code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __snake_case : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCamelCase ( _snake_case ): '''simple docstring''' __snake_case = field(default=_snake_case , metadata={'help': 'Whether to use SortishSampler or not.'} ) __snake_case = field( default=_snake_case , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) __snake_case = field( default=_snake_case , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) __snake_case = field( default=_snake_case , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) __snake_case = field( default=_snake_case , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' A__ : Any =super().to_dict() for k, v in d.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =v.to_dict() return d
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __snake_case : str = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) __snake_case : List[str] = [] __snake_case : Optional[int] = [] __snake_case : Dict = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} __snake_case : str = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': F"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", 'emoji': True, }, } ] __snake_case : Tuple = 0 for log in Path().glob('*.log'): __snake_case : str = 0 with open(log, 'r') as f: for line in f: __snake_case : Union[str, Any] = json.loads(line) if line.get('nodeid', '') != "": __snake_case : List[Any] = line['nodeid'] if line.get('duration', None) is not None: __snake_case : Optional[int] = F"""{line['duration']:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __snake_case : Dict = [] log.unlink() __snake_case : List[str] = '' __snake_case : Optional[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __snake_case : Tuple = [] __snake_case : Optional[int] = {} for test in failed_tests: __snake_case : List[str] = test[0].split('::') __snake_case : Union[str, Any] = data[0].split('/')[-1] if data[0] not in filesafailed: __snake_case : Any = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __snake_case : int = [test[0] for test in failed_table] __snake_case : int = list(set(files)) # Count number of instances in failed_tests __snake_case : Union[str, Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __snake_case : Tuple = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __snake_case : List[str] = 'Too many failed tests, please see the full report in the Action results.' __snake_case : List[str] = len(err) + 10 __snake_case : Union[str, Any] = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: __snake_case : Tuple = 'No failed tests! 🤗' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient __snake_case : Tuple = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": __snake_case : Optional[int] = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) __snake_case : Any = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': F"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) __snake_case : Optional[Any] = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': F"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) __snake_case : str = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) __snake_case : Optional[Any] = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __snake_case : Any = '' for i, row in enumerate(test_failures): if row[0] != test_class: __snake_case : Dict = row[0] else: __snake_case : Dict = '' __snake_case : str = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case : Optional[int] = 16 __snake_case : int = 32 def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : int, __snake_case : Union[str, Any] = 16 ) -> int: """simple docstring""" A__ : List[str] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) A__ : List[Any] =DatasetDict( { """train""": dataset["""train"""].select(__A ), """validation""": dataset["""train"""].select(__A ), """test""": dataset["""validation"""], } ) def tokenize_function(__snake_case : Dict ): # max_length=None => use the model max length (it's actually the default) A__ : Optional[int] =tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=__A, max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : List[str] =datasets.map( __A, batched=__A, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : List[Any] =tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(__snake_case : int ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Any =128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : Union[str, Any] =16 elif accelerator.mixed_precision != "no": A__ : List[Any] =8 else: A__ : Optional[int] =None return tokenizer.pad( __A, padding="""longest""", max_length=__A, pad_to_multiple_of=__A, return_tensors="""pt""", ) # Instantiate dataloaders. A__ : Any =DataLoader( tokenized_datasets["""train"""], shuffle=__A, collate_fn=__A, batch_size=__A ) A__ : Union[str, Any] =DataLoader( tokenized_datasets["""validation"""], shuffle=__A, collate_fn=__A, batch_size=__A ) A__ : Union[str, Any] =DataLoader( tokenized_datasets["""test"""], shuffle=__A, collate_fn=__A, batch_size=__A ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCamelCase ( __snake_case : int, __snake_case : Dict ) -> List[Any]: """simple docstring""" A__ : Optional[int] =[] # Download the dataset A__ : int =load_dataset("""glue""", """mrpc""" ) # Create our splits A__ : List[Any] =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ : str =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : str =config["""lr"""] A__ : List[Any] =int(config["""num_epochs"""] ) A__ : List[str] =int(config["""seed"""] ) A__ : Tuple =int(config["""batch_size"""] ) A__ : Union[str, Any] =evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation A__ : List[str] =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ : Dict =batch_size // MAX_GPU_BATCH_SIZE A__ : str =MAX_GPU_BATCH_SIZE set_seed(__A ) # New Code # # Create our folds: A__ : str =kfold.split(np.zeros(datasets["""train"""].num_rows ), datasets["""train"""]["""label"""] ) A__ : Dict =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__A ): A__ : Optional[Any] =get_fold_dataloaders( __A, __A, __A, __A, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[int] =AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=__A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : List[str] =model.to(accelerator.device ) # Instantiate optimizer A__ : Any =AdamW(params=model.parameters(), lr=__A ) # Instantiate scheduler A__ : Optional[Any] =get_linear_schedule_with_warmup( optimizer=__A, num_warmup_steps=100, num_training_steps=(len(__A ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ : Any =accelerator.prepare( __A, __A, __A, __A, __A ) # Now we train the model for epoch in range(__A ): model.train() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Optional[int] =model(**__A ) A__ : Tuple =outputs.loss A__ : int =loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : List[str] =model(**__A ) A__ : Tuple =outputs.logits.argmax(dim=-1 ) A__ : int =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__A, references=__A, ) A__ : Optional[Any] =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", __A ) # New Code # # We also run predictions on the test set at the very end A__ : Optional[Any] =[] for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] =model(**__A ) A__ : Tuple =outputs.logits A__ : int =accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__A, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ : Any =torch.cat(__A, dim=0 ) A__ : Dict =torch.stack(__A, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ : List[Any] =metric.compute(predictions=__A, references=__A ) accelerator.print("""Average test metrics from all folds:""", __A ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : Any =argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=__A, default=__A, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""", type=__A, default=3, help="""The number of splits to perform across the dataset""" ) A__ : Tuple =parser.parse_args() A__ : Any ={"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__A, __A ) if __name__ == "__main__": main()
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __snake_case : Dict = logging.get_logger(__name__) __snake_case : Optional[int] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : List[str] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __snake_case : Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __snake_case : Optional[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __snake_case : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __snake_case : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __snake_case : Optional[Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __snake_case : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __snake_case : Union[str, Any] = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __snake_case : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowerCamelCase ( a__ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCamelCase ( a__ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __snake_case = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __snake_case : Tuple = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __snake_case : str = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __snake_case : Any = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(a__ ) class lowerCamelCase : '''simple docstring''' def __call__( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Dict = False , lowerCAmelCase_ : List[Any] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : List[Any] = None , lowerCAmelCase_ : Optional[Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> Union[str, Any]: '''simple docstring''' if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: A__ : Optional[int] =titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) A__ : str =titles if not isinstance(_A , _A ) else [titles] A__ : List[str] =texts if not isinstance(_A , _A ) else [texts] A__ : Union[str, Any] =len(_A ) A__ : Optional[Any] =questions if not isinstance(_A , _A ) else [questions] * n_passages if len(_A ) != len(_A ): raise ValueError( f"There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts." ) A__ : Union[str, Any] =super().__call__(_A , _A , padding=_A , truncation=_A )['input_ids'] A__ : Tuple =super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )['input_ids'] A__ : Optional[int] ={ 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: A__ : Tuple =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A__ : List[Any] =attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] = 16 , lowerCAmelCase_ : Optional[int] = 64 , lowerCAmelCase_ : List[Any] = 4 , ) -> List[Any]: '''simple docstring''' A__ : int =reader_input['input_ids'] A__ : int =reader_output[:3] A__ : Optional[Any] =len(_A ) A__ : Any =sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) A__ : List[DPRReaderOutput] =[] for doc_id in sorted_docs: A__ : int =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A__ : Any =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ : List[str] =sequence_ids.index(self.pad_token_id ) else: A__ : Optional[int] =len(_A ) A__ : Optional[Any] =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , ) -> List[str]: '''simple docstring''' A__ : List[Any] =[] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A__ : Tuple =sorted(_A , key=lambda lowerCAmelCase_ : x[1] , reverse=_A ) A__ : int =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) A__ : List[str] =end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class lowerCamelCase ( a__ , a__ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = READER_PRETRAINED_VOCAB_FILES_MAP __snake_case = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = READER_PRETRAINED_INIT_CONFIGURATION __snake_case = ['input_ids', 'attention_mask']
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import numpy as np class lowerCamelCase : '''simple docstring''' def __init__( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : str =(0, 0) A__ : List[Any] =None A__ : Dict =0 A__ : List[str] =0 A__ : Dict =0 def __eq__( self : Tuple , lowerCAmelCase_ : int ) -> List[str]: '''simple docstring''' return self.position == cell.position def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' print(self.position ) class lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : List[Any]