ = 0
for digit in range(10 ):
UpperCAmelCase__ = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return result
UpperCAmelCase__ = 0
for digita in range(10 ):
UpperCAmelCase__ = digita
if (remainder + digita) % 2 == 0:
UpperCAmelCase__ = ODD_DIGITS
else:
UpperCAmelCase__ = EVEN_DIGITS
for digita in other_parity_digits:
UpperCAmelCase__ = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 9 ):
'''simple docstring'''
UpperCAmelCase__ = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(SCREAMING_SNAKE_CASE__ , 0 , [0] * length , SCREAMING_SNAKE_CASE__ )
return result
if __name__ == "__main__":
print(f"{solution() = }")
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = """facebook/bart-large-mnli"""
lowerCAmelCase_ : str = (
"""This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """
"""should be the text to classify, and `labels`, which should be the list of labels to use for classification. """
"""It returns the most likely label in the list of provided `labels` for the input text."""
)
lowerCAmelCase_ : Dict = """text_classifier"""
lowerCAmelCase_ : Optional[int] = AutoTokenizer
lowerCAmelCase_ : List[str] = AutoModelForSequenceClassification
lowerCAmelCase_ : Optional[Any] = ["""text""", ["""text"""]]
lowerCAmelCase_ : Dict = ["""text"""]
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
super().setup()
UpperCAmelCase__ = self.model.config
UpperCAmelCase__ = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("""entail""" ):
UpperCAmelCase__ = int(_UpperCAmelCase )
if self.entailment_id == -1:
raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = labels
return self.pre_processor(
[text] * len(_UpperCAmelCase ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = outputs.logits
UpperCAmelCase__ = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id]
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ):
'''simple docstring'''
_enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if n == 0:
return 0
UpperCAmelCase__ = float("""-inf""" )
for i in range(1 , n + 1 ):
UpperCAmelCase__ = max(
SCREAMING_SNAKE_CASE__ , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE__ ) )
return max_revue
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ):
'''simple docstring'''
_enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ):
'''simple docstring'''
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
UpperCAmelCase__ = float("""-inf""" )
for i in range(1 , n + 1 ):
UpperCAmelCase__ = max(
SCREAMING_SNAKE_CASE__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , )
UpperCAmelCase__ = max_revenue
return max_rev[n]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ):
'''simple docstring'''
_enforce_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
UpperCAmelCase__ = [float("""-inf""" ) for _ in range(n + 1 )]
UpperCAmelCase__ = 0
for i in range(1 , n + 1 ):
UpperCAmelCase__ = max_rev[i]
for j in range(1 , i + 1 ):
UpperCAmelCase__ = max(SCREAMING_SNAKE_CASE__ , prices[j - 1] + max_rev[i - j] )
UpperCAmelCase__ = max_revenue_i
return max_rev[n]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ):
'''simple docstring'''
if n < 0:
UpperCAmelCase__ = F'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(SCREAMING_SNAKE_CASE__ )
if n > len(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = (
"""Each integral piece of rod must have a corresponding price. """
F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE__ )}'''
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = [6, 10, 12, 15, 20, 23]
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
UpperCAmelCase__ = 36
UpperCAmelCase__ = top_down_cut_rod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = bottom_up_cut_rod(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = [x.strip() for x in open(SCREAMING_SNAKE_CASE__ ).readlines()]
UpperCAmelCase__ = [x.strip() for x in open(SCREAMING_SNAKE_CASE__ ).readlines()][: len(SCREAMING_SNAKE_CASE__ )]
UpperCAmelCase__ = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
if save_path is not None:
save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : int=64 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=10 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=[1, 16, 4, 4] , _UpperCAmelCase : List[str]=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = image_size
UpperCAmelCase__ = patch_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = scope
UpperCAmelCase__ = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase__ = (self.image_size // 32) ** 2
UpperCAmelCase__ = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = ViTHybridModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.type_sequence_label_size
UpperCAmelCase__ = ViTHybridForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs
UpperCAmelCase__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
lowerCAmelCase_ : Optional[int] = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase_ : Union[str, Any] = False
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : Optional[int] = False
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = ViTHybridModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase__ = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(config=_UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase__ = [f'''{name}.{key}''' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = ViTHybridModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
_UpperCAmelCase )
UpperCAmelCase__ = self.default_image_processor
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
UpperCAmelCase__ = model(**_UpperCAmelCase )
# verify the logits
UpperCAmelCase__ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
UpperCAmelCase__ = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) )
@slow
@require_accelerate
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
UpperCAmelCase__ = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
UpperCAmelCase__ = prepare_img()
UpperCAmelCase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" )
UpperCAmelCase__ = model(**_UpperCAmelCase )
UpperCAmelCase__ = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase__ = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'microsoft/xprophetnet-large-wiki100-cased': (
'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'
),
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Dict = """xlm-prophetnet"""
lowerCAmelCase_ : Any = ["""past_key_values"""]
lowerCAmelCase_ : List[str] = {
"""num_attention_heads""": """num_encoder_attention_heads""",
}
def __init__( self : int , _UpperCAmelCase : Optional[float] = 0.1 , _UpperCAmelCase : Optional[Union[str, Callable]] = "gelu" , _UpperCAmelCase : Optional[int] = 3_05_22 , _UpperCAmelCase : Optional[int] = 10_24 , _UpperCAmelCase : Optional[int] = 40_96 , _UpperCAmelCase : Optional[int] = 12 , _UpperCAmelCase : Optional[int] = 16 , _UpperCAmelCase : Optional[int] = 40_96 , _UpperCAmelCase : Optional[int] = 12 , _UpperCAmelCase : Optional[int] = 16 , _UpperCAmelCase : Optional[float] = 0.1 , _UpperCAmelCase : Optional[float] = 0.1 , _UpperCAmelCase : Optional[int] = 5_12 , _UpperCAmelCase : Optional[float] = 0.02 , _UpperCAmelCase : Optional[bool] = True , _UpperCAmelCase : Optional[bool] = True , _UpperCAmelCase : Optional[int] = 0 , _UpperCAmelCase : Optional[int] = 2 , _UpperCAmelCase : Optional[int] = 32 , _UpperCAmelCase : Optional[int] = 1_28 , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : Optional[float] = 0.0 , _UpperCAmelCase : Optional[bool] = True , _UpperCAmelCase : Optional[int] = 0 , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[int] = 2 , **_UpperCAmelCase : Dict , ):
"""simple docstring"""
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = encoder_ffn_dim
UpperCAmelCase__ = num_encoder_layers
UpperCAmelCase__ = num_encoder_attention_heads
UpperCAmelCase__ = decoder_ffn_dim
UpperCAmelCase__ = num_decoder_layers
UpperCAmelCase__ = num_decoder_attention_heads
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = init_std # Normal(0, this parameter)
UpperCAmelCase__ = activation_function
# parameters for xlmprophetnet
UpperCAmelCase__ = ngram
UpperCAmelCase__ = num_buckets
UpperCAmelCase__ = relative_max_distance
UpperCAmelCase__ = disable_ngram_loss
UpperCAmelCase__ = eps
# 3 Types of Dropout
UpperCAmelCase__ = attention_dropout
UpperCAmelCase__ = activation_dropout
UpperCAmelCase__ = dropout
UpperCAmelCase__ = use_cache
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , add_cross_attention=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
@property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Any ):
"""simple docstring"""
raise NotImplementedError(
"""This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"""
""" `num_decoder_layers`.""" )
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
UpperCAmelCase_ = ['gpt2']
UpperCAmelCase_ = 'gpt2'
if is_tf_available():
class lowerCAmelCase_ ( tf.Module ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = tokenizer
UpperCAmelCase__ = AutoConfig.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = TFGPTaLMHeadModel.from_config(_UpperCAmelCase )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.tokenizer(_UpperCAmelCase )
UpperCAmelCase__ = tokenized["""input_ids"""].to_tensor()
UpperCAmelCase__ = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
UpperCAmelCase__ = self.model(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )["""logits"""]
return outputs
@require_tf
@require_keras_nlp
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
super().setUp()
UpperCAmelCase__ = [GPTaTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
UpperCAmelCase__ = [TFGPTaTokenizer.from_pretrained(_UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
UpperCAmelCase__ = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
UpperCAmelCase__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
UpperCAmelCase__ = tokenizer([test_inputs] , return_tensors="""tf""" )
UpperCAmelCase__ = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
UpperCAmelCase__ = python_outputs[key].numpy()
UpperCAmelCase__ = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(_UpperCAmelCase , tf.intaa ) == tf_outputs_values ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase__ = tf.function(_UpperCAmelCase )
for test_inputs in self.test_sentences:
UpperCAmelCase__ = tf.constant(_UpperCAmelCase )
UpperCAmelCase__ = compiled_tokenizer(_UpperCAmelCase )
UpperCAmelCase__ = tf_tokenizer(_UpperCAmelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase__ = ModelToSave(tokenizer=_UpperCAmelCase )
UpperCAmelCase__ = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase__ = model.serving(_UpperCAmelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
UpperCAmelCase__ = Path(_UpperCAmelCase ) / """saved.model"""
tf.saved_model.save(_UpperCAmelCase , _UpperCAmelCase , signatures={"""serving_default""": model.serving} )
UpperCAmelCase__ = tf.saved_model.load(_UpperCAmelCase )
UpperCAmelCase__ = loaded_model.signatures["""serving_default"""](_UpperCAmelCase )["""output_0"""]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
UpperCAmelCase__ = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase__ = tf_tokenizer(_UpperCAmelCase ) # Build model with some sample inputs
UpperCAmelCase__ = tf_tokenizer.get_config()
UpperCAmelCase__ = TFGPTaTokenizer.from_config(_UpperCAmelCase )
UpperCAmelCase__ = model_from_config(_UpperCAmelCase )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
UpperCAmelCase__ = 12_31_23
for max_length in [3, 5, 10_24]:
UpperCAmelCase__ = tf.convert_to_tensor([self.test_sentences[0]] )
UpperCAmelCase__ = tf_tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase )
UpperCAmelCase__ = out["""input_ids"""].numpy().shape[1]
assert out_length == max_length
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
'''simple docstring'''
from random import randint, random
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : int = 5 , ):
'''simple docstring'''
UpperCAmelCase__ = [[-1] * number_of_cells] # Create a highway without any car
UpperCAmelCase__ = 0
UpperCAmelCase__ = max(SCREAMING_SNAKE_CASE__ , 0 )
while i < number_of_cells:
UpperCAmelCase__ = (
randint(0 , SCREAMING_SNAKE_CASE__ ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = highway_now[car_index + 1 :]
for cell in range(len(SCREAMING_SNAKE_CASE__ ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(SCREAMING_SNAKE_CASE__ , -1 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# Beforce calculations, the highway is empty
UpperCAmelCase__ = [-1] * number_of_cells
for car_index in range(SCREAMING_SNAKE_CASE__ ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
UpperCAmelCase__ = min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE__ )
# Number of empty cell before the next car
UpperCAmelCase__ = get_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) - 1
# We can't have the car causing an accident
UpperCAmelCase__ = min(next_highway[car_index] , SCREAMING_SNAKE_CASE__ )
if random() < probability:
# Randomly, a driver will slow down
UpperCAmelCase__ = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = len(highway[0] )
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = update(highway[i] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = [-1] * number_of_cells
for car_index in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
UpperCAmelCase__ = (car_index + speed) % number_of_cells
# Commit the change of position
UpperCAmelCase__ = speed
highway.append(SCREAMING_SNAKE_CASE__ )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
import inspect
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : DDIMScheduler ):
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Tuple , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , )
UpperCAmelCase__ = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
UpperCAmelCase__ = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
UpperCAmelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
UpperCAmelCase__ = {}
if accepts_eta:
UpperCAmelCase__ = eta
for t in self.progress_bar(self.scheduler.timesteps ):
UpperCAmelCase__ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
UpperCAmelCase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
UpperCAmelCase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# decode the image latents with the VAE
UpperCAmelCase__ = self.vqvae.decode(_UpperCAmelCase ).sample
UpperCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 )
UpperCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCAmelCase__ = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_blenderbot': [
'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotConfig',
'BlenderbotOnnxConfig',
],
'tokenization_blenderbot': ['BlenderbotTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['BlenderbotTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotForCausalLM',
'BlenderbotForConditionalGeneration',
'BlenderbotModel',
'BlenderbotPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TFBlenderbotForConditionalGeneration',
'TFBlenderbotModel',
'TFBlenderbotPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'FlaxBlenderbotForConditionalGeneration',
'FlaxBlenderbotModel',
'FlaxBlenderbotPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
UpperCAmelCase_ = datasets.load_iris()
UpperCAmelCase_ = np.array(data['data'])
UpperCAmelCase_ = np.array(data['target'])
UpperCAmelCase_ = data['target_names']
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_test_split(X, y)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE__ ) - np.array(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any=5 ):
'''simple docstring'''
UpperCAmelCase__ = zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# List of distances of all points from the point to be classified
UpperCAmelCase__ = []
for data_point in data:
UpperCAmelCase__ = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
UpperCAmelCase__ = [i[1] for i in sorted(SCREAMING_SNAKE_CASE__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
UpperCAmelCase__ = Counter(SCREAMING_SNAKE_CASE__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 0 ):
'''simple docstring'''
UpperCAmelCase__ = length or len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
UpperCAmelCase__ , UpperCAmelCase__ = list_data[i + 1], list_data[i]
UpperCAmelCase__ = True
return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE__ , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Optional[int]=17 , _UpperCAmelCase : List[str]=23 , _UpperCAmelCase : Optional[int]=11 , _UpperCAmelCase : int=True , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = act_dim
UpperCAmelCase__ = state_dim
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = max_length
UpperCAmelCase__ = is_training
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ = floats_tensor((self.batch_size, self.seq_length, 1) )
UpperCAmelCase__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 )
UpperCAmelCase__ = random_attention_mask((self.batch_size, self.seq_length) )
UpperCAmelCase__ = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , ):
"""simple docstring"""
UpperCAmelCase__ = DecisionTransformerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {
"""states""": states,
"""actions""": actions,
"""rewards""": rewards,
"""returns_to_go""": returns_to_go,
"""timesteps""": timesteps,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : List[Any] = (DecisionTransformerModel,) if is_torch_available() else ()
lowerCAmelCase_ : Optional[int] = ()
lowerCAmelCase_ : Optional[int] = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowerCAmelCase_ : Optional[int] = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowerCAmelCase_ : Tuple = False
lowerCAmelCase_ : Optional[Any] = False
lowerCAmelCase_ : Dict = False
lowerCAmelCase_ : List[Any] = False
lowerCAmelCase_ : Tuple = False
lowerCAmelCase_ : int = False
lowerCAmelCase_ : Tuple = False
lowerCAmelCase_ : List[Any] = False
lowerCAmelCase_ : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = DecisionTransformerModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = DecisionTransformerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase__ = model_class(_UpperCAmelCase )
UpperCAmelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase__ = [*signature.parameters.keys()]
UpperCAmelCase__ = [
"""states""",
"""actions""",
"""rewards""",
"""returns_to_go""",
"""timesteps""",
"""attention_mask""",
]
self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = 2 # number of steps of autoregressive prediction we will perform
UpperCAmelCase__ = 10 # defined by the RL environment, may be normalized
UpperCAmelCase__ = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = model.config
torch.manual_seed(0 )
UpperCAmelCase__ = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset()
UpperCAmelCase__ = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=_UpperCAmelCase )
UpperCAmelCase__ = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 )
UpperCAmelCase__ = state
UpperCAmelCase__ = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa )
UpperCAmelCase__ = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa )
UpperCAmelCase__ = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 )
for step in range(_UpperCAmelCase ):
UpperCAmelCase__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 )
UpperCAmelCase__ = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 )
UpperCAmelCase__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model(
states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ),
1.0,
False,
{},
)
UpperCAmelCase__ = action_pred[0, -1]
UpperCAmelCase__ = torch.cat([states, state] , dim=1 )
UpperCAmelCase__ = returns_to_go[0, -1] - reward
UpperCAmelCase__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
UpperCAmelCase__ = torch.cat(
[timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : List[str] = BertTokenizer
lowerCAmelCase_ : Tuple = BertTokenizerFast
lowerCAmelCase_ : Tuple = True
lowerCAmelCase_ : Optional[int] = True
lowerCAmelCase_ : str = filter_non_english
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
super().setUp()
UpperCAmelCase__ = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = """UNwant\u00E9d,running"""
UpperCAmelCase__ = """unwanted, running"""
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.tokenizer_class(self.vocab_file )
UpperCAmelCase__ = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(_UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = """UNwant\u00E9d,running"""
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase )
UpperCAmelCase__ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# With lower casing
UpperCAmelCase__ = self.get_tokenizer(do_lower_case=_UpperCAmelCase )
UpperCAmelCase__ = self.get_rust_tokenizer(do_lower_case=_UpperCAmelCase )
UpperCAmelCase__ = """UNwant\u00E9d,running"""
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = self.get_rust_tokenizer()
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase )
UpperCAmelCase__ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = BasicTokenizer()
UpperCAmelCase__ = """a\n'll !!to?'d of, can't."""
UpperCAmelCase__ = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""]
self.assertListEqual(tokenizer.tokenize(_UpperCAmelCase ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
UpperCAmelCase__ = {}
for i, token in enumerate(_UpperCAmelCase ):
UpperCAmelCase__ = i
UpperCAmelCase__ = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizer()
UpperCAmelCase__ = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_UpperCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
self.assertListEqual(
[rust_tokenizer.tokenize(_UpperCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
@slow
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""bert-base-uncased""" )
UpperCAmelCase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == [1_01] + text + [1_02]
assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02]
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
UpperCAmelCase__ = tokenizer_r.encode_plus(
_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , )
UpperCAmelCase__ = tokenizer_r.do_lower_case if hasattr(_UpperCAmelCase , """do_lower_case""" ) else False
UpperCAmelCase__ = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = ["""的""", """人""", """有"""]
UpperCAmelCase__ = """""".join(_UpperCAmelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCAmelCase__ = True
UpperCAmelCase__ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_p.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_r.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_r.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_p.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_r.convert_ids_to_tokens(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer_p.convert_ids_to_tokens(_UpperCAmelCase )
# it is expected that only the first Chinese character is not preceded by "##".
UpperCAmelCase__ = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_UpperCAmelCase )
]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if a < 0:
raise ValueError("""Input value must be a positive integer""" )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""Input value must be a 'int' type""" )
return bin(SCREAMING_SNAKE_CASE__ ).count("""1""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = x
UpperCAmelCase__ = y
for step in range(SCREAMING_SNAKE_CASE__ ): # noqa: B007
UpperCAmelCase__ = a * a - b * b + x
UpperCAmelCase__ = 2 * a * b + y
UpperCAmelCase__ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(SCREAMING_SNAKE_CASE__ , 1 , 1 ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 800 , SCREAMING_SNAKE_CASE__ : int = 600 , SCREAMING_SNAKE_CASE__ : float = -0.6 , SCREAMING_SNAKE_CASE__ : float = 0 , SCREAMING_SNAKE_CASE__ : float = 3.2 , SCREAMING_SNAKE_CASE__ : int = 50 , SCREAMING_SNAKE_CASE__ : bool = True , ):
'''simple docstring'''
UpperCAmelCase__ = Image.new("""RGB""" , (image_width, image_height) )
UpperCAmelCase__ = img.load()
# loop through the image-coordinates
for image_x in range(SCREAMING_SNAKE_CASE__ ):
for image_y in range(SCREAMING_SNAKE_CASE__ ):
# determine the figure-coordinates based on the image-coordinates
UpperCAmelCase__ = figure_width / image_width * image_height
UpperCAmelCase__ = figure_center_x + (image_x / image_width - 0.5) * figure_width
UpperCAmelCase__ = figure_center_y + (image_y / image_height - 0.5) * figure_height
UpperCAmelCase__ = get_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
UpperCAmelCase__ = get_color_coded_rgb(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = get_black_and_white_rgb(SCREAMING_SNAKE_CASE__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
UpperCAmelCase_ = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {}
UpperCAmelCase_ = {}
UpperCAmelCase_ = {}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : type , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None , ):
'''simple docstring'''
UpperCAmelCase__ = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' )
UpperCAmelCase__ = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' )
UpperCAmelCase__ = format_type
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Exception , SCREAMING_SNAKE_CASE__ : Optional[str] , SCREAMING_SNAKE_CASE__ : Optional[List[str]] = None ):
'''simple docstring'''
UpperCAmelCase__ = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
UpperCAmelCase__ = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['python'])
_register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow'])
_register_formatter(NumpyFormatter, 'numpy', aliases=['np'])
_register_formatter(PandasFormatter, 'pandas', aliases=['pd'])
_register_formatter(CustomFormatter, 'custom')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch'])
else:
UpperCAmelCase_ = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.')
_register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch'])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, 'tensorflow', aliases=['tf'])
else:
UpperCAmelCase_ = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.')
_register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf'])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, 'jax', aliases=[])
else:
UpperCAmelCase_ = ValueError('JAX needs to be installed to be able to return JAX arrays.')
_register_unavailable_formatter(_jax_error, 'jax', aliases=[])
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[str] ):
'''simple docstring'''
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[str] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = get_format_type_from_alias(SCREAMING_SNAKE_CASE__ )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE__ )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ):
'''simple docstring'''
def update_area_of_max_square(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
UpperCAmelCase__ = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 )
UpperCAmelCase__ = update_area_of_max_square(row + 1 , col + 1 )
UpperCAmelCase__ = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ )
if mat[row][col]:
UpperCAmelCase__ = 1 + min([right, diagonal, down] )
UpperCAmelCase__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ )
return sub_problem_sol
else:
return 0
UpperCAmelCase__ = [0]
update_area_of_max_square(0 , 0 )
return largest_square_area[0]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ):
'''simple docstring'''
def update_area_of_max_square_using_dp_array(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
UpperCAmelCase__ = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if mat[row][col]:
UpperCAmelCase__ = 1 + min([right, diagonal, down] )
UpperCAmelCase__ = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = sub_problem_sol
return sub_problem_sol
else:
return 0
UpperCAmelCase__ = [0]
UpperCAmelCase__ = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )]
update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ )
return largest_square_area[0]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ):
'''simple docstring'''
UpperCAmelCase__ = [[0] * (cols + 1) for _ in range(rows + 1 )]
UpperCAmelCase__ = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
UpperCAmelCase__ = dp_array[row][col + 1]
UpperCAmelCase__ = dp_array[row + 1][col + 1]
UpperCAmelCase__ = dp_array[row + 1][col]
if mat[row][col] == 1:
UpperCAmelCase__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = 0
return largest_square_area
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ):
'''simple docstring'''
UpperCAmelCase__ = [0] * (cols + 1)
UpperCAmelCase__ = [0] * (cols + 1)
UpperCAmelCase__ = 0
for row in range(rows - 1 , -1 , -1 ):
for col in range(cols - 1 , -1 , -1 ):
UpperCAmelCase__ = current_row[col + 1]
UpperCAmelCase__ = next_row[col + 1]
UpperCAmelCase__ = next_row[col]
if mat[row][col] == 1:
UpperCAmelCase__ = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = max(current_row[col] , SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = 0
UpperCAmelCase__ = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.dummy_uncond_unet
UpperCAmelCase__ = DDIMScheduler()
UpperCAmelCase__ = self.dummy_vq_model
UpperCAmelCase__ = LDMPipeline(unet=_UpperCAmelCase , vqvae=_UpperCAmelCase , scheduler=_UpperCAmelCase )
ldm.to(_UpperCAmelCase )
ldm.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = ldm(generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""numpy""" ).images
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = ldm(generator=_UpperCAmelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=_UpperCAmelCase )[0]
UpperCAmelCase__ = image[0, -3:, -3:, -1]
UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase__ = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] )
UpperCAmelCase__ = 1E-2 if torch_device != """mps""" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(_UpperCAmelCase )
ldm.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = ldm(generator=_UpperCAmelCase , num_inference_steps=5 , output_type="""numpy""" ).images
UpperCAmelCase__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase__ = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] )
UpperCAmelCase__ = 1E-2 if torch_device != """mps""" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=False ):
'''simple docstring'''
try:
UpperCAmelCase__ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
UpperCAmelCase__ = default
else:
# KEY is set, convert it to True or False.
try:
UpperCAmelCase__ = strtobool(SCREAMING_SNAKE_CASE__ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''' )
return _value
UpperCAmelCase_ = parse_flag_from_env('RUN_SLOW', default=False)
UpperCAmelCase_ = parse_flag_from_env('RUN_REMOTE', default=False)
UpperCAmelCase_ = parse_flag_from_env('RUN_LOCAL', default=True)
UpperCAmelCase_ = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
UpperCAmelCase_ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
UpperCAmelCase_ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
UpperCAmelCase_ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
UpperCAmelCase_ = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
UpperCAmelCase_ = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
UpperCAmelCase_ = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
UpperCAmelCase_ = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("""test requires faiss""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("""test requires regex""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("""test requires elasticsearch""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
UpperCAmelCase__ = unittest.skip("""test requires sqlalchemy""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
UpperCAmelCase__ = unittest.skip("""test requires PyTorch""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
if not config.TF_AVAILABLE:
UpperCAmelCase__ = unittest.skip("""test requires TensorFlow""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
UpperCAmelCase__ = unittest.skip("""test requires JAX""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
UpperCAmelCase__ = unittest.skip("""test requires Pillow""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(SCREAMING_SNAKE_CASE__ )
else:
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(SCREAMING_SNAKE_CASE__ )
else:
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(SCREAMING_SNAKE_CASE__ )
else:
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
def _require_spacy_model(SCREAMING_SNAKE_CASE__ : Optional[Any] ):
try:
import spacy # noqa F401
spacy.load(SCREAMING_SNAKE_CASE__ )
except ImportError:
return unittest.skip("""test requires spacy""" )(SCREAMING_SNAKE_CASE__ )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(SCREAMING_SNAKE_CASE__ ) )(SCREAMING_SNAKE_CASE__ )
else:
return test_case
return _require_spacy_model
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(SCREAMING_SNAKE_CASE__ )
else:
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(SCREAMING_SNAKE_CASE__ )
else:
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
UpperCAmelCase__ = unittest.skip("""test is slow""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
UpperCAmelCase__ = unittest.skip("""test is local""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
UpperCAmelCase__ = unittest.skip("""test is packaged""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
UpperCAmelCase__ = unittest.skip("""test requires remote""" )(SCREAMING_SNAKE_CASE__ )
return test_case
def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
def decorate(cls : Optional[int] ):
for name, fn in cls.__dict__.items():
if callable(SCREAMING_SNAKE_CASE__ ) and name.startswith("""test""" ):
for decorator in decorators:
UpperCAmelCase__ = decorator(SCREAMING_SNAKE_CASE__ )
setattr(cls , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return cls
return decorate
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
pass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : str = 0
lowerCAmelCase_ : Dict = 1
lowerCAmelCase_ : int = 2
@contextmanager
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str]=OfflineSimulationMode.CONNECTION_FAILS , SCREAMING_SNAKE_CASE__ : str=1e-16 ):
'''simple docstring'''
UpperCAmelCase__ = requests.Session().request
def timeout_request(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Dict ):
# Change the url to an invalid url so that the connection hangs
UpperCAmelCase__ = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' )
UpperCAmelCase__ = timeout
try:
return online_request(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
UpperCAmelCase__ = url
UpperCAmelCase__ = e.args[0]
UpperCAmelCase__ = (max_retry_error.args[0].replace("""10.255.255.1""" , F'''OfflineMock[{url}]''' ),)
UpperCAmelCase__ = (max_retry_error,)
raise
def raise_connection_error(SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : List[Any] ):
raise requests.ConnectionError("""Offline mode is enabled.""" , request=SCREAMING_SNAKE_CASE__ )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" , SCREAMING_SNAKE_CASE__ ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" , SCREAMING_SNAKE_CASE__ ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" , SCREAMING_SNAKE_CASE__ ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _UpperCamelCase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = str(Path().resolve() )
with tempfile.TemporaryDirectory(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) as tmp_dir:
try:
os.chdir(SCREAMING_SNAKE_CASE__ )
yield
finally:
os.chdir(SCREAMING_SNAKE_CASE__ )
@contextmanager
def _UpperCamelCase ( ):
'''simple docstring'''
import gc
gc.collect()
UpperCAmelCase__ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _UpperCamelCase ( ):
'''simple docstring'''
import gc
gc.collect()
UpperCAmelCase__ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
return deepcopy(SCREAMING_SNAKE_CASE__ ).integers(0 , 100 , 10 ).tolist() == deepcopy(SCREAMING_SNAKE_CASE__ ).integers(0 , 100 , 10 ).tolist()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(SCREAMING_SNAKE_CASE__ : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Any ):
try:
return func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
except HTTPError as err:
if str(SCREAMING_SNAKE_CASE__ ).startswith("""500""" ) or str(SCREAMING_SNAKE_CASE__ ).startswith("""502""" ):
pytest.xfail(str(SCREAMING_SNAKE_CASE__ ) )
raise err
return decorator.decorator(_wrapper , SCREAMING_SNAKE_CASE__ )
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = returncode
UpperCAmelCase__ = stdout
UpperCAmelCase__ = stderr
async def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
while True:
UpperCAmelCase__ = await stream.readline()
if line:
callback(SCREAMING_SNAKE_CASE__ )
else:
break
async def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Dict=False ):
'''simple docstring'''
if echo:
print("""\nRunning: """ , """ """.join(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=SCREAMING_SNAKE_CASE__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=SCREAMING_SNAKE_CASE__ , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
UpperCAmelCase__ = []
UpperCAmelCase__ = []
def tee(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple="" ):
UpperCAmelCase__ = line.decode("""utf-8""" ).rstrip()
sink.append(SCREAMING_SNAKE_CASE__ )
if not quiet:
print(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , file=SCREAMING_SNAKE_CASE__ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda SCREAMING_SNAKE_CASE__ : tee(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , sys.stdout , label="""stdout:""" ) ),
_read_stream(p.stderr , lambda SCREAMING_SNAKE_CASE__ : tee(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , sys.stderr , label="""stderr:""" ) ),
] , timeout=SCREAMING_SNAKE_CASE__ , )
return _RunOutput(await p.wait() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=180 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Tuple=True ):
'''simple docstring'''
UpperCAmelCase__ = asyncio.get_event_loop()
UpperCAmelCase__ = loop.run_until_complete(
_stream_subprocess(SCREAMING_SNAKE_CASE__ , env=SCREAMING_SNAKE_CASE__ , stdin=SCREAMING_SNAKE_CASE__ , timeout=SCREAMING_SNAKE_CASE__ , quiet=SCREAMING_SNAKE_CASE__ , echo=SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = """ """.join(SCREAMING_SNAKE_CASE__ )
if result.returncode > 0:
UpperCAmelCase__ = """\n""".join(result.stderr )
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' )
return result
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" )
UpperCAmelCase__ = re.sub(r"""^gw""" , """""" , SCREAMING_SNAKE_CASE__ , 0 , re.M )
return int(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = 29500
UpperCAmelCase__ = pytest_xdist_worker_id()
return port + uniq_delta
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
UpperCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
UpperCAmelCase_ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
UpperCAmelCase__ = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = """src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : str=None ):
"""simple docstring"""
UpperCAmelCase__ = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
UpperCAmelCase__ = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
UpperCAmelCase__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
UpperCAmelCase__ = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase )
UpperCAmelCase__ = os.path.join(self.diffusers_dir , """new_code.py""" )
with open(_UpperCAmelCase , """w""" , newline="""\n""" ) as f:
f.write(_UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase )
with open(_UpperCAmelCase , """r""" ) as f:
self.assertTrue(f.read() , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , _UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , _UpperCAmelCase ) , )
# Copy consistency with a really long name
UpperCAmelCase__ = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , _UpperCAmelCase , _UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , _UpperCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , _UpperCAmelCase ) , )
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import numpy as np
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : np.array ):
'''simple docstring'''
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
UpperCAmelCase_ = tuple[float, float, float]
UpperCAmelCase_ = tuple[float, float, float]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Pointad , SCREAMING_SNAKE_CASE__ : Pointad ):
'''simple docstring'''
UpperCAmelCase__ = end_pointa[0] - end_pointa[0]
UpperCAmelCase__ = end_pointa[1] - end_pointa[1]
UpperCAmelCase__ = end_pointa[2] - end_pointa[2]
return (x, y, z)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Vectorad , SCREAMING_SNAKE_CASE__ : Vectorad ):
'''simple docstring'''
UpperCAmelCase__ = ab[1] * ac[2] - ab[2] * ac[1] # *i
UpperCAmelCase__ = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j
UpperCAmelCase__ = ab[0] * ac[1] - ab[1] * ac[0] # *k
return (x, y, z)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Vectorad , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return tuple(round(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in vector ) == (0, 0, 0)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Pointad , SCREAMING_SNAKE_CASE__ : Pointad , SCREAMING_SNAKE_CASE__ : Pointad , SCREAMING_SNAKE_CASE__ : int = 10 ):
'''simple docstring'''
UpperCAmelCase__ = create_vector(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = create_vector(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_zero_vector(get_ad_vectors_cross(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = '▁'
UpperCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'}
UpperCAmelCase_ = {
'vocab_file': {
'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model',
}
}
UpperCAmelCase_ = {
'facebook/xglm-564M': 2_0_4_8,
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : str="</s>" , _UpperCAmelCase : Tuple="</s>" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : int="<pad>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
UpperCAmelCase__ = 7
UpperCAmelCase__ = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )]
UpperCAmelCase__ = kwargs.get("""additional_special_tokens""" , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
UpperCAmelCase__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
UpperCAmelCase__ = 1
# Mimic fairseq token-to-id alignment for the first 4 token
UpperCAmelCase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
UpperCAmelCase__ = len(self.sp_model )
UpperCAmelCase__ = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(_UpperCAmelCase )
UpperCAmelCase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[int] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
UpperCAmelCase__ = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCAmelCase ))
return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase ))
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : str ):
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCAmelCase__ = self.sp_model.PieceToId(_UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = (DDPMScheduler,)
def SCREAMING_SNAKE_CASE__ ( self : Dict , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
self.check_over_configs(thresholding=_UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
UpperCAmelCase__ = torch.manual_seed(0 )
for t in reversed(range(_UpperCAmelCase ) ):
# 1. predict noise residual
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCAmelCase__ = pred_prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 258.9606 ) < 1E-2
assert abs(result_mean.item() - 0.3372 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(prediction_type="""v_prediction""" )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
UpperCAmelCase__ = torch.manual_seed(0 )
for t in reversed(range(_UpperCAmelCase ) ):
# 1. predict noise residual
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
# 2. predict previous mean of sample x_t-1
UpperCAmelCase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
UpperCAmelCase__ = pred_prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 202.0296 ) < 1E-2
assert abs(result_mean.item() - 0.2631 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_UpperCAmelCase )
UpperCAmelCase__ = scheduler.timesteps
for i, timestep in enumerate(_UpperCAmelCase ):
if i == len(_UpperCAmelCase ) - 1:
UpperCAmelCase__ = -1
else:
UpperCAmelCase__ = timesteps[i + 1]
UpperCAmelCase__ = scheduler.previous_timestep(_UpperCAmelCase )
UpperCAmelCase__ = prev_t.item()
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = [1_00, 87, 50, 51, 0]
with self.assertRaises(_UpperCAmelCase , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = [1_00, 87, 50, 1, 0]
UpperCAmelCase__ = len(_UpperCAmelCase )
with self.assertRaises(_UpperCAmelCase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_UpperCAmelCase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_UpperCAmelCase )
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
UpperCAmelCase_ = datasets.logging.get_logger(__name__)
UpperCAmelCase_ = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n'
UpperCAmelCase_ = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n'
UpperCAmelCase_ = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n'
UpperCAmelCase_ = {
'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip',
'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip',
'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip',
'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip',
'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip',
'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip',
'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip',
'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip',
'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip',
'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip',
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
if self.config_name == "default":
logger.warning(
"""Using default BLEURT-Base checkpoint for sequence maximum length 128. """
"""You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" )
UpperCAmelCase__ = """bleurt-base-128"""
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCAmelCase__ = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCAmelCase__ = self.config_name.upper()
else:
raise KeyError(
f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCAmelCase__ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCAmelCase__ = score.BleurtScorer(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.scorer.score(references=_UpperCAmelCase , candidates=_UpperCAmelCase )
return {"scores": scores}
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x20000 and cp <= 0x2a6df) #
or (cp >= 0x2a700 and cp <= 0x2b73f) #
or (cp >= 0x2b740 and cp <= 0x2b81f) #
or (cp >= 0x2b820 and cp <= 0x2ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2f800 and cp <= 0x2fa1f) #
): #
return True
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
for char in word:
UpperCAmelCase__ = ord(SCREAMING_SNAKE_CASE__ )
if not _is_chinese_char(SCREAMING_SNAKE_CASE__ ):
return 0
return 1
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = set()
for token in tokens:
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) > 1 and is_chinese(SCREAMING_SNAKE_CASE__ )
if chinese_word:
word_set.add(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = list(SCREAMING_SNAKE_CASE__ )
return word_list
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : set() ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
UpperCAmelCase__ = max([len(SCREAMING_SNAKE_CASE__ ) for w in chinese_word_set] )
UpperCAmelCase__ = bert_tokens
UpperCAmelCase__ , UpperCAmelCase__ = 0, len(SCREAMING_SNAKE_CASE__ )
while start < end:
UpperCAmelCase__ = True
if is_chinese(bert_word[start] ):
UpperCAmelCase__ = min(end - start , SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ , 1 , -1 ):
UpperCAmelCase__ = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCAmelCase__ = """##""" + bert_word[j]
UpperCAmelCase__ = start + i
UpperCAmelCase__ = False
break
if single_word:
start += 1
return bert_word
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : LTP , SCREAMING_SNAKE_CASE__ : BertTokenizer ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 100 ):
UpperCAmelCase__ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
UpperCAmelCase__ = [get_chinese_word(SCREAMING_SNAKE_CASE__ ) for r in res]
ltp_res.extend(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = []
for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 100 ):
UpperCAmelCase__ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = []
for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = []
for id in input_ids:
UpperCAmelCase__ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE__ )
input_tokens.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = add_sub_symbol(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(SCREAMING_SNAKE_CASE__ ):
if token[:2] == "##":
UpperCAmelCase__ = token[2:]
# save chinese tokens' pos
if len(SCREAMING_SNAKE_CASE__ ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE__ ) ):
ref_id.append(SCREAMING_SNAKE_CASE__ )
ref_ids.append(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
return ref_ids
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
UpperCAmelCase__ = f.readlines()
UpperCAmelCase__ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCAmelCase__ = LTP(args.ltp ) # faster in GPU device
UpperCAmelCase__ = BertTokenizer.from_pretrained(args.bert )
UpperCAmelCase__ = prepare_ref(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
UpperCAmelCase__ = [json.dumps(SCREAMING_SNAKE_CASE__ ) + """\n""" for ref in ref_ids]
f.writelines(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
UpperCAmelCase_ = parser.parse_args()
main(args)
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
UpperCAmelCase_ = False
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
UpperCAmelCase__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
UpperCAmelCase__ = torch.manual_seed(0 )
UpperCAmelCase__ = pipe(
image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase__ = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
'''simple docstring'''
import heapq
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : dict ):
'''simple docstring'''
UpperCAmelCase__ = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(SCREAMING_SNAKE_CASE__ , [-1 * len(SCREAMING_SNAKE_CASE__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
UpperCAmelCase__ = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
UpperCAmelCase__ = heapq.heappop(SCREAMING_SNAKE_CASE__ )[1][0]
chosen_vertices.add(SCREAMING_SNAKE_CASE__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
UpperCAmelCase__ = elem[1][1].index(SCREAMING_SNAKE_CASE__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(SCREAMING_SNAKE_CASE__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
from fractions import Fraction
from math import gcd, sqrt
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = int(number**0.5 )
return number == sq * sq
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
UpperCAmelCase__ = x_den * y_den * z_den
UpperCAmelCase__ = gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
top //= hcf
bottom //= hcf
return top, bottom
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 35 ):
'''simple docstring'''
UpperCAmelCase__ = set()
UpperCAmelCase__ = 42
UpperCAmelCase__ = Fraction(0 )
UpperCAmelCase__ = 42
for x_num in range(1 , order + 1 ):
for x_den in range(x_num + 1 , order + 1 ):
for y_num in range(1 , order + 1 ):
for y_den in range(y_num + 1 , order + 1 ):
# n=1
UpperCAmelCase__ = x_num * y_den + x_den * y_num
UpperCAmelCase__ = x_den * y_den
UpperCAmelCase__ = gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCAmelCase__ = add_three(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
unique_s.add(SCREAMING_SNAKE_CASE__ )
# n=2
UpperCAmelCase__ = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
UpperCAmelCase__ = x_den * x_den * y_den * y_den
if is_sq(SCREAMING_SNAKE_CASE__ ) and is_sq(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = int(sqrt(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = int(sqrt(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCAmelCase__ = add_three(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
unique_s.add(SCREAMING_SNAKE_CASE__ )
# n=-1
UpperCAmelCase__ = x_num * y_num
UpperCAmelCase__ = x_den * y_num + x_num * y_den
UpperCAmelCase__ = gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCAmelCase__ = add_three(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
unique_s.add(SCREAMING_SNAKE_CASE__ )
# n=2
UpperCAmelCase__ = x_num * x_num * y_num * y_num
UpperCAmelCase__ = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(SCREAMING_SNAKE_CASE__ ) and is_sq(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = int(sqrt(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = int(sqrt(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase__ = gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
UpperCAmelCase__ = add_three(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
unique_s.add(SCREAMING_SNAKE_CASE__ )
for num, den in unique_s:
total += Fraction(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return total.denominator + total.numerator
if __name__ == "__main__":
print(f"{solution() = }")
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json',
'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json',
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = """markuplm"""
def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any]=3_05_22 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1E-12 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : int=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=2_56 , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Tuple=2_16 , _UpperCAmelCase : int=10_01 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : List[str]=50 , _UpperCAmelCase : Any="absolute" , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[str] , ):
"""simple docstring"""
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = position_embedding_type
UpperCAmelCase__ = use_cache
UpperCAmelCase__ = classifier_dropout
# additional properties
UpperCAmelCase__ = max_depth
UpperCAmelCase__ = max_xpath_tag_unit_embeddings
UpperCAmelCase__ = max_xpath_subs_unit_embeddings
UpperCAmelCase__ = tag_pad_id
UpperCAmelCase__ = subs_pad_id
UpperCAmelCase__ = xpath_unit_hidden_size
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : int=2 , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=5_12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Any="last" , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_lengths
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = gelu_activation
UpperCAmelCase__ = sinusoidal_embeddings
UpperCAmelCase__ = causal
UpperCAmelCase__ = asm
UpperCAmelCase__ = n_langs
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = n_special
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = summary_type
UpperCAmelCase__ = use_proj
UpperCAmelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_input_lengths:
UpperCAmelCase__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , 2 ).float()
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , lengths=_UpperCAmelCase , langs=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , langs=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertWithLMHeadModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertForQuestionAnsweringSimple(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , p_mask=_UpperCAmelCase , )
UpperCAmelCase__ = model(
_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , cls_index=_UpperCAmelCase , is_impossible=_UpperCAmelCase , )
((UpperCAmelCase__) , ) = result_with_labels.to_tuple()
UpperCAmelCase__ = model(_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase )
((UpperCAmelCase__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = FlaubertForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = FlaubertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : str = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowerCAmelCase_ : Tuple = (
{
"""feature-extraction""": FlaubertModel,
"""fill-mask""": FlaubertWithLMHeadModel,
"""question-answering""": FlaubertForQuestionAnsweringSimple,
"""text-classification""": FlaubertForSequenceClassification,
"""token-classification""": FlaubertForTokenClassification,
"""zero-shot""": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
UpperCAmelCase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
UpperCAmelCase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = FlaubertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(config=_UpperCAmelCase )
UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """traced_model.pt""" ) )
UpperCAmelCase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """traced_model.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
UpperCAmelCase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase )[0]
UpperCAmelCase__ = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
UpperCAmelCase__ = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return x + 2
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = """x = 3"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
assert result == 3
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} )
UpperCAmelCase__ = """x = y"""
UpperCAmelCase__ = {"""y""": 5}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCAmelCase , {"""x""": 5, """y""": 5} )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """y = add_two(x)"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase )
assert result == 5
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} )
# Won't work without the tool
with CaptureStdout() as out:
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
assert result is None
assert "tried to execute add_two" in out.out
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = """x = 3"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
assert result == 3
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3} )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = """test_dict = {'x': x, 'y': add_two(x)}"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase )
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} )
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = """x = 3\ny = 5"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 5} )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = """text = f'This is x: {x}.'"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """text""": """This is x: 3."""} )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = """if x <= 3:\n y = 2\nelse:\n y = 5"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 2} )
UpperCAmelCase__ = {"""x""": 8}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCAmelCase , {"""x""": 8, """y""": 5} )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = """test_list = [x, add_two(x)]"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [3, 5] )
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """y = x"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {} , state=_UpperCAmelCase )
assert result == 3
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """y""": 3} )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = """test_list = [x, add_two(x)]\ntest_list[1]"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase )
assert result == 5
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_list""": [3, 5]} )
UpperCAmelCase__ = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"""
UpperCAmelCase__ = {"""x""": 3}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""add_two""": add_two} , state=_UpperCAmelCase )
assert result == 5
self.assertDictEqual(_UpperCAmelCase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """x = 0\nfor i in range(3):\n x = i"""
UpperCAmelCase__ = {}
UpperCAmelCase__ = evaluate(_UpperCAmelCase , {"""range""": range} , state=_UpperCAmelCase )
assert result == 2
self.assertDictEqual(_UpperCAmelCase , {"""x""": 2, """i""": 2} )
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : str ):
"""simple docstring"""
warnings.warn(
"""The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use DeformableDetrImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
UpperCAmelCase_ = 'bart'
UpperCAmelCase_ = True
@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
if LOAD_DENSE_INDEX:
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
UpperCAmelCase__ = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
UpperCAmelCase__ = qar_model.eval()
else:
UpperCAmelCase__ , UpperCAmelCase__ = (None, None)
if MODEL_TYPE == "bart":
UpperCAmelCase__ = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
UpperCAmelCase__ = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
UpperCAmelCase__ = sas_model.eval()
else:
UpperCAmelCase__ , UpperCAmelCase__ = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
if LOAD_DENSE_INDEX:
UpperCAmelCase__ = faiss.StandardGpuResources()
UpperCAmelCase__ = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
UpperCAmelCase__ = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
UpperCAmelCase__ = faiss.IndexFlatIP(128 )
UpperCAmelCase__ = faiss.index_cpu_to_gpu(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ )
wikiaab_gpu_index_flat.add(SCREAMING_SNAKE_CASE__ ) # TODO fix for larger GPU
else:
UpperCAmelCase__ , UpperCAmelCase__ = (None, None)
UpperCAmelCase__ = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
UpperCAmelCase__ = elia["""train_eli5"""]
UpperCAmelCase__ = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
UpperCAmelCase__ = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(SCREAMING_SNAKE_CASE__ )
return (elia_train, eli5_train_q_index)
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_indexes()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = load_models()
UpperCAmelCase_ , UpperCAmelCase_ = load_train_data()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str=10 ):
'''simple docstring'''
UpperCAmelCase__ = embed_questions_for_retrieval([question] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ = eli5_train_q_index.search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = [elia_train[int(SCREAMING_SNAKE_CASE__ )] for i in I[0]]
return nn_examples
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any="wiki40b" , SCREAMING_SNAKE_CASE__ : str="dense" , SCREAMING_SNAKE_CASE__ : str=10 ):
'''simple docstring'''
if source == "none":
UpperCAmelCase__ , UpperCAmelCase__ = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
UpperCAmelCase__ , UpperCAmelCase__ = query_qa_dense_index(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ , UpperCAmelCase__ = query_es_index(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index_name="""english_wiki40b_snippets_100w""" , n_results=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
UpperCAmelCase__ = """question: {} context: {}""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda SCREAMING_SNAKE_CASE__ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda SCREAMING_SNAKE_CASE__ : None),
} )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=64 , SCREAMING_SNAKE_CASE__ : Optional[int]=256 , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : Any=2 , SCREAMING_SNAKE_CASE__ : str=0.95 , SCREAMING_SNAKE_CASE__ : str=0.8 ):
'''simple docstring'''
with torch.no_grad():
UpperCAmelCase__ = qa_sas_generate(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , num_answers=1 , num_beams=SCREAMING_SNAKE_CASE__ , min_len=SCREAMING_SNAKE_CASE__ , max_len=SCREAMING_SNAKE_CASE__ , do_sample=SCREAMING_SNAKE_CASE__ , temp=SCREAMING_SNAKE_CASE__ , top_p=SCREAMING_SNAKE_CASE__ , top_k=SCREAMING_SNAKE_CASE__ , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title('Long Form Question Answering with ELI5')
# Start sidebar
UpperCAmelCase_ = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>'
UpperCAmelCase_ = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
UpperCAmelCase_ = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n'
st.sidebar.markdown(description, unsafe_allow_html=True)
UpperCAmelCase_ = [
'Answer the question',
'View the retrieved document only',
'View the most similar ELI5 question and answer',
'Show me everything, please!',
]
UpperCAmelCase_ = st.sidebar.checkbox('Demo options')
if demo_options:
UpperCAmelCase_ = st.sidebar.selectbox(
'',
action_list,
index=3,
)
UpperCAmelCase_ = action_list.index(action_st)
UpperCAmelCase_ = st.sidebar.selectbox(
'',
['Show full text of passages', 'Show passage section titles'],
index=0,
)
UpperCAmelCase_ = show_type == 'Show full text of passages'
else:
UpperCAmelCase_ = 3
UpperCAmelCase_ = True
UpperCAmelCase_ = st.sidebar.checkbox('Retrieval options')
if retrieval_options:
UpperCAmelCase_ = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n '
st.sidebar.markdown(retriever_info)
UpperCAmelCase_ = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none'])
UpperCAmelCase_ = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed'])
else:
UpperCAmelCase_ = 'wiki40b'
UpperCAmelCase_ = 'dense'
UpperCAmelCase_ = 'beam'
UpperCAmelCase_ = 2
UpperCAmelCase_ = 6_4
UpperCAmelCase_ = 2_5_6
UpperCAmelCase_ = None
UpperCAmelCase_ = None
UpperCAmelCase_ = st.sidebar.checkbox('Generation options')
if generate_options:
UpperCAmelCase_ = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n '
st.sidebar.markdown(generate_info)
UpperCAmelCase_ = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled'])
UpperCAmelCase_ = st.sidebar.slider(
'Minimum generation length', min_value=8, max_value=2_5_6, value=6_4, step=8, format=None, key=None
)
UpperCAmelCase_ = st.sidebar.slider(
'Maximum generation length', min_value=6_4, max_value=5_1_2, value=2_5_6, step=1_6, format=None, key=None
)
if sampled == "beam":
UpperCAmelCase_ = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
UpperCAmelCase_ = st.sidebar.slider(
'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None
)
UpperCAmelCase_ = st.sidebar.slider(
'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None
)
UpperCAmelCase_ = None
# start main text
UpperCAmelCase_ = [
'<MY QUESTION>',
'How do people make chocolate?',
'Why do we get a fever when we are sick?',
'How can different animals perceive different colors?',
'What is natural language processing?',
'What\'s the best way to treat a sunburn?',
'What exactly are vitamins ?',
'How does nuclear energy provide electricity?',
'What\'s the difference between viruses and bacteria?',
'Why are flutes classified as woodwinds when most of them are made out of metal ?',
'Why do people like drinking coffee even though it tastes so bad?',
'What happens when wine ages? How does it make the wine taste better?',
'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?',
'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?',
'How does New Zealand have so many large bird predators?',
]
UpperCAmelCase_ = st.selectbox(
'What would you like to ask? ---- select <MY QUESTION> to enter a new query',
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
UpperCAmelCase_ = st.text_input('Enter your question here:', '')
else:
UpperCAmelCase_ = question_s
if st.button('Show me!'):
if action in [0, 1, 3]:
if index_type == "mixed":
UpperCAmelCase_ , UpperCAmelCase_ = make_support(question, source=wiki_source, method='dense', n_results=1_0)
UpperCAmelCase_ , UpperCAmelCase_ = make_support(question, source=wiki_source, method='sparse', n_results=1_0)
UpperCAmelCase_ = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
UpperCAmelCase_ = support_list[:1_0]
UpperCAmelCase_ = '<P> ' + ' <P> '.join([res[-1] for res in support_list])
else:
UpperCAmelCase_ , UpperCAmelCase_ = make_support(question, source=wiki_source, method=index_type, n_results=1_0)
if action in [0, 3]:
UpperCAmelCase_ , UpperCAmelCase_ = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == 'sampled'),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown('### The model generated answer is:')
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:')
for i, res in enumerate(support_list):
UpperCAmelCase_ = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_'))
UpperCAmelCase_ = res[1].strip()
if sec_titles == "":
UpperCAmelCase_ = '[{}]({})'.format(res[0], wiki_url)
else:
UpperCAmelCase_ = sec_titles.split(' & ')
UpperCAmelCase_ = ' & '.join(
['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list]
)
st.markdown(
'{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
'> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True
)
if action in [2, 3]:
UpperCAmelCase_ = find_nearest_training(question)
UpperCAmelCase_ = nn_train_list[0]
st.markdown(
'--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title'])
)
UpperCAmelCase_ = [
'{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != '']))
for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score']))
if i == 0 or sc > 2
]
st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st)))
UpperCAmelCase_ = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n'
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[int | str] ):
'''simple docstring'''
create_state_space_tree(SCREAMING_SNAKE_CASE__ , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : list[int | str] , SCREAMING_SNAKE_CASE__ : list[int | str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , ):
'''simple docstring'''
if index == len(SCREAMING_SNAKE_CASE__ ):
print(SCREAMING_SNAKE_CASE__ )
return
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
UpperCAmelCase__ = True
create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , SCREAMING_SNAKE_CASE__ )
current_sequence.pop()
UpperCAmelCase__ = False
UpperCAmelCase_ = [3, 1, 2, 4]
generate_all_permutations(sequence)
UpperCAmelCase_ = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} )
lowerCAmelCase_ : ClassVar[Features] = Features({"""audio""": Audio()} )
lowerCAmelCase_ : ClassVar[Features] = Features({"""transcription""": Value("""string""" )} )
lowerCAmelCase_ : str = "audio"
lowerCAmelCase_ : str = "transcription"
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.audio_column not in features:
raise ValueError(f'''Column {self.audio_column} is not present in features.''' )
if not isinstance(features[self.audio_column] , _UpperCAmelCase ):
raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' )
UpperCAmelCase__ = copy.deepcopy(self )
UpperCAmelCase__ = self.input_schema.copy()
UpperCAmelCase__ = features[self.audio_column]
UpperCAmelCase__ = input_schema
return task_template
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
from functools import lru_cache
from math import ceil
UpperCAmelCase_ = 1_0_0
UpperCAmelCase_ = set(range(3, NUM_PRIMES, 2))
primes.add(2)
UpperCAmelCase_ = 42
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
UpperCAmelCase__ = set()
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 5000 ):
'''simple docstring'''
for number_to_partition in range(1 , SCREAMING_SNAKE_CASE__ ):
if len(partition(SCREAMING_SNAKE_CASE__ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"{solution() = }")
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class lowerCAmelCase_ :
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
pass
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Image ):
'''simple docstring'''
UpperCAmelCase__ = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Image ):
'''simple docstring'''
UpperCAmelCase__ = np.array(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = npimg.shape
return {"hash": hashimage(SCREAMING_SNAKE_CASE__ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
lowerCAmelCase_ : Dict = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
pass
@require_tf
@unittest.skip("""Image segmentation not implemented in TF""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@slow
@require_torch
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" )
UpperCAmelCase__ = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_56 )
# Shortening by hashing
UpperCAmelCase__ = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053},
{"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9967},
{"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993},
{"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9909},
{"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9879},
{"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9834},
{"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9716},
{"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9612},
{"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9599},
{"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9552},
{"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9532},
{"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9516},
{"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9499},
{"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9483},
{"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9464},
{"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943},
{"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943},
{"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9408},
{"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9335},
{"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9326},
{"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9262},
{"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8999},
{"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8986},
{"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8984},
{"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8873},
{"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8871}
] , )
# fmt: on
@require_torch
@slow
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = """facebook/sam-vit-huge"""
UpperCAmelCase__ = pipeline("""mask-generation""" , model=_UpperCAmelCase )
UpperCAmelCase__ = image_segmenter(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_56 )
# Shortening by hashing
UpperCAmelCase__ = []
for i, o in enumerate(outputs["""masks"""] ):
new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(_UpperCAmelCase , decimals=4 ) , [
{"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444},
{"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0210},
{"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167},
{"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132},
{"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053},
] , )
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
import math
import flax.linen as nn
import jax.numpy as jnp
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : jnp.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 1 , SCREAMING_SNAKE_CASE__ : float = 1 , SCREAMING_SNAKE_CASE__ : float = 1.0e4 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : float = 1.0 , ):
'''simple docstring'''
assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even'''
UpperCAmelCase__ = float(embedding_dim // 2 )
UpperCAmelCase__ = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift)
UpperCAmelCase__ = min_timescale * jnp.exp(jnp.arange(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) * -log_timescale_increment )
UpperCAmelCase__ = jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 1 ) * jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 0 )
# scale embeddings
UpperCAmelCase__ = scale * emb
if flip_sin_to_cos:
UpperCAmelCase__ = jnp.concatenate([jnp.cos(SCREAMING_SNAKE_CASE__ ), jnp.sin(SCREAMING_SNAKE_CASE__ )] , axis=1 )
else:
UpperCAmelCase__ = jnp.concatenate([jnp.sin(SCREAMING_SNAKE_CASE__ ), jnp.cos(SCREAMING_SNAKE_CASE__ )] , axis=1 )
UpperCAmelCase__ = jnp.reshape(SCREAMING_SNAKE_CASE__ , [jnp.shape(SCREAMING_SNAKE_CASE__ )[0], embedding_dim] )
return signal
class lowerCAmelCase_ ( nn.Module ):
'''simple docstring'''
lowerCAmelCase_ : int = 32
lowerCAmelCase_ : jnp.dtype = jnp.floataa
@nn.compact
def __call__( self : List[Any] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(_UpperCAmelCase )
UpperCAmelCase__ = nn.silu(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(_UpperCAmelCase )
return temb
class lowerCAmelCase_ ( nn.Module ):
'''simple docstring'''
lowerCAmelCase_ : int = 32
lowerCAmelCase_ : bool = False
lowerCAmelCase_ : float = 1
@nn.compact
def __call__( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
return get_sinusoidal_embeddings(
_UpperCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
UpperCAmelCase_ = 8.314_4598
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ):
'''simple docstring'''
if temperature < 0:
raise Exception("""Temperature cannot be less than 0 K""" )
if molar_mass <= 0:
raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" )
else:
return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# example
UpperCAmelCase_ = 3_0_0
UpperCAmelCase_ = 2_8
UpperCAmelCase_ = rms_speed_of_molecule(temperature, molar_mass)
print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
'configuration_longformer': [
'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LongformerConfig',
'LongformerOnnxConfig',
],
'tokenization_longformer': ['LongformerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['LongformerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongformerForMaskedLM',
'LongformerForMultipleChoice',
'LongformerForQuestionAnswering',
'LongformerForSequenceClassification',
'LongformerForTokenClassification',
'LongformerModel',
'LongformerPreTrainedModel',
'LongformerSelfAttention',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLongformerForMaskedLM',
'TFLongformerForMultipleChoice',
'TFLongformerForQuestionAnswering',
'TFLongformerForSequenceClassification',
'TFLongformerForTokenClassification',
'TFLongformerModel',
'TFLongformerPreTrainedModel',
'TFLongformerSelfAttention',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
if audio_length_in_s is None:
UpperCAmelCase__ = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCAmelCase__ = audio_length_in_s * self.unet.config.sample_rate
UpperCAmelCase__ = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
UpperCAmelCase__ = int(_UpperCAmelCase )
if sample_size % down_scale_factor != 0:
UpperCAmelCase__ = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
UpperCAmelCase__ = int(_UpperCAmelCase )
UpperCAmelCase__ = next(iter(self.unet.parameters() ) ).dtype
UpperCAmelCase__ = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
UpperCAmelCase__ = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device )
UpperCAmelCase__ = self.scheduler.timesteps.to(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCAmelCase__ = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCAmelCase__ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
UpperCAmelCase__ = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCAmelCase__ = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=_UpperCAmelCase )
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
UpperCAmelCase_ = HUGGINGFACE_HUB_CACHE
UpperCAmelCase_ = 'config.json'
UpperCAmelCase_ = 'diffusion_pytorch_model.bin'
UpperCAmelCase_ = 'diffusion_flax_model.msgpack'
UpperCAmelCase_ = 'model.onnx'
UpperCAmelCase_ = 'diffusion_pytorch_model.safetensors'
UpperCAmelCase_ = 'weights.pb'
UpperCAmelCase_ = 'https://huggingface.co'
UpperCAmelCase_ = default_cache_path
UpperCAmelCase_ = 'diffusers_modules'
UpperCAmelCase_ = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
UpperCAmelCase_ = ['fp16', 'non-ema']
UpperCAmelCase_ = '.self_attn'
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
from functools import lru_cache
@lru_cache
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() )
UpperCAmelCase__ = sum([np.prod(p.size() ) for p in model_parameters] )
return params
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
if metric == "rouge2":
UpperCAmelCase__ = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
UpperCAmelCase__ = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
UpperCAmelCase__ = """{val_avg_em:.4f}-{step_count}"""
elif metric == "loss":
UpperCAmelCase__ = """{val_avg_loss:.4f}-{step_count}"""
else:
raise NotImplementedError(
F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
UpperCAmelCase__ = ModelCheckpoint(
dirpath=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , monitor=F'''val_{metric}''' , mode="""max""" , save_top_k=1 , every_n_epochs=1 , )
return checkpoint_callback
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return EarlyStopping(
monitor=F'''val_{metric}''' , mode="""min""" if """loss""" in metric else """max""" , patience=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , )
class lowerCAmelCase_ ( pl.Callback ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = {f'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_UpperCAmelCase )
@rank_zero_only
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : pl.LightningModule , _UpperCAmelCase : str , _UpperCAmelCase : int=True ):
"""simple docstring"""
logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
UpperCAmelCase__ = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
UpperCAmelCase__ = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCAmelCase__ = od / """test_results.txt"""
UpperCAmelCase__ = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCAmelCase__ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt'''
UpperCAmelCase__ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_UpperCAmelCase )
generations_file.parent.mkdir(exist_ok=_UpperCAmelCase )
with open(_UpperCAmelCase , """a+""" ) as writer:
for key in sorted(_UpperCAmelCase ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCAmelCase__ = metrics[key]
if isinstance(_UpperCAmelCase , torch.Tensor ):
UpperCAmelCase__ = val.item()
UpperCAmelCase__ = f'''{key}: {val:.6f}\n'''
writer.write(_UpperCAmelCase )
if not save_generations:
return
if "preds" in metrics:
UpperCAmelCase__ = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_UpperCAmelCase )
@rank_zero_only
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
try:
UpperCAmelCase__ = pl_module.model.model.num_parameters()
except AttributeError:
UpperCAmelCase__ = pl_module.model.num_parameters()
UpperCAmelCase__ = count_trainable_parameters(_UpperCAmelCase )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} )
@rank_zero_only
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : pl.LightningModule ):
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_UpperCAmelCase , _UpperCAmelCase , """test""" )
@rank_zero_only
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : pl.Trainer , _UpperCAmelCase : Any ):
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
UpperCAmelCase_ = True
except (ImportError, ModuleNotFoundError):
UpperCAmelCase_ = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
re.sub("""<n>""" , """""" , SCREAMING_SNAKE_CASE__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE__ ) )
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
UpperCAmelCase_ = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n'
UpperCAmelCase_ = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n'
UpperCAmelCase_ = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[List[List[str]]] , _UpperCAmelCase : List[List[str]] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 4 , ):
"""simple docstring"""
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_UpperCAmelCase , hypotheses=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase )
}
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import argparse
import fairseq
import torch
from torch import nn
from transformers import (
MBartaaTokenizer,
MBartConfig,
MBartForCausalLM,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if weight_type is not None:
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
else:
UpperCAmelCase__ = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.feature_extractor
UpperCAmelCase__ = hf_model.adapter
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ):
load_adapter(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""adaptor.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
if items[1].isdigit():
UpperCAmelCase__ = int(items[1] )
else:
UpperCAmelCase__ = None
if "adaptor" not in full_name:
if "proj_ln" in full_name:
# has to be layer norm
if "bias" in name:
assert (
value.shape == adapter.proj_layer_norm.bias.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.'''
UpperCAmelCase__ = value
logger.info(F'''Adapter proj layer norm bias was initialized from {full_name}.''' )
if "weight" in name:
assert (
value.shape == adapter.proj_layer_norm.weight.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.'''
UpperCAmelCase__ = value
else:
# has to be projection layer
if "bias" in name:
assert (
value.shape == adapter.proj.bias.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.'''
UpperCAmelCase__ = value
logger.info(F'''Adapter proj layer bias was initialized from {full_name}.''' )
if "weight" in name:
assert (
value.shape == adapter.proj.weight.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.'''
UpperCAmelCase__ = value
logger.info(F'''Adapter proj layer weight was initialized from {full_name}.''' )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if "bias" in name:
assert (
value.shape == adapter.layers[layer_id].conv.bias.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.'''
UpperCAmelCase__ = value
logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' )
elif "weight" in name:
assert (
value.shape == adapter.layers[layer_id].conv.weight.data.shape
), F'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.'''
UpperCAmelCase__ = value
logger.info(F'''Adapter layer {layer_id} bias was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
UpperCAmelCase__ , UpperCAmelCase__ = emb.weight.shape
UpperCAmelCase__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = emb.weight.data
return lin_layer
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , ):
'''simple docstring'''
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(
SCREAMING_SNAKE_CASE__ , add_adapter=SCREAMING_SNAKE_CASE__ , adapter_stride=SCREAMING_SNAKE_CASE__ , adapter_kernel_size=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , output_hidden_size=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
# load model
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={
"""config_yaml""": config_yaml_path,
"""data""": """/""".join(dict_path.split("""/""" )[:-1] ),
"""w2v_path""": checkpoint_path,
"""load_pretrained_decoder_from""": None,
} , )
UpperCAmelCase__ = model[0].eval()
# load feature extractor
UpperCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ )
# set weights for wav2vec2 encoder
UpperCAmelCase__ = WavaVecaModel(SCREAMING_SNAKE_CASE__ )
recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ )
# load decoder weights
UpperCAmelCase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ )
logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' )
logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' )
UpperCAmelCase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = False
UpperCAmelCase__ = MBartaaTokenizer(SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = hf_wavavec.config.to_dict()
UpperCAmelCase__ = tokenizer.pad_token_id
UpperCAmelCase__ = tokenizer.bos_token_id
UpperCAmelCase__ = tokenizer.eos_token_id
UpperCAmelCase__ = """mbart50"""
UpperCAmelCase__ = """wav2vec2"""
UpperCAmelCase__ = tokenizer.eos_token_id
UpperCAmelCase__ = 250004
UpperCAmelCase__ = tokenizer.eos_token_id
UpperCAmelCase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model')
parser.add_argument(
'--encoder_config_path',
default='facebook/wav2vec2-xls-r-1b',
type=str,
help='Path to hf encoder wav2vec2 checkpoint config',
)
parser.add_argument(
'--decoder_config_path',
default='facebook/mbart-large-50-one-to-many-mmt',
type=str,
help='Path to hf decoder checkpoint config',
)
parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers')
parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers')
parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers')
parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim')
parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config')
UpperCAmelCase_ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
args.config_yaml_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
add_adapter=args.add_adapter,
adapter_kernel_size=args.adapter_kernel_size,
adapter_stride=args.adapter_stride,
decoder_start_token_id=args.start_token_id,
encoder_output_dim=args.encoder_output_dim,
)
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('0.12.2'):
raise Exception('requires fairseq >= 0.12.2')
if version.parse(fairseq.__version__) > version.parse('2'):
raise Exception('requires fairseq < v2')
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = 'Hello, World!'
UpperCAmelCase_ = 'en_XX'
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : bool ):
'''simple docstring'''
UpperCAmelCase__ = Path("""data_bin""" )
UpperCAmelCase__ = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE__ ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE__ ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(SCREAMING_SNAKE_CASE__ ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE__ ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = xmod.model.encoder.sentence_encoder
UpperCAmelCase__ = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
UpperCAmelCase__ = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = XmodForSequenceClassification(SCREAMING_SNAKE_CASE__ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
UpperCAmelCase__ = xmod_sent_encoder.embed_tokens.weight
UpperCAmelCase__ = xmod_sent_encoder.embed_positions.weight
UpperCAmelCase__ = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
UpperCAmelCase__ = xmod_sent_encoder.layernorm_embedding.weight
UpperCAmelCase__ = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
UpperCAmelCase__ = model.roberta.encoder.layer[i]
UpperCAmelCase__ = xmod_sent_encoder.layers[i]
# self attention
UpperCAmelCase__ = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError("""Dimensions of self-attention weights do not match.""" )
UpperCAmelCase__ = xmod_layer.self_attn.q_proj.weight
UpperCAmelCase__ = xmod_layer.self_attn.q_proj.bias
UpperCAmelCase__ = xmod_layer.self_attn.k_proj.weight
UpperCAmelCase__ = xmod_layer.self_attn.k_proj.bias
UpperCAmelCase__ = xmod_layer.self_attn.v_proj.weight
UpperCAmelCase__ = xmod_layer.self_attn.v_proj.bias
# self-attention output
UpperCAmelCase__ = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""" )
UpperCAmelCase__ = xmod_layer.self_attn.out_proj.weight
UpperCAmelCase__ = xmod_layer.self_attn.out_proj.bias
UpperCAmelCase__ = xmod_layer.self_attn_layer_norm.weight
UpperCAmelCase__ = xmod_layer.self_attn_layer_norm.bias
# intermediate
UpperCAmelCase__ = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""" )
UpperCAmelCase__ = xmod_layer.fca.weight
UpperCAmelCase__ = xmod_layer.fca.bias
# output
UpperCAmelCase__ = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""" )
UpperCAmelCase__ = xmod_layer.fca.weight
UpperCAmelCase__ = xmod_layer.fca.bias
UpperCAmelCase__ = xmod_layer.final_layer_norm.weight
UpperCAmelCase__ = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
UpperCAmelCase__ = xmod_layer.adapter_layer_norm.weight
UpperCAmelCase__ = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError("""Lists of language adapters do not match.""" )
for lang_code, adapter in xmod_layer.adapter_modules.items():
UpperCAmelCase__ = bert_output.adapter_modules[lang_code]
UpperCAmelCase__ = xmod_layer.adapter_modules[lang_code]
UpperCAmelCase__ = from_adapter.fca.weight
UpperCAmelCase__ = from_adapter.fca.bias
UpperCAmelCase__ = from_adapter.fca.weight
UpperCAmelCase__ = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
UpperCAmelCase__ = xmod_sent_encoder.layer_norm.weight
UpperCAmelCase__ = xmod_sent_encoder.layer_norm.bias
if classification_head:
UpperCAmelCase__ = xmod.model.classification_heads["""mnli"""].dense.weight
UpperCAmelCase__ = xmod.model.classification_heads["""mnli"""].dense.bias
UpperCAmelCase__ = xmod.model.classification_heads["""mnli"""].out_proj.weight
UpperCAmelCase__ = xmod.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
UpperCAmelCase__ = xmod.model.encoder.lm_head.dense.weight
UpperCAmelCase__ = xmod.model.encoder.lm_head.dense.bias
UpperCAmelCase__ = xmod.model.encoder.lm_head.layer_norm.weight
UpperCAmelCase__ = xmod.model.encoder.lm_head.layer_norm.bias
UpperCAmelCase__ = xmod.model.encoder.lm_head.weight
UpperCAmelCase__ = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
UpperCAmelCase__ = xmod.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE__ )[0]
if classification_head:
UpperCAmelCase__ = xmod.model.classification_heads["""mnli"""](xmod.extract_features(SCREAMING_SNAKE_CASE__ ) )
else:
UpperCAmelCase__ = xmod.model(SCREAMING_SNAKE_CASE__ , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
UpperCAmelCase__ = torch.max(torch.abs(our_output - their_output ) ).item()
print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
UpperCAmelCase__ = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
print(F'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
UpperCAmelCase_ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = HfArgumentParser(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase__ = TensorFlowBenchmark(args=SCREAMING_SNAKE_CASE__ )
try:
UpperCAmelCase__ = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
UpperCAmelCase__ = """Arg --no_{0} is no longer used, please use --no-{0} instead."""
UpperCAmelCase__ = """ """.join(str(SCREAMING_SNAKE_CASE__ ).split(""" """ )[:-1] )
UpperCAmelCase__ = """"""
UpperCAmelCase__ = eval(str(SCREAMING_SNAKE_CASE__ ).split(""" """ )[-1] )
UpperCAmelCase__ = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase__ = full_error_msg + begin_error_msg + str(SCREAMING_SNAKE_CASE__ )
raise ValueError(SCREAMING_SNAKE_CASE__ )
benchmark.run()
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return int((input_a, input_a).count(0 ) != 0 )
def _UpperCamelCase ( ):
'''simple docstring'''
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : int = """"""
lowerCAmelCase_ : Tuple = """hf-legacy""" # "hf://"" is reserved for hffs
def __init__( self : Dict , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[str] , ):
"""simple docstring"""
super().__init__(self , **_UpperCAmelCase )
UpperCAmelCase__ = repo_info
UpperCAmelCase__ = token
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
if self.dir_cache is None:
UpperCAmelCase__ = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
UpperCAmelCase__ = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(_UpperCAmelCase ): {"""name""": str(_UpperCAmelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str = "rb" , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
if not isinstance(self.repo_info , _UpperCAmelCase ):
raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
UpperCAmelCase__ = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
_UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[str] , **_UpperCAmelCase : List[Any] ):
"""simple docstring"""
self._get_dirs()
UpperCAmelCase__ = self._strip_protocol(_UpperCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
self._get_dirs()
UpperCAmelCase__ = PurePosixPath(path.strip("""/""" ) )
UpperCAmelCase__ = {}
for p, f in self.dir_cache.items():
UpperCAmelCase__ = PurePosixPath(p.strip("""/""" ) )
UpperCAmelCase__ = p.parent
if root == path:
UpperCAmelCase__ = f
UpperCAmelCase__ = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out )
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = ["""image_processor""", """tokenizer"""]
lowerCAmelCase_ : Dict = """AutoImageProcessor"""
lowerCAmelCase_ : Any = """AutoTokenizer"""
def __init__( self : Tuple , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _UpperCAmelCase , )
UpperCAmelCase__ = kwargs.pop("""feature_extractor""" )
UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = self.image_processor
UpperCAmelCase__ = False
def __call__( self : Dict , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = kwargs.pop("""images""" , _UpperCAmelCase )
UpperCAmelCase__ = kwargs.pop("""text""" , _UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
UpperCAmelCase__ = args[0]
UpperCAmelCase__ = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
UpperCAmelCase__ = self.image_processor(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
if text is not None:
UpperCAmelCase__ = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
UpperCAmelCase__ = encodings["""input_ids"""]
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
UpperCAmelCase__ = True
UpperCAmelCase__ = self.tokenizer
yield
UpperCAmelCase__ = self.image_processor
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
if added_vocab is None:
UpperCAmelCase__ = self.tokenizer.get_added_vocab()
UpperCAmelCase__ = {}
while tokens:
UpperCAmelCase__ = re.search(r"""<s_(.*?)>""" , _UpperCAmelCase , re.IGNORECASE )
if start_token is None:
break
UpperCAmelCase__ = start_token.group(1 )
UpperCAmelCase__ = re.search(rf'''</s_{key}>''' , _UpperCAmelCase , re.IGNORECASE )
UpperCAmelCase__ = start_token.group()
if end_token is None:
UpperCAmelCase__ = tokens.replace(_UpperCAmelCase , """""" )
else:
UpperCAmelCase__ = end_token.group()
UpperCAmelCase__ = re.escape(_UpperCAmelCase )
UpperCAmelCase__ = re.escape(_UpperCAmelCase )
UpperCAmelCase__ = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , _UpperCAmelCase , re.IGNORECASE )
if content is not None:
UpperCAmelCase__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
UpperCAmelCase__ = self.tokenajson(_UpperCAmelCase , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase )
if value:
if len(_UpperCAmelCase ) == 1:
UpperCAmelCase__ = value[0]
UpperCAmelCase__ = value
else: # leaf nodes
UpperCAmelCase__ = []
for leaf in content.split(r"""<sep/>""" ):
UpperCAmelCase__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
UpperCAmelCase__ = leaf[1:-2] # for categorical special tokens
output[key].append(_UpperCAmelCase )
if len(output[key] ) == 1:
UpperCAmelCase__ = output[key][0]
UpperCAmelCase__ = tokens[tokens.find(_UpperCAmelCase ) + len(_UpperCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase )
if len(_UpperCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _UpperCAmelCase , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _UpperCAmelCase , )
return self.image_processor
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : float = 1 / 12345 ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
UpperCAmelCase__ = 3
while True:
UpperCAmelCase__ = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = int(SCREAMING_SNAKE_CASE__ )
total_partitions += 1
if check_partition_perfect(SCREAMING_SNAKE_CASE__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(SCREAMING_SNAKE_CASE__ )
integer += 1
if __name__ == "__main__":
print(f"{solution() = }")
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
UpperCAmelCase_ = logging.get_logger(__name__)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(SCREAMING_SNAKE_CASE__ ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : int = ["""pixel_values"""]
def __init__( self : Optional[Any] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : str , ):
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
UpperCAmelCase__ = size if size is not None else {"""shortest_edge""": 2_24}
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase__ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" )
UpperCAmelCase__ = do_resize
UpperCAmelCase__ = size
UpperCAmelCase__ = do_center_crop
UpperCAmelCase__ = crop_size
UpperCAmelCase__ = resample
UpperCAmelCase__ = do_rescale
UpperCAmelCase__ = rescale_factor
UpperCAmelCase__ = do_normalize
UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "shortest_edge" in size:
UpperCAmelCase__ = get_resize_output_image_size(_UpperCAmelCase , size["""shortest_edge"""] , default_to_square=_UpperCAmelCase )
elif "height" in size and "width" in size:
UpperCAmelCase__ = (size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ):
"""simple docstring"""
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(_UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict , ):
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ):
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
"""simple docstring"""
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
UpperCAmelCase__ = to_numpy_array(_UpperCAmelCase )
if do_resize:
UpperCAmelCase__ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase )
if do_center_crop:
UpperCAmelCase__ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase )
if do_rescale:
UpperCAmelCase__ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase )
if do_normalize:
UpperCAmelCase__ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase )
UpperCAmelCase__ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase )
return image
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Tuple , ):
"""simple docstring"""
UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ = resample if resample is not None else self.resample
UpperCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase__ = image_std if image_std is not None else self.image_std
UpperCAmelCase__ = size if size is not None else self.size
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
UpperCAmelCase__ = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase__ = get_size_dict(_UpperCAmelCase , param_name="""crop_size""" )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
UpperCAmelCase__ = make_batched(_UpperCAmelCase )
UpperCAmelCase__ = [
[
self._preprocess_image(
image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , )
for img in video
]
for video in videos
]
UpperCAmelCase__ = {"""pixel_values""": videos}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = 0
while number > 0:
UpperCAmelCase__ = number % 10
sum_of_digits += last_digit
UpperCAmelCase__ = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 100 ):
'''simple docstring'''
UpperCAmelCase__ = factorial(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = split_and_add(SCREAMING_SNAKE_CASE__ )
return result
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : jnp.ndarray
@flax_register_to_config
class lowerCAmelCase_ ( nn.Module , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : int = 32
lowerCAmelCase_ : int = 4
lowerCAmelCase_ : int = 4
lowerCAmelCase_ : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
lowerCAmelCase_ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
lowerCAmelCase_ : Union[bool, Tuple[bool]] = False
lowerCAmelCase_ : Tuple[int] = (320, 640, 1_280, 1_280)
lowerCAmelCase_ : int = 2
lowerCAmelCase_ : Union[int, Tuple[int]] = 8
lowerCAmelCase_ : Optional[Union[int, Tuple[int]]] = None
lowerCAmelCase_ : int = 1_280
lowerCAmelCase_ : float = 0.0
lowerCAmelCase_ : bool = False
lowerCAmelCase_ : jnp.dtype = jnp.floataa
lowerCAmelCase_ : bool = True
lowerCAmelCase_ : int = 0
lowerCAmelCase_ : bool = False
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : jax.random.KeyArray ):
"""simple docstring"""
UpperCAmelCase__ = (1, self.in_channels, self.sample_size, self.sample_size)
UpperCAmelCase__ = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
UpperCAmelCase__ = jnp.ones((1,) , dtype=jnp.intaa )
UpperCAmelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
UpperCAmelCase__ , UpperCAmelCase__ = jax.random.split(_UpperCAmelCase )
UpperCAmelCase__ = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"]
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.block_out_channels
UpperCAmelCase__ = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"""At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
UpperCAmelCase__ = self.num_attention_heads or self.attention_head_dim
# input
UpperCAmelCase__ = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
UpperCAmelCase__ = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
UpperCAmelCase__ = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype )
UpperCAmelCase__ = self.only_cross_attention
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ = (num_attention_heads,) * len(self.down_block_types )
# down
UpperCAmelCase__ = []
UpperCAmelCase__ = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
UpperCAmelCase__ = output_channel
UpperCAmelCase__ = block_out_channels[i]
UpperCAmelCase__ = i == len(_UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
UpperCAmelCase__ = FlaxCrossAttnDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
UpperCAmelCase__ = FlaxDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(_UpperCAmelCase )
UpperCAmelCase__ = down_blocks
# mid
UpperCAmelCase__ = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
UpperCAmelCase__ = []
UpperCAmelCase__ = list(reversed(_UpperCAmelCase ) )
UpperCAmelCase__ = list(reversed(_UpperCAmelCase ) )
UpperCAmelCase__ = list(reversed(_UpperCAmelCase ) )
UpperCAmelCase__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
UpperCAmelCase__ = output_channel
UpperCAmelCase__ = reversed_block_out_channels[i]
UpperCAmelCase__ = reversed_block_out_channels[min(i + 1 , len(_UpperCAmelCase ) - 1 )]
UpperCAmelCase__ = i == len(_UpperCAmelCase ) - 1
if up_block_type == "CrossAttnUpBlock2D":
UpperCAmelCase__ = FlaxCrossAttnUpBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , prev_output_channel=_UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
UpperCAmelCase__ = FlaxUpBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , prev_output_channel=_UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(_UpperCAmelCase )
UpperCAmelCase__ = output_channel
UpperCAmelCase__ = up_blocks
# out
UpperCAmelCase__ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
UpperCAmelCase__ = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , jnp.ndarray ):
UpperCAmelCase__ = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
UpperCAmelCase__ = timesteps.astype(dtype=jnp.floataa )
UpperCAmelCase__ = jnp.expand_dims(_UpperCAmelCase , 0 )
UpperCAmelCase__ = self.time_proj(_UpperCAmelCase )
UpperCAmelCase__ = self.time_embedding(_UpperCAmelCase )
# 2. pre-process
UpperCAmelCase__ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
UpperCAmelCase__ = self.conv_in(_UpperCAmelCase )
# 3. down
UpperCAmelCase__ = (sample,)
for down_block in self.down_blocks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
else:
UpperCAmelCase__ , UpperCAmelCase__ = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
UpperCAmelCase__ = ()
for down_block_res_sample, down_block_additional_residual in zip(
_UpperCAmelCase , _UpperCAmelCase ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
UpperCAmelCase__ = new_down_block_res_samples
# 4. mid
UpperCAmelCase__ = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
UpperCAmelCase__ = down_block_res_samples[-(self.layers_per_block + 1) :]
UpperCAmelCase__ = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ = up_block(
_UpperCAmelCase , temb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , deterministic=not train , )
else:
UpperCAmelCase__ = up_block(_UpperCAmelCase , temb=_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , deterministic=not train )
# 6. post-process
UpperCAmelCase__ = self.conv_norm_out(_UpperCAmelCase )
UpperCAmelCase__ = nn.silu(_UpperCAmelCase )
UpperCAmelCase__ = self.conv_out(_UpperCAmelCase )
UpperCAmelCase__ = jnp.transpose(_UpperCAmelCase , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=_UpperCAmelCase )
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
'''simple docstring'''
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
UpperCAmelCase_ = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
requires_backends(SCREAMING_SNAKE_CASE__ , """sklearn""" )
return (preds == labels).mean()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
requires_backends(SCREAMING_SNAKE_CASE__ , """sklearn""" )
UpperCAmelCase__ = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
requires_backends(SCREAMING_SNAKE_CASE__ , """sklearn""" )
UpperCAmelCase__ = pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0]
UpperCAmelCase__ = spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
requires_backends(SCREAMING_SNAKE_CASE__ , """sklearn""" )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ), F'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}'''
if task_name == "cola":
return {"mcc": matthews_corrcoef(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "mrpc":
return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif task_name == "sts-b":
return pearson_and_spearman(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif task_name == "qqp":
return acc_and_fa(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "qnli":
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "rte":
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "wnli":
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
elif task_name == "hans":
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
else:
raise KeyError(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
warnings.warn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
requires_backends(SCREAMING_SNAKE_CASE__ , """sklearn""" )
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(F'''Predictions and labels have mismatched lengths {len(SCREAMING_SNAKE_CASE__ )} and {len(SCREAMING_SNAKE_CASE__ )}''' )
if task_name == "xnli":
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
else:
raise KeyError(SCREAMING_SNAKE_CASE__ )
| 346 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = MgpstrTokenizer
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = {}
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
super().setUp()
# fmt: off
UpperCAmelCase__ = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
UpperCAmelCase__ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + """\n""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """tester"""
UpperCAmelCase__ = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
UpperCAmelCase__ = tokenizer.encode([special_token] , add_special_tokens=_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 1 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertNotEqual(len(_UpperCAmelCase ) , 0 )
UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(text_a.replace(""" """ , """""" ) , _UpperCAmelCase )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
pass
| 346 | 1 |
'''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
UpperCAmelCase_ = HfApi()
UpperCAmelCase_ = {}
# fmt: off
UpperCAmelCase_ = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
UpperCAmelCase_ = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
UpperCAmelCase_ = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
UpperCAmelCase_ = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
UpperCAmelCase_ = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
UpperCAmelCase_ = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
UpperCAmelCase_ = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
UpperCAmelCase_ = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
UpperCAmelCase_ = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
UpperCAmelCase_ = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
UpperCAmelCase_ = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
UpperCAmelCase_ = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
UpperCAmelCase_ = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
UpperCAmelCase_ = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
UpperCAmelCase_ = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
UpperCAmelCase_ = api.list_models(filter='diffusers')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
UpperCAmelCase_ = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1]
print(f"Started running {mod.modelId}!!!")
if mod.modelId.startswith('CompVis'):
UpperCAmelCase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet')
else:
UpperCAmelCase_ = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
UpperCAmelCase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
UpperCAmelCase_ = torch.tensor([1_0] * noise.shape[0])
with torch.no_grad():
UpperCAmelCase_ = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :3_0], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3
)
print(f"{mod.modelId} has passed successfully!!!")
| 346 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
"""simple docstring"""
self.test()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
UpperCAmelCase__ = False
while not completed:
if counter == 1:
self.reset()
UpperCAmelCase__ = self.advance()
if not self.does_advance(_UpperCAmelCase ):
raise Exception(
"""Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.update(_UpperCAmelCase )
counter += 1
if counter > 1_00_00:
raise Exception("""update() does not fulfill the constraint.""" )
if self.remaining() != 0:
raise Exception("""Custom Constraint is not defined correctly.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[Any]=False ):
"""simple docstring"""
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[int] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' )
if any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' )
UpperCAmelCase__ = token_ids
UpperCAmelCase__ = len(self.token_ids )
UpperCAmelCase__ = -1 # the index of the currently fulfilled step
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.fulfilled_idx += 1
UpperCAmelCase__ = True
if self.fulfilled_idx == (self.seqlen - 1):
UpperCAmelCase__ = True
UpperCAmelCase__ = completed
else:
# failed to make progress.
UpperCAmelCase__ = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = 0
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = PhrasalConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.fulfilled_idx
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : List[List[int]] , _UpperCAmelCase : List[str]=True ):
"""simple docstring"""
UpperCAmelCase__ = max([len(_UpperCAmelCase ) for one in nested_token_ids] )
UpperCAmelCase__ = {}
for token_ids in nested_token_ids:
UpperCAmelCase__ = root
for tidx, token_id in enumerate(_UpperCAmelCase ):
if token_id not in level:
UpperCAmelCase__ = {}
UpperCAmelCase__ = level[token_id]
if no_subsets and self.has_subsets(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
"""Each list in `nested_token_ids` can't be a complete subset of another list, but is"""
f''' {nested_token_ids}.''' )
UpperCAmelCase__ = root
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.trie
for current_token in current_seq:
UpperCAmelCase__ = start[current_token]
UpperCAmelCase__ = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.next_tokens(_UpperCAmelCase )
return len(_UpperCAmelCase ) == 0
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = list(root.values() )
if len(_UpperCAmelCase ) == 0:
return 1
else:
return sum([self.count_leaves(_UpperCAmelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.count_leaves(_UpperCAmelCase )
return len(_UpperCAmelCase ) != leaf_count
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : List[List[int]] ):
"""simple docstring"""
super(_UpperCAmelCase , self ).__init__()
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0:
raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' )
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) for token_ids in nested_token_ids ):
raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' )
if any(
any((not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' )
UpperCAmelCase__ = DisjunctiveTrie(_UpperCAmelCase )
UpperCAmelCase__ = nested_token_ids
UpperCAmelCase__ = self.trie.max_height
UpperCAmelCase__ = []
UpperCAmelCase__ = False
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_UpperCAmelCase )}''' )
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
if self.does_advance(_UpperCAmelCase ):
self.current_seq.append(_UpperCAmelCase )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = True
self.reset()
UpperCAmelCase__ = self.trie.reached_leaf(self.current_seq )
UpperCAmelCase__ = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = False
UpperCAmelCase__ = []
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
UpperCAmelCase__ = DisjunctiveConstraint(self.token_ids )
if stateful:
UpperCAmelCase__ = self.seqlen
UpperCAmelCase__ = self.current_seq
UpperCAmelCase__ = self.completed
return new_constraint
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[int] , _UpperCAmelCase : List[Constraint] ):
"""simple docstring"""
UpperCAmelCase__ = constraints
# max # of steps required to fulfill a given constraint
UpperCAmelCase__ = max([c.seqlen for c in constraints] )
UpperCAmelCase__ = len(_UpperCAmelCase )
UpperCAmelCase__ = False
self.init_state()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = None
UpperCAmelCase__ = [constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
UpperCAmelCase__ = constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
else:
UpperCAmelCase__ = self.inprogress_constraint.advance()
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.append(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
token_list.extend(_UpperCAmelCase )
if len(_UpperCAmelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Optional[List[int]] ):
"""simple docstring"""
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
UpperCAmelCase__ , UpperCAmelCase__ = self.add(_UpperCAmelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' )
UpperCAmelCase__ , UpperCAmelCase__ = False, False
if self.completed:
UpperCAmelCase__ = True
UpperCAmelCase__ = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.inprogress_constraint.update(_UpperCAmelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_UpperCAmelCase ) )
UpperCAmelCase__ = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
UpperCAmelCase__ = None
if len(self.pending_constraints ) == 0:
# we're done!
UpperCAmelCase__ = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(_UpperCAmelCase ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = pending_constraint.update(_UpperCAmelCase )
if not stepped:
raise Exception(
"""`constraint.update(token_id)` is not yielding incremental progress, """
"""even though `constraint.does_advance(token_id)` is true.""" )
if complete:
self.complete_constraints.append(_UpperCAmelCase )
UpperCAmelCase__ = None
if not complete and stepped:
UpperCAmelCase__ = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
UpperCAmelCase__ = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
UpperCAmelCase__ = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[Any]=True ):
"""simple docstring"""
UpperCAmelCase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
UpperCAmelCase__ = [
constraint.copy(stateful=_UpperCAmelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
UpperCAmelCase__ = self.inprogress_constraint.copy(stateful=_UpperCAmelCase )
UpperCAmelCase__ = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 346 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
UpperCAmelCase_ = logging.getLogger()
@unittest.skip("""Temporarily disable the doc tests.""" )
@require_torch
@require_tf
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ):
"""simple docstring"""
UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )]
if identifier is not None:
UpperCAmelCase__ = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for n_ in n_identifier:
UpperCAmelCase__ = [file for file in files if n_ not in file]
else:
UpperCAmelCase__ = [file for file in files if n_identifier not in file]
UpperCAmelCase__ = ignore_files or []
ignore_files.append("""__init__.py""" )
UpperCAmelCase__ = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , _UpperCAmelCase )
if only_modules:
UpperCAmelCase__ = file.split(""".""" )[0]
try:
UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase )
UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(f'''{module_identifier} is not a module.''' )
else:
UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """modeling"""
UpperCAmelCase__ = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """tokenization"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = """configuration"""
self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""src/transformers""" )
UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = Path("""docs/source""" )
UpperCAmelCase__ = ["""favicon.ico"""]
self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = '▁'
UpperCAmelCase_ = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
UpperCAmelCase_ = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
UpperCAmelCase_ = {
'facebook/s2t-small-librispeech-asr': 1_0_2_4,
}
UpperCAmelCase_ = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
UpperCAmelCase_ = {'mustc': MUSTC_LANGS}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : str = VOCAB_FILES_NAMES
lowerCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : List[str] = MAX_MODEL_INPUT_SIZES
lowerCAmelCase_ : Any = ["""input_ids""", """attention_mask"""]
lowerCAmelCase_ : List[int] = []
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : Dict="<pad>" , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = do_upper_case
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = load_json(_UpperCAmelCase )
UpperCAmelCase__ = {v: k for k, v in self.encoder.items()}
UpperCAmelCase__ = spm_file
UpperCAmelCase__ = load_spm(_UpperCAmelCase , self.sp_model_kwargs )
if lang_codes is not None:
UpperCAmelCase__ = lang_codes
UpperCAmelCase__ = LANGUAGES[lang_codes]
UpperCAmelCase__ = [f'''<lang:{lang}>''' for lang in self.langs]
UpperCAmelCase__ = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs}
UpperCAmelCase__ = self.lang_tokens
UpperCAmelCase__ = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
UpperCAmelCase__ = {}
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return len(self.encoder )
@property
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return self._tgt_lang
@tgt_lang.setter
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = new_tgt_lang
self.set_tgt_lang_special_tokens(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.lang_code_to_id[tgt_lang]
UpperCAmelCase__ = [lang_code_id]
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str ):
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[str] ):
"""simple docstring"""
return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int ):
"""simple docstring"""
return self.decoder.get(_UpperCAmelCase , self.unk_token )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = []
UpperCAmelCase__ = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
UpperCAmelCase__ = self.sp_model.decode(_UpperCAmelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
UpperCAmelCase__ = []
else:
current_sub_tokens.append(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.decode(_UpperCAmelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
UpperCAmelCase__ = [1] * len(self.prefix_tokens )
UpperCAmelCase__ = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = load_spm(self.spm_file , self.sp_model_kwargs )
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
UpperCAmelCase__ = Path(_UpperCAmelCase )
assert save_dir.is_dir(), f'''{save_directory} should be a directory'''
UpperCAmelCase__ = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
UpperCAmelCase__ = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , _UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , _UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (str(_UpperCAmelCase ), str(_UpperCAmelCase ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ )
spm.Load(str(SCREAMING_SNAKE_CASE__ ) )
return spm
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as f:
return json.load(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
| 346 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ):
'''simple docstring'''
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
UpperCAmelCase__ = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ):
'''simple docstring'''
assert _test_patching.open is open
UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ):
pass
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None
with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__"""
UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ):
'''simple docstring'''
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
UpperCAmelCase__ = """__test_patch_submodule_successive_join__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__"""
UpperCAmelCase__ = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ):
with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ):
pass
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[Any]=5_12 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : int=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = 13
UpperCAmelCase__ = 7
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = True
UpperCAmelCase__ = 99
UpperCAmelCase__ = 32
UpperCAmelCase__ = 2
UpperCAmelCase__ = 4
UpperCAmelCase__ = 37
UpperCAmelCase__ = """gelu"""
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 0.1
UpperCAmelCase__ = 5_12
UpperCAmelCase__ = 16
UpperCAmelCase__ = 2
UpperCAmelCase__ = 0.02
UpperCAmelCase__ = 3
UpperCAmelCase__ = 4
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = TFRoFormerModel(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = True
UpperCAmelCase__ = TFRoFormerForCausalLM(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )["""logits"""]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFRoFormerForMaskedLM(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFRoFormerForSequenceClassification(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = TFRoFormerForMultipleChoice(config=_UpperCAmelCase )
UpperCAmelCase__ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase__ = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFRoFormerForTokenClassification(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = TFRoFormerForQuestionAnswering(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Dict = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Dict = (
{
"""feature-extraction""": TFRoFormerModel,
"""fill-mask""": TFRoFormerForMaskedLM,
"""question-answering""": TFRoFormerForQuestionAnswering,
"""text-classification""": TFRoFormerForSequenceClassification,
"""text-generation""": TFRoFormerForCausalLM,
"""token-classification""": TFRoFormerForTokenClassification,
"""zero-shot""": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Tuple = False
lowerCAmelCase_ : Any = False
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = TFRoFormerModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" )
self.assertIsNotNone(_UpperCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = model(_UpperCAmelCase )[0]
# TODO Replace vocab size
UpperCAmelCase__ = 5_00_00
UpperCAmelCase__ = [1, 6, vocab_size]
self.assertEqual(output.shape , _UpperCAmelCase )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
UpperCAmelCase__ = tf.constant(
[
[
[-0.1205_3341, -1.026_4901, 0.2922_1946],
[-1.513_3783, 0.19_7433, 0.1519_0607],
[-5.013_5403, -3.90_0256, -0.8403_8764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : int = 1e-4
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = tf.constant([[4, 10]] )
UpperCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
UpperCAmelCase__ = emba(input_ids.shape )
UpperCAmelCase__ = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , atol=self.tolerance )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
UpperCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 )
emba([2, 16, 5_12] )
UpperCAmelCase__ = emba.weight[:3, :5]
tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , atol=self.tolerance )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = 1e-4
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
UpperCAmelCase__ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00
UpperCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
UpperCAmelCase__ = embed_positions([2, 16, 7_68] )[None, None, :, :]
UpperCAmelCase__ , UpperCAmelCase__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
UpperCAmelCase__ = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _UpperCAmelCase , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _UpperCAmelCase , atol=self.tolerance )
| 346 |
'''simple docstring'''
from timeit import timeit
UpperCAmelCase_ = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = 0
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) // 2
UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = F'''all({name}(key) is value for key, value in test_data.items())'''
UpperCAmelCase__ = F'''from __main__ import test_data, {name}'''
UpperCAmelCase__ = 500000
UpperCAmelCase__ = timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f"{key:21} {value}")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=99 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : str=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0 , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = scope
UpperCAmelCase__ = projection_dim
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
UpperCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFDPRContextEncoder(config=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFDPRQuestionEncoder(config=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFDPRReader(config=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {"""input_ids""": input_ids}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Tuple = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : List[str] = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {}
lowerCAmelCase_ : int = False
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : Union[str, Any] = False
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFDPRModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = TFDPRReader.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" )
UpperCAmelCase__ = tf.constant(
[[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP]
UpperCAmelCase__ = model(_UpperCAmelCase )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
UpperCAmelCase__ = tf.constant(
[
[
0.0323_6253,
0.1275_3335,
0.1681_8509,
0.0027_9786,
0.389_6933,
0.2426_4945,
0.217_8971,
-0.0233_5227,
-0.0848_1959,
-0.1432_4117,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 346 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
UpperCAmelCase_ = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
UpperCAmelCase_ = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
UpperCAmelCase_ = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=False ):
"""simple docstring"""
UpperCAmelCase__ = compute_bleu(
reference_corpus=_UpperCAmelCase , translation_corpus=_UpperCAmelCase , max_order=_UpperCAmelCase , smooth=_UpperCAmelCase )
((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 346 | 1 |
'''simple docstring'''
UpperCAmelCase_ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
UpperCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}]
UpperCAmelCase_ = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 346 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[List[np.ndarray], torch.FloatTensor]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 346 | 1 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
UpperCAmelCase_ = 'examples/'
UpperCAmelCase_ = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
UpperCAmelCase_ = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
UpperCAmelCase_ = 'README.md'
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
UpperCAmelCase__ = f.read()
UpperCAmelCase__ , UpperCAmelCase__ = REPLACE_PATTERNS[pattern]
UpperCAmelCase__ = replace.replace("""VERSION""" , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = re_pattern.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , pattern="""examples""" )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int=False ):
'''simple docstring'''
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not patch:
update_version_in_examples(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = """🤗 Transformers currently provides the following architectures"""
UpperCAmelCase__ = """1. Want to contribute a new model?"""
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
UpperCAmelCase__ = f.readlines()
# Find the start of the list.
UpperCAmelCase__ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
UpperCAmelCase__ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
UpperCAmelCase__ = lines[index].replace(
"""https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , )
index += 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( ):
'''simple docstring'''
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
UpperCAmelCase__ = f.read()
UpperCAmelCase__ = REPLACE_PATTERNS["""init"""][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0]
return packaging.version.parse(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=False ):
'''simple docstring'''
UpperCAmelCase__ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
UpperCAmelCase__ = default_version.base_version
elif patch:
UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
UpperCAmelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
UpperCAmelCase__ = input(F'''Which version are you releasing? [{default_version}]''' )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
UpperCAmelCase__ = default_version
print(F'''Updating version to {version}.''' )
global_version_update(SCREAMING_SNAKE_CASE__ , patch=SCREAMING_SNAKE_CASE__ )
if not patch:
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = get_version()
UpperCAmelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
UpperCAmelCase__ = current_version.base_version
# Check with the user we got that right.
UpperCAmelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' )
if len(SCREAMING_SNAKE_CASE__ ) == 0:
UpperCAmelCase__ = dev_version
print(F'''Updating version to {version}.''' )
global_version_update(SCREAMING_SNAKE_CASE__ )
print("""Cleaning main README, don't forget to run `make fix-copies`.""" )
clean_main_ref_in_model_list()
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
UpperCAmelCase_ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 346 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False , ):
"""simple docstring"""
super().__init__()
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = False
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
UpperCAmelCase__ = TaConfig(
vocab_size=_UpperCAmelCase , d_model=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_kv=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , feed_forward_proj=_UpperCAmelCase , is_decoder=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , )
UpperCAmelCase__ = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
UpperCAmelCase__ = TaBlock(_UpperCAmelCase )
self.encoders.append(_UpperCAmelCase )
UpperCAmelCase__ = TaLayerNorm(_UpperCAmelCase )
UpperCAmelCase__ = nn.Dropout(p=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.token_embedder(_UpperCAmelCase )
UpperCAmelCase__ = encoder_input_tokens.shape[1]
UpperCAmelCase__ = torch.arange(_UpperCAmelCase , device=encoder_input_tokens.device )
x += self.position_encoding(_UpperCAmelCase )
UpperCAmelCase__ = self.dropout_pre(_UpperCAmelCase )
# inverted the attention mask
UpperCAmelCase__ = encoder_input_tokens.size()
UpperCAmelCase__ = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase )
for lyr in self.encoders:
UpperCAmelCase__ = lyr(_UpperCAmelCase , _UpperCAmelCase )[0]
UpperCAmelCase__ = self.layer_norm(_UpperCAmelCase )
return self.dropout_post(_UpperCAmelCase ), encoder_inputs_mask
| 346 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['NllbTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['NllbTokenizerFast']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb import NllbTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_nllb_fast import NllbTokenizerFast
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 346 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'adapter_layer': 'encoder.layers.*.adapter_layer',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
'pooling_layer.linear': 'projector',
'pooling_layer.projection': 'classifier',
}
UpperCAmelCase_ = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'projector',
'classifier',
]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ):
'''simple docstring'''
UpperCAmelCase__ = {}
with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file:
for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = line.strip()
if line:
UpperCAmelCase__ = line.split()
UpperCAmelCase__ = line_number
UpperCAmelCase__ = words[0]
UpperCAmelCase__ = value
return result
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
for attribute in key.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = hf_pointer
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = shape_pointer.shape
# let's reduce dimension
UpperCAmelCase__ = value[0]
else:
UpperCAmelCase__ = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}''' )
if weight_type == "weight":
UpperCAmelCase__ = value
elif weight_type == "weight_g":
UpperCAmelCase__ = value
elif weight_type == "weight_v":
UpperCAmelCase__ = value
elif weight_type == "bias":
UpperCAmelCase__ = value
elif weight_type == "param":
for attribute in hf_param_name.split(""".""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = value
else:
UpperCAmelCase__ = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]]
UpperCAmelCase__ = """param"""
if weight_type is not None and weight_type != "param":
UpperCAmelCase__ = """.""".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
UpperCAmelCase__ = """.""".join([key, hf_param_name] )
else:
UpperCAmelCase__ = key
UpperCAmelCase__ = value if """lm_head""" in full_key else value[0]
UpperCAmelCase_ = {
'W_a': 'linear_1.weight',
'W_b': 'linear_2.weight',
'b_a': 'linear_1.bias',
'b_b': 'linear_2.bias',
'ln_W': 'norm.weight',
'ln_b': 'norm.bias',
}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ):
'''simple docstring'''
UpperCAmelCase__ = False
for key, mapped_key in MAPPING.items():
UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
UpperCAmelCase__ = True
if "*" in mapped_key:
UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2]
UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ )
if "weight_g" in name:
UpperCAmelCase__ = """weight_g"""
elif "weight_v" in name:
UpperCAmelCase__ = """weight_v"""
elif "bias" in name:
UpperCAmelCase__ = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
UpperCAmelCase__ = """weight"""
else:
UpperCAmelCase__ = None
if hf_dict is not None:
rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return is_used
return is_used
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = []
UpperCAmelCase__ = fairseq_model.state_dict()
UpperCAmelCase__ = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
UpperCAmelCase__ = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , )
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
logger.warning(F'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1]
UpperCAmelCase__ = name.split(""".""" )
UpperCAmelCase__ = int(items[0] )
UpperCAmelCase__ = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
UpperCAmelCase__ = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(SCREAMING_SNAKE_CASE__ )
@torch.no_grad()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ):
'''simple docstring'''
if config_path is not None:
UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaConfig()
if is_seq_class:
UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = idalabel
UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
elif is_finetuned:
if dict_path:
UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCAmelCase__ = target_dict.pad_index
UpperCAmelCase__ = target_dict.bos_index
UpperCAmelCase__ = target_dict.eos_index
UpperCAmelCase__ = len(target_dict.symbols )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = target_dict.indices
# fairseq has the <pad> and <s> switched
UpperCAmelCase__ = 0
UpperCAmelCase__ = 1
with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False
UpperCAmelCase__ = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , )
UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ )
if is_finetuned or is_seq_class:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" )
UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = model[0].eval()
recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
parser.add_argument(
'--is_seq_class',
action='store_true',
help='Whether the model to convert is a fine-tuned sequence classification model or not',
)
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 346 | 1 |
'''simple docstring'''
import random
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
UpperCAmelCase__ = a[left_index]
UpperCAmelCase__ = left_index + 1
for j in range(left_index + 1 , SCREAMING_SNAKE_CASE__ ):
if a[j] < pivot:
UpperCAmelCase__ , UpperCAmelCase__ = a[i], a[j]
i += 1
UpperCAmelCase__ , UpperCAmelCase__ = a[i - 1], a[left_index]
return i - 1
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if left < right:
UpperCAmelCase__ = random.randint(SCREAMING_SNAKE_CASE__ , right - 1 )
UpperCAmelCase__ , UpperCAmelCase__ = (
a[left],
a[pivot],
) # switches the pivot with the left most bound
UpperCAmelCase__ = partition(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
quick_sort_random(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # recursive quicksort to the left of the pivot point
quick_sort_random(
SCREAMING_SNAKE_CASE__ , pivot_index + 1 , SCREAMING_SNAKE_CASE__ ) # recursive quicksort to the right of the pivot point
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = input("""Enter numbers separated by a comma:\n""" ).strip()
UpperCAmelCase__ = [int(SCREAMING_SNAKE_CASE__ ) for item in user_input.split(""",""" )]
quick_sort_random(SCREAMING_SNAKE_CASE__ , 0 , len(SCREAMING_SNAKE_CASE__ ) )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n'
UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n'
UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n'
UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n'
UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=[1, 10, 1_00] , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Any=3.0 ):
"""simple docstring"""
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=_UpperCAmelCase ) as executor:
UpperCAmelCase__ = []
UpperCAmelCase__ = Counter()
UpperCAmelCase__ = 0
UpperCAmelCase__ = defaultdict(_UpperCAmelCase )
for task_id, (candidates, test_case) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ):
for candidate in candidates:
UpperCAmelCase__ = candidate + """\n""" + test_case
UpperCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id])
UpperCAmelCase__ = executor.submit(_UpperCAmelCase , *_UpperCAmelCase )
futures.append(_UpperCAmelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(_UpperCAmelCase ):
UpperCAmelCase__ = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
UpperCAmelCase__ , UpperCAmelCase__ = [], []
for result in results.values():
result.sort()
UpperCAmelCase__ = [r[1]["""passed"""] for r in result]
total.append(len(_UpperCAmelCase ) )
correct.append(sum(_UpperCAmelCase ) )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = np.array(_UpperCAmelCase )
UpperCAmelCase__ = k
UpperCAmelCase__ = {f'''pass@{k}''': estimate_pass_at_k(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
def estimator(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = itertools.repeat(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) )
else:
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = iter(SCREAMING_SNAKE_CASE__ )
return np.array([estimator(int(SCREAMING_SNAKE_CASE__ ) , int(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) for n, c in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] )
| 346 | 1 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
UpperCAmelCase_ = get_logger()
UpperCAmelCase_ = None
class lowerCAmelCase_ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ):
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any ):
"""simple docstring"""
super().__init__(features=_UpperCAmelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(_UpperCAmelCase )}, as `jaxlib.xla_extension.Device` '''
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
UpperCAmelCase__ = device if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase__ = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
UpperCAmelCase__ = str(jax.devices()[0] )
UpperCAmelCase__ = jnp_array_kwargs
@staticmethod
def SCREAMING_SNAKE_CASE__ ( ):
"""simple docstring"""
import jax
return {str(_UpperCAmelCase ): device for device in jax.devices()}
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and column:
if all(
isinstance(_UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(_UpperCAmelCase , axis=0 )
return column
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] ):
"""simple docstring"""
import jax
import jax.numpy as jnp
if isinstance(_UpperCAmelCase , (str, bytes, type(_UpperCAmelCase )) ):
return value
elif isinstance(_UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
UpperCAmelCase__ = {}
if isinstance(_UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
UpperCAmelCase__ = {"""dtype""": jnp.intaa}
else:
UpperCAmelCase__ = {"""dtype""": jnp.intaa}
elif isinstance(_UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
UpperCAmelCase__ = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(_UpperCAmelCase , PIL.Image.Image ):
UpperCAmelCase__ = np.asarray(_UpperCAmelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
UpperCAmelCase__ = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(_UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Tuple ):
"""simple docstring"""
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(_UpperCAmelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(_UpperCAmelCase , """__array__""" ) and not isinstance(_UpperCAmelCase , jax.Array ):
UpperCAmelCase__ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(_UpperCAmelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(_UpperCAmelCase ) for substruct in data_struct] )
return self._tensorize(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : dict ):
"""simple docstring"""
return map_nested(self._recursive_tensorize , _UpperCAmelCase , map_list=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : pa.Table ):
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_row(_UpperCAmelCase )
UpperCAmelCase__ = self.python_features_decoder.decode_row(_UpperCAmelCase )
return self.recursive_tensorize(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : pa.Table ):
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_column(_UpperCAmelCase )
UpperCAmelCase__ = self.python_features_decoder.decode_column(_UpperCAmelCase , pa_table.column_names[0] )
UpperCAmelCase__ = self.recursive_tensorize(_UpperCAmelCase )
UpperCAmelCase__ = self._consolidate(_UpperCAmelCase )
return column
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : pa.Table ):
"""simple docstring"""
UpperCAmelCase__ = self.numpy_arrow_extractor().extract_batch(_UpperCAmelCase )
UpperCAmelCase__ = self.python_features_decoder.decode_batch(_UpperCAmelCase )
UpperCAmelCase__ = self.recursive_tensorize(_UpperCAmelCase )
for column_name in batch:
UpperCAmelCase__ = self._consolidate(batch[column_name] )
return batch
| 346 |
'''simple docstring'''
import math
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
UpperCAmelCase__ = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=1 , **SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
UpperCAmelCase__ = factor * value
UpperCAmelCase__ = value
while not is_prime(SCREAMING_SNAKE_CASE__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE__ )
return value
| 346 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase_ = {
'configuration_mask2former': [
'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Mask2FormerConfig',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ['Mask2FormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'Mask2FormerForUniversalSegmentation',
'Mask2FormerModel',
'Mask2FormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 346 |
'''simple docstring'''
import string
from math import logaa
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
UpperCAmelCase__ = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
UpperCAmelCase__ = corpus_without_punctuation.split("""\n""" )
UpperCAmelCase__ = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE__ ))
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False ):
'''simple docstring'''
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
return round(tf * idf , 3 )
| 346 | 1 |
'''simple docstring'''
from typing import Any
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = data
UpperCAmelCase__ = None
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.head
while temp is not None:
print(temp.data , end=""" """ )
UpperCAmelCase__ = temp.next
print()
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = Node(_UpperCAmelCase )
UpperCAmelCase__ = self.head
UpperCAmelCase__ = new_node
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Any ):
"""simple docstring"""
if node_data_a == node_data_a:
return
else:
UpperCAmelCase__ = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCAmelCase__ = node_a.next
UpperCAmelCase__ = self.head
while node_a is not None and node_a.data != node_data_a:
UpperCAmelCase__ = node_a.next
if node_a is None or node_a is None:
return
UpperCAmelCase__ , UpperCAmelCase__ = node_a.data, node_a.data
if __name__ == "__main__":
UpperCAmelCase_ = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print('After swapping')
ll.print_list()
| 346 |
'''simple docstring'''
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
UpperCAmelCase_ = parser.parse_args()
if args.model_type == "bert":
UpperCAmelCase_ = BertForMaskedLM.from_pretrained(args.model_name)
UpperCAmelCase_ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {}
for w in ["word_embeddings", "position_embeddings"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
UpperCAmelCase_ = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
UpperCAmelCase_ = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
UpperCAmelCase_ = state_dict['cls.predictions.decoder.weight']
UpperCAmelCase_ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.dense.{w}"]
UpperCAmelCase_ = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 346 | 1 |
'''simple docstring'''
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Tuple = (DPMSolverSDEScheduler,)
lowerCAmelCase_ : Optional[Any] = 10
def SCREAMING_SNAKE_CASE__ ( self : Tuple , **_UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 11_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""noise_sampler_seed""": 0,
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase__ = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase__ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2
assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2
assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2
assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(prediction_type="""v_prediction""" )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma
UpperCAmelCase__ = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
UpperCAmelCase__ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2
assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2
assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3
else:
assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2
assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
UpperCAmelCase__ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2
assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2
assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2
assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase , use_karras_sigmas=_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
UpperCAmelCase__ = sample.to(_UpperCAmelCase )
for t in scheduler.timesteps:
UpperCAmelCase__ = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = output.prev_sample
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2
assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2
assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
else:
assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2
assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
| 346 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (PNDMScheduler,)
lowerCAmelCase_ : Optional[int] = (("""num_inference_steps""", 50),)
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
}
config.update(**_UpperCAmelCase )
return config
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=0 , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class.from_pretrained(_UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def SCREAMING_SNAKE_CASE__ ( self : int , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(**_UpperCAmelCase )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = 10
UpperCAmelCase__ = self.dummy_model()
UpperCAmelCase__ = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = dict(self.forward_default_kwargs )
UpperCAmelCase__ = kwargs.pop("""num_inference_steps""" , _UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
if num_inference_steps is not None and hasattr(_UpperCAmelCase , """set_timesteps""" ):
scheduler.set_timesteps(_UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , """set_timesteps""" ):
UpperCAmelCase__ = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCAmelCase__ = dummy_past_residuals[:]
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
UpperCAmelCase__ = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config(steps_offset=1 )
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = 27
for scheduler_class in self.scheduler_classes:
UpperCAmelCase__ = self.dummy_sample
UpperCAmelCase__ = 0.1 * sample
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(_UpperCAmelCase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCAmelCase__ = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
UpperCAmelCase__ = self.scheduler_classes[0]
UpperCAmelCase__ = self.get_scheduler_config()
UpperCAmelCase__ = scheduler_class(**_UpperCAmelCase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop()
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 198.1318 ) < 1E-2
assert abs(result_mean.item() - 0.2580 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(prediction_type="""v_prediction""" )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 67.3986 ) < 1E-2
assert abs(result_mean.item() - 0.0878 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 230.0399 ) < 1E-2
assert abs(result_mean.item() - 0.2995 ) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
UpperCAmelCase__ = torch.sum(torch.abs(_UpperCAmelCase ) )
UpperCAmelCase__ = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 186.9482 ) < 1E-2
assert abs(result_mean.item() - 0.2434 ) < 1E-3
| 346 | 1 |
'''simple docstring'''
import requests
UpperCAmelCase_ = 'YOUR API KEY'
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = giphy_api_key ):
'''simple docstring'''
UpperCAmelCase__ = """+""".join(query.split() )
UpperCAmelCase__ = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'''
UpperCAmelCase__ = requests.get(SCREAMING_SNAKE_CASE__ ).json()["""data"""]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('\n'.join(get_gifs('space ship')))
| 346 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """vivit"""
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Any=[2, 16, 16] , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu_fast" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1E-06 , _UpperCAmelCase : List[str]=True , **_UpperCAmelCase : List[Any] , ):
"""simple docstring"""
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_frames
UpperCAmelCase__ = tubelet_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = qkv_bias
super().__init__(**_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(SCREAMING_SNAKE_CASE__ , """_dynamo""" ):
return False
return isinstance(SCREAMING_SNAKE_CASE__ , torch._dynamo.eval_frame.OptimizedModule )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = True ):
'''simple docstring'''
UpperCAmelCase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCAmelCase__ = is_compiled_module(SCREAMING_SNAKE_CASE__ )
if is_compiled:
UpperCAmelCase__ = model
UpperCAmelCase__ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = model.module
if not keep_fpaa_wrapper:
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """forward""" )
UpperCAmelCase__ = model.__dict__.pop("""_original_forward""" , SCREAMING_SNAKE_CASE__ )
if original_forward is not None:
while hasattr(SCREAMING_SNAKE_CASE__ , """__wrapped__""" ):
UpperCAmelCase__ = forward.__wrapped__
if forward == original_forward:
break
UpperCAmelCase__ = forward
if getattr(SCREAMING_SNAKE_CASE__ , """_converted_to_transformer_engine""" , SCREAMING_SNAKE_CASE__ ):
convert_model(SCREAMING_SNAKE_CASE__ , to_transformer_engine=SCREAMING_SNAKE_CASE__ )
if is_compiled:
UpperCAmelCase__ = model
UpperCAmelCase__ = compiled_model
return model
def _UpperCamelCase ( ):
'''simple docstring'''
PartialState().wait_for_everyone()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if PartialState().distributed_type == DistributedType.TPU:
xm.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
elif PartialState().local_process_index == 0:
torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@contextmanager
def _UpperCamelCase ( **SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
for key, value in kwargs.items():
UpperCAmelCase__ = str(SCREAMING_SNAKE_CASE__ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if not hasattr(SCREAMING_SNAKE_CASE__ , """__qualname__""" ) and not hasattr(SCREAMING_SNAKE_CASE__ , """__name__""" ):
UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , """__class__""" , SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """__qualname__""" ):
return obj.__qualname__
if hasattr(SCREAMING_SNAKE_CASE__ , """__name__""" ):
return obj.__name__
return str(SCREAMING_SNAKE_CASE__ )
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
for key, value in source.items():
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = destination.setdefault(SCREAMING_SNAKE_CASE__ , {} )
merge_dicts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = value
return destination
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = None ):
'''simple docstring'''
if port is None:
UpperCAmelCase__ = 29500
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(("""localhost""", port) ) == 0
| 346 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_deit import DeiTImageProcessor
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : List[str] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
warnings.warn(
"""The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DeiTImageProcessor instead.""" , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 | 1 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 10 ):
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or n < 0:
raise ValueError("""Invalid input""" )
UpperCAmelCase__ = 10**n
UpperCAmelCase__ = 28433 * (pow(2 , 7830457 , SCREAMING_SNAKE_CASE__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{solution(1_0) = }")
| 346 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {'vocab_file': 'spiece.model'}
UpperCAmelCase_ = {
'vocab_file': {
'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model',
}
}
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : Tuple="<sep>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : Union[str, Any]="<mask>" , _UpperCAmelCase : List[str]=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
UpperCAmelCase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
UpperCAmelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
UpperCAmelCase__ = 3
UpperCAmelCase__ = do_lower_case
UpperCAmelCase__ = remove_space
UpperCAmelCase__ = keep_accents
UpperCAmelCase__ = vocab_file
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"""You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """
"""See https://pypi.org/project/jieba/ for installation.""" )
UpperCAmelCase__ = jieba
UpperCAmelCase__ = str.maketrans(""" \n""" , """\u2582\u2583""" )
@property
# Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.__dict__.copy()
UpperCAmelCase__ = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCAmelCase__ = {}
UpperCAmelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
if self.remove_space:
UpperCAmelCase__ = """ """.join(inputs.strip().split() )
else:
UpperCAmelCase__ = inputs
UpperCAmelCase__ = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
UpperCAmelCase__ = unicodedata.normalize("""NFKD""" , _UpperCAmelCase )
UpperCAmelCase__ = """""".join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
UpperCAmelCase__ = outputs.lower()
return outputs
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = self.preprocess_text(_UpperCAmelCase )
UpperCAmelCase__ = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
UpperCAmelCase__ = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
UpperCAmelCase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
UpperCAmelCase__ = cur_pieces[1:]
else:
UpperCAmelCase__ = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Any ):
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1]
return ([0] * len(_UpperCAmelCase )) + [1, 1]
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ):
"""simple docstring"""
UpperCAmelCase__ = [self.sep_token_id]
UpperCAmelCase__ = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCAmelCase__ = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , """wb""" ) as fi:
UpperCAmelCase__ = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self : Tuple , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" )
return text
| 346 | 1 |
'''simple docstring'''
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : Dict=10 , SCREAMING_SNAKE_CASE__ : List[Any]=100 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1026 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Any="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE__ : Dict="igf_context_pairs.jbl" , ):
'''simple docstring'''
set_seed(3 )
# generate train_data and objective_set
UpperCAmelCase__ , UpperCAmelCase__ = generate_datasets(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ , min_len=1026 , trim=SCREAMING_SNAKE_CASE__ )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
UpperCAmelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
# load pretrained model
UpperCAmelCase__ = load_gpta("""gpt2""" ).to(SCREAMING_SNAKE_CASE__ )
print("""computing perplexity on objective set""" )
UpperCAmelCase__ = compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).item()
print("""perplexity on objective set:""" , SCREAMING_SNAKE_CASE__ )
# collect igf pairs and save to file demo.jbl
collect_objective_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=15 , SCREAMING_SNAKE_CASE__ : Optional[Any]=128 , SCREAMING_SNAKE_CASE__ : str=100 , SCREAMING_SNAKE_CASE__ : str="igf_model.pt" , ):
'''simple docstring'''
set_seed(42 )
# Load pre-trained model
UpperCAmelCase__ = GPTaLMHeadModel.from_pretrained("""gpt2""" )
# Initialize secondary learner to use embedding weights of model
UpperCAmelCase__ = SecondaryLearner(SCREAMING_SNAKE_CASE__ )
# Train secondary learner
UpperCAmelCase__ = train_secondary_learner(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_epochs=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , eval_freq=100 , igf_model_path=SCREAMING_SNAKE_CASE__ , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any]=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1000 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1.0 , SCREAMING_SNAKE_CASE__ : str=recopy_gpta , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=10 , SCREAMING_SNAKE_CASE__ : Any="gpt2_finetuned.pt" , ):
'''simple docstring'''
UpperCAmelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" )
UpperCAmelCase__ = RandomSampler(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = max_steps // (len(SCREAMING_SNAKE_CASE__ )) + 1
UpperCAmelCase__ = 0
UpperCAmelCase__ = torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = recopy_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
model.train()
if secondary_learner is not None:
secondary_learner.to(SCREAMING_SNAKE_CASE__ )
secondary_learner.eval()
UpperCAmelCase__ = []
UpperCAmelCase__ = 0
UpperCAmelCase__ = []
UpperCAmelCase__ = []
# Compute the performance of the transformer model at the beginning
UpperCAmelCase__ = compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
test_perps.append(SCREAMING_SNAKE_CASE__ )
print("""Test perplexity, step""" , SCREAMING_SNAKE_CASE__ , """:""" , SCREAMING_SNAKE_CASE__ )
for epoch in range(int(SCREAMING_SNAKE_CASE__ ) ):
for step, example in enumerate(SCREAMING_SNAKE_CASE__ ):
torch.cuda.empty_cache()
UpperCAmelCase__ = random.randint(0 , example.size(2 ) - context_len - 1 )
UpperCAmelCase__ = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
UpperCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = True
if secondary_learner is not None:
UpperCAmelCase__ = secondary_learner.forward(
torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(SCREAMING_SNAKE_CASE__ ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
UpperCAmelCase__ = -1
if predicted_q < threshold:
UpperCAmelCase__ = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
UpperCAmelCase__ = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
UpperCAmelCase__ = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
UpperCAmelCase__ = compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
test_perps.append(SCREAMING_SNAKE_CASE__ )
print("""Test perplexity, step""" , SCREAMING_SNAKE_CASE__ , """:""" , SCREAMING_SNAKE_CASE__ )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" )
# Required parameters
parser.add_argument(
"""--data_dir""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The input data dir. Should contain data files for WikiText.""" , )
parser.add_argument(
"""--model_name_or_path""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , )
parser.add_argument(
"""--data_file""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=(
"""A jbl file containing tokenized data which can be split as objective dataset, """
"""train_dataset and test_dataset."""
) , )
parser.add_argument(
"""--igf_data_file""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , )
parser.add_argument(
"""--output_dir""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""The output directory where the final fine-tuned model is stored.""" , )
parser.add_argument(
"""--tokenizer_name""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , )
parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""A seed for reproducible training.""" )
parser.add_argument(
"""--context_len""" , default=32 , type=SCREAMING_SNAKE_CASE__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--size_objective_set""" , default=100 , type=SCREAMING_SNAKE_CASE__ , help="""number of articles that are long enough to be used as our objective set""" , )
parser.add_argument(
"""--eval_freq""" , default=100 , type=SCREAMING_SNAKE_CASE__ , help="""secondary model evaluation is triggered at eval_freq""" )
parser.add_argument("""--max_steps""" , default=1000 , type=SCREAMING_SNAKE_CASE__ , help="""To calculate training epochs""" )
parser.add_argument(
"""--secondary_learner_batch_size""" , default=128 , type=SCREAMING_SNAKE_CASE__ , help="""batch size of training data for secondary learner""" , )
parser.add_argument(
"""--batch_size""" , default=16 , type=SCREAMING_SNAKE_CASE__ , help="""batch size of training data of language model(gpt2) """ )
parser.add_argument(
"""--eval_interval""" , default=10 , type=SCREAMING_SNAKE_CASE__ , help=(
"""decay the selectivity of our secondary learner filter from"""
"""1 standard deviation above average to 1 below average after 10 batches"""
) , )
parser.add_argument(
"""--number""" , default=100 , type=SCREAMING_SNAKE_CASE__ , help="""The number of examples split to be used as objective_set/test_data""" )
parser.add_argument(
"""--min_len""" , default=1026 , type=SCREAMING_SNAKE_CASE__ , help="""The minimum length of the article to be used as objective set""" )
parser.add_argument(
"""--secondary_learner_max_epochs""" , default=15 , type=SCREAMING_SNAKE_CASE__ , help="""number of epochs to train secondary learner""" )
parser.add_argument("""--trim""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""truncate the example if it exceeds context length""" )
parser.add_argument(
"""--threshold""" , default=1.0 , type=SCREAMING_SNAKE_CASE__ , help=(
"""The threshold value used by secondary learner to filter the train_data and allow only"""
""" informative data as input to the model"""
) , )
parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=SCREAMING_SNAKE_CASE__ , help="""finetuned_model_name""" )
parser.add_argument(
"""--recopy_model""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=SCREAMING_SNAKE_CASE__ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , )
# Load train data for secondary learner
UpperCAmelCase__ = joblib.load("""data/IGF_values.jbl""" )
# Train secondary learner
UpperCAmelCase__ = training_secondary_learner(
SCREAMING_SNAKE_CASE__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , )
# load pretrained gpt2 model
UpperCAmelCase__ = GPTaLMHeadModel.from_pretrained("""gpt2""" )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
UpperCAmelCase__ , UpperCAmelCase__ = generate_datasets(
context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=SCREAMING_SNAKE_CASE__ )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE__ , secondary_learner=SCREAMING_SNAKE_CASE__ , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , )
if __name__ == "__main__":
main()
| 346 |
'''simple docstring'''
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
UpperCAmelCase_ = logging.getLogger(__name__)
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=SCREAMING_SNAKE_CASE__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=SCREAMING_SNAKE_CASE__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=SCREAMING_SNAKE_CASE__ , default=1000 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=SCREAMING_SNAKE_CASE__ , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=SCREAMING_SNAKE_CASE__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=SCREAMING_SNAKE_CASE__ , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
UpperCAmelCase__ = parser.parse_args()
return args
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
def fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
UpperCAmelCase__ = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
UpperCAmelCase__ = tf.train.Features(feature=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = tf.train.Example(features=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = example.SerializeToString()
records.append(SCREAMING_SNAKE_CASE__ )
return records
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
UpperCAmelCase__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
UpperCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , args.limit )
UpperCAmelCase__ = dataset.select(range(SCREAMING_SNAKE_CASE__ ) )
print(F'''Limiting the dataset to {args.limit} entries.''' )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
os.makedirs(SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase__ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
UpperCAmelCase__ = tokenize_function(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase__ = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(SCREAMING_SNAKE_CASE__ : int ):
# Concatenate all texts.
UpperCAmelCase__ = {k: sum(examples[k] , [] ) for k in examples.keys()}
UpperCAmelCase__ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
UpperCAmelCase__ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
UpperCAmelCase__ = {
k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
UpperCAmelCase__ = dataset_tokenized.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , batch_size=1000 , num_proc=4 )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for shard in range(0 , len(SCREAMING_SNAKE_CASE__ ) , args.shard_size ):
UpperCAmelCase__ = grouped_dataset[shard : shard + args.shard_size]
UpperCAmelCase__ = len(dataset_snapshot["""input_ids"""] )
UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' )
UpperCAmelCase__ = get_serialized_examples(SCREAMING_SNAKE_CASE__ )
with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE__ ) as out_file:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase__ = serialized_examples[i]
out_file.write(SCREAMING_SNAKE_CASE__ )
print("""Wrote file {} containing {} records""".format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
shard_count += 1
total_records += records_containing
with open(F'''split-{args.split}-records-count.txt''' , """w""" ) as f:
print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
UpperCAmelCase_ = parse_args()
main(args)
| 346 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=99 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=5_12 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]="None" , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[Any]=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = relative_attention
UpperCAmelCase__ = position_biased_input
UpperCAmelCase__ = pos_att_type
UpperCAmelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = TFDebertaVaModel(config=_UpperCAmelCase )
UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
UpperCAmelCase__ = [input_ids, input_mask]
UpperCAmelCase__ = model(_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFDebertaVaForMaskedLM(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFDebertaVaForSequenceClassification(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = TFDebertaVaForTokenClassification(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = TFDebertaVaForQuestionAnswering(config=_UpperCAmelCase )
UpperCAmelCase__ = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
lowerCAmelCase_ : Tuple = (
{
"""feature-extraction""": TFDebertaVaModel,
"""fill-mask""": TFDebertaVaForMaskedLM,
"""question-answering""": TFDebertaVaForQuestionAnswering,
"""text-classification""": TFDebertaVaForSequenceClassification,
"""token-classification""": TFDebertaVaForTokenClassification,
"""zero-shot""": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = TFDebertaVaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(_UpperCAmelCase )
@require_tf
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason="""Model not available yet""" )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
UpperCAmelCase__ = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
UpperCAmelCase__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
UpperCAmelCase__ = tf.constant(
[[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 )
| 346 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
UpperCAmelCase_ = '\\n\n'
UpperCAmelCase_ = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n'
UpperCAmelCase_ = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int = 16 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None ):
"""simple docstring"""
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
UpperCAmelCase__ = """cuda"""
else:
UpperCAmelCase__ = """cuda""" if torch.cuda.is_available() else """cpu"""
UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to(_UpperCAmelCase )
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
UpperCAmelCase__ = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(_UpperCAmelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
UpperCAmelCase__ = model.config.max_length - 1
else:
UpperCAmelCase__ = model.config.max_length
UpperCAmelCase__ = tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors="""pt""" , return_attention_mask=_UpperCAmelCase , ).to(_UpperCAmelCase )
UpperCAmelCase__ = encodings["""input_ids"""]
UpperCAmelCase__ = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
UpperCAmelCase__ = []
UpperCAmelCase__ = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ) ):
UpperCAmelCase__ = min(start_index + batch_size , len(_UpperCAmelCase ) )
UpperCAmelCase__ = encoded_texts[start_index:end_index]
UpperCAmelCase__ = attn_masks[start_index:end_index]
if add_start_token:
UpperCAmelCase__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_UpperCAmelCase )
UpperCAmelCase__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
UpperCAmelCase__ = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_UpperCAmelCase ), attn_mask] , dim=1 )
UpperCAmelCase__ = encoded_batch
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).logits
UpperCAmelCase__ = out_logits[..., :-1, :].contiguous()
UpperCAmelCase__ = labels[..., 1:].contiguous()
UpperCAmelCase__ = attn_mask[..., 1:].contiguous()
UpperCAmelCase__ = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , _UpperCAmelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(_UpperCAmelCase )}
| 346 | 1 |
'''simple docstring'''
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( enum.Enum ):
'''simple docstring'''
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : List[Any] = 1
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Any = """generated"""
def __init__( self : str , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Optional[int] , ):
"""simple docstring"""
UpperCAmelCase__ = {}
if truncation is not None:
UpperCAmelCase__ = truncation
UpperCAmelCase__ = generate_kwargs
UpperCAmelCase__ = {}
if return_tensors is not None and return_type is None:
UpperCAmelCase__ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
UpperCAmelCase__ = return_type
if clean_up_tokenization_spaces is not None:
UpperCAmelCase__ = clean_up_tokenization_spaces
if stop_sequence is not None:
UpperCAmelCase__ = self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
if len(_UpperCAmelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
UpperCAmelCase__ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
return True
def SCREAMING_SNAKE_CASE__ ( self : Dict , *_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , _UpperCAmelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
UpperCAmelCase__ = ([prefix + arg for arg in args[0]],)
UpperCAmelCase__ = True
elif isinstance(args[0] , _UpperCAmelCase ):
UpperCAmelCase__ = (prefix + args[0],)
UpperCAmelCase__ = False
else:
raise ValueError(
f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
UpperCAmelCase__ = self.tokenizer(*_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : str , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
if (
isinstance(args[0] , _UpperCAmelCase )
and all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for el in args[0] )
and all(len(_UpperCAmelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : List[Any]=TruncationStrategy.DO_NOT_TRUNCATE , **_UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self._parse_and_tokenize(_UpperCAmelCase , truncation=_UpperCAmelCase , **_UpperCAmelCase )
return inputs
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : str , **_UpperCAmelCase : Dict ):
"""simple docstring"""
if self.framework == "pt":
UpperCAmelCase__ , UpperCAmelCase__ = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
UpperCAmelCase__ , UpperCAmelCase__ = tf.shape(model_inputs["""input_ids"""] ).numpy()
UpperCAmelCase__ = generate_kwargs.get("""min_length""" , self.model.config.min_length )
UpperCAmelCase__ = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(_UpperCAmelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
UpperCAmelCase__ = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase__ = output_ids.shape[0]
if self.framework == "pt":
UpperCAmelCase__ = output_ids.reshape(_UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
UpperCAmelCase__ = tf.reshape(_UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=ReturnType.TEXT , _UpperCAmelCase : Tuple=False ):
"""simple docstring"""
UpperCAmelCase__ = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
UpperCAmelCase__ = {f'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
UpperCAmelCase__ = {
f'''{self.return_name}_text''': self.tokenizer.decode(
_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , )
}
records.append(_UpperCAmelCase )
return records
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """summary"""
def __call__( self : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
if max_length < min_length:
logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = """translation"""
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
if input_length > 0.9 * max_length:
logger.warning(
f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , *_UpperCAmelCase : str , _UpperCAmelCase : Dict=TruncationStrategy.DO_NOT_TRUNCATE , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
if getattr(self.tokenizer , """_build_translation_inputs""" , _UpperCAmelCase ):
return self.tokenizer._build_translation_inputs(
*_UpperCAmelCase , return_tensors=self.framework , truncation=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase )
else:
return super()._parse_and_tokenize(*_UpperCAmelCase , truncation=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = super()._sanitize_parameters(**_UpperCAmelCase )
if src_lang is not None:
UpperCAmelCase__ = src_lang
if tgt_lang is not None:
UpperCAmelCase__ = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
UpperCAmelCase__ = kwargs.get("""task""" , self.task )
UpperCAmelCase__ = task.split("""_""" )
if task and len(_UpperCAmelCase ) == 4:
# translation, XX, to YY
UpperCAmelCase__ = items[1]
UpperCAmelCase__ = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Optional[int] ):
"""simple docstring"""
return super().__call__(*_UpperCAmelCase , **_UpperCAmelCase )
| 346 |
'''simple docstring'''
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 1000000 ):
'''simple docstring'''
UpperCAmelCase__ = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE__ ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 346 | 1 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
UpperCAmelCase_ = None
try:
import msvcrt
except ImportError:
UpperCAmelCase_ = None
try:
import fcntl
except ImportError:
UpperCAmelCase_ = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
UpperCAmelCase_ = OSError
# Data
# ------------------------------------------------
UpperCAmelCase_ = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
UpperCAmelCase_ = '3.0.12'
UpperCAmelCase_ = None
def _UpperCamelCase ( ):
'''simple docstring'''
global _logger
UpperCAmelCase__ = _logger or logging.getLogger(__name__ )
return _logger
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = lock_file
return None
def __str__( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = f'''The file lock \'{self.lock_file}\' could not be acquired.'''
return temp
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = lock
return None
def __enter__( self : Optional[int] ):
"""simple docstring"""
return self.lock
def __exit__( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str ):
"""simple docstring"""
self.lock.release()
return None
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=-1 , _UpperCAmelCase : Any=None ):
"""simple docstring"""
UpperCAmelCase__ = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
UpperCAmelCase__ = self.hash_filename_if_too_long(_UpperCAmelCase , _UpperCAmelCase )
# The path to the lock file.
UpperCAmelCase__ = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
UpperCAmelCase__ = None
# The default timeout value.
UpperCAmelCase__ = timeout
# We use this lock primarily for the lock counter.
UpperCAmelCase__ = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
UpperCAmelCase__ = 0
return None
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
return self._lock_file
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = float(_UpperCAmelCase )
return None
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
raise NotImplementedError()
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=0.05 ):
"""simple docstring"""
if timeout is None:
UpperCAmelCase__ = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
UpperCAmelCase__ = id(self )
UpperCAmelCase__ = self._lock_file
UpperCAmelCase__ = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' )
self._acquire()
if self.is_locked:
logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' )
time.sleep(_UpperCAmelCase )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
UpperCAmelCase__ = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Dict=False ):
"""simple docstring"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
UpperCAmelCase__ = id(self )
UpperCAmelCase__ = self._lock_file
logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' )
self._release()
UpperCAmelCase__ = 0
logger().debug(f'''Lock {lock_id} released on {lock_filename}''' )
return None
def __enter__( self : Union[str, Any] ):
"""simple docstring"""
self.acquire()
return self
def __exit__( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ):
"""simple docstring"""
self.release()
return None
def __del__( self : int ):
"""simple docstring"""
self.release(force=_UpperCAmelCase )
return None
def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = os.path.basename(_UpperCAmelCase )
if len(_UpperCAmelCase ) > max_length and max_length > 0:
UpperCAmelCase__ = os.path.dirname(_UpperCAmelCase )
UpperCAmelCase__ = str(hash(_UpperCAmelCase ) )
UpperCAmelCase__ = filename[: max_length - len(_UpperCAmelCase ) - 8] + """...""" + hashed_filename + """.lock"""
return os.path.join(_UpperCAmelCase , _UpperCAmelCase )
else:
return path
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=-1 , _UpperCAmelCase : Dict=None ):
"""simple docstring"""
from .file_utils import relative_to_absolute_path
super().__init__(_UpperCAmelCase , timeout=_UpperCAmelCase , max_filename_length=_UpperCAmelCase )
UpperCAmelCase__ = """\\\\?\\""" + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
UpperCAmelCase__ = os.open(self._lock_file , _UpperCAmelCase )
except OSError:
pass
else:
try:
msvcrt.locking(_UpperCAmelCase , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(_UpperCAmelCase )
else:
UpperCAmelCase__ = fd
return None
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = self._lock_file_fd
UpperCAmelCase__ = None
msvcrt.locking(_UpperCAmelCase , msvcrt.LK_UNLCK , 1 )
os.close(_UpperCAmelCase )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any=-1 , _UpperCAmelCase : Union[str, Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = os.statvfs(os.path.dirname(_UpperCAmelCase ) ).f_namemax
super().__init__(_UpperCAmelCase , timeout=_UpperCAmelCase , max_filename_length=_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC
UpperCAmelCase__ = os.open(self._lock_file , _UpperCAmelCase )
try:
fcntl.flock(_UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(_UpperCAmelCase )
else:
UpperCAmelCase__ = fd
return None
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self._lock_file_fd
UpperCAmelCase__ = None
fcntl.flock(_UpperCAmelCase , fcntl.LOCK_UN )
os.close(_UpperCAmelCase )
return None
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
UpperCAmelCase__ = os.open(self._lock_file , _UpperCAmelCase )
except OSError:
pass
else:
UpperCAmelCase__ = fd
return None
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
os.close(self._lock_file_fd )
UpperCAmelCase__ = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
UpperCAmelCase_ = None
if msvcrt:
UpperCAmelCase_ = WindowsFileLock
elif fcntl:
UpperCAmelCase_ = UnixFileLock
else:
UpperCAmelCase_ = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 346 |
'''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase_ )
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Dict ):
"""simple docstring"""
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : List[Any]=None ):
"""simple docstring"""
UpperCAmelCase__ = {}
if top_k is not None:
UpperCAmelCase__ = top_k
return {}, {}, postprocess_params
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : str ):
"""simple docstring"""
return super().__call__(_UpperCAmelCase , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = load_image(_UpperCAmelCase )
UpperCAmelCase__ = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = self.model(**_UpperCAmelCase )
return model_outputs
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCAmelCase__ = self.model.config.num_labels
if self.framework == "pt":
UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0]
UpperCAmelCase__ , UpperCAmelCase__ = probs.topk(_UpperCAmelCase )
elif self.framework == "tf":
UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0]
UpperCAmelCase__ = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase )
UpperCAmelCase__ , UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
UpperCAmelCase__ = scores.tolist()
UpperCAmelCase__ = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
| 346 | 1 |
'''simple docstring'''
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
UpperCAmelCase_ = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ = test_results.split(""" """ )
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
UpperCAmelCase__ = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(SCREAMING_SNAKE_CASE__ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
UpperCAmelCase__ = {}
UpperCAmelCase__ = None
UpperCAmelCase__ = False
for line in failures_short_lines.split("""\n""" ):
if re.search(r"""_ \[doctest\]""" , SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = True
UpperCAmelCase__ = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
UpperCAmelCase__ = line
UpperCAmelCase__ = False
return failures
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ):
"""simple docstring"""
UpperCAmelCase__ = title
UpperCAmelCase__ = doc_test_results["""time_spent"""].split(""",""" )[0]
UpperCAmelCase__ = doc_test_results["""success"""]
UpperCAmelCase__ = doc_test_results["""failures"""]
UpperCAmelCase__ = self.n_success + self.n_failures
# Failures and success of the modeling tests
UpperCAmelCase__ = doc_test_results
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = [self._time_spent]
UpperCAmelCase__ = 0
for time in time_spent:
UpperCAmelCase__ = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_UpperCAmelCase ) == 1:
UpperCAmelCase__ = [0, 0, time_parts[0]]
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f'''{int(_UpperCAmelCase )}h{int(_UpperCAmelCase )}m{int(_UpperCAmelCase )}s'''
@property
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
"""simple docstring"""
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
@property
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'''
f''' {self.time}.'''
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = 40
UpperCAmelCase__ = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(_UpperCAmelCase , _UpperCAmelCase )}
UpperCAmelCase__ = """"""
for category, failures in category_failures.items():
if len(_UpperCAmelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += f'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_UpperCAmelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f'''The following examples had failures:\n\n\n{report}\n''',
},
}
@property
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_UpperCAmelCase )
@staticmethod
def SCREAMING_SNAKE_CASE__ ( ):
"""simple docstring"""
UpperCAmelCase__ = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(_UpperCAmelCase )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
UpperCAmelCase__ = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed."""
UpperCAmelCase__ = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = """"""
for key, value in failures.items():
UpperCAmelCase__ = value[:2_00] + """ [Truncated]""" if len(_UpperCAmelCase ) > 2_50 else value
failures_text += f'''*{key}*\n_{value}_\n\n'''
UpperCAmelCase__ = job_name
UpperCAmelCase__ = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
UpperCAmelCase__ = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
UpperCAmelCase__ = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
UpperCAmelCase__ = sorted(self.doc_test_results.items() , key=lambda _UpperCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
UpperCAmelCase__ = f'''*Num failures* :{len(job_result['failed'] )} \n'''
UpperCAmelCase__ = job_result["""failures"""]
UpperCAmelCase__ = self.get_reply_blocks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text=_UpperCAmelCase )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f'''Results for {job}''' , blocks=_UpperCAmelCase , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def _UpperCamelCase ( ):
'''simple docstring'''
UpperCAmelCase__ = os.environ["""GITHUB_RUN_ID"""]
UpperCAmelCase__ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'''
UpperCAmelCase__ = requests.get(SCREAMING_SNAKE_CASE__ ).json()
UpperCAmelCase__ = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
UpperCAmelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = requests.get(url + F'''&page={i + 2}''' ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , SCREAMING_SNAKE_CASE__ )
return {}
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
UpperCAmelCase__ = {}
if os.path.exists(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase__ = os.listdir(SCREAMING_SNAKE_CASE__ )
for file in files:
try:
with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , encoding="""utf-8""" ) as f:
UpperCAmelCase__ = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'''Could not open {os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}.''' ) from e
return _artifact
def _UpperCamelCase ( ):
'''simple docstring'''
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : str ):
"""simple docstring"""
UpperCAmelCase__ = name
UpperCAmelCase__ = []
def __str__( self : int ):
"""simple docstring"""
return self.name
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str ):
"""simple docstring"""
self.paths.append({"""name""": self.name, """path""": path} )
UpperCAmelCase__ = {}
UpperCAmelCase__ = filter(os.path.isdir , os.listdir() )
for directory in directories:
UpperCAmelCase__ = directory
if artifact_name not in _available_artifacts:
UpperCAmelCase__ = Artifact(SCREAMING_SNAKE_CASE__ )
_available_artifacts[artifact_name].add_path(SCREAMING_SNAKE_CASE__ )
return _available_artifacts
if __name__ == "__main__":
UpperCAmelCase_ = get_job_links()
UpperCAmelCase_ = retrieve_available_artifacts()
UpperCAmelCase_ = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
UpperCAmelCase_ = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
UpperCAmelCase_ = github_actions_job_links.get('run_doctests')
UpperCAmelCase_ = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
UpperCAmelCase_ = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = handle_test_results(artifact['stats'])
UpperCAmelCase_ = failed
UpperCAmelCase_ = success
UpperCAmelCase_ = time_spent[1:-1] + ', '
UpperCAmelCase_ = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
UpperCAmelCase_ = line.replace('FAILED ', '')
UpperCAmelCase_ = line.split()[0].replace('\n', '')
if "::" in line:
UpperCAmelCase_ , UpperCAmelCase_ = line.split('::')
else:
UpperCAmelCase_ , UpperCAmelCase_ = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
UpperCAmelCase_ = docs[file_regex]
doc_test_results[category]["failed"].append(test)
UpperCAmelCase_ = all_failures[test] if test in all_failures else 'N/A'
UpperCAmelCase_ = failure
break
UpperCAmelCase_ = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply()
| 346 |
'''simple docstring'''
from math import factorial
def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int = 20 ):
'''simple docstring'''
UpperCAmelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCAmelCase__ = n // 2
return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(2_0))
else:
try:
UpperCAmelCase_ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 346 | 1 |
Subsets and Splits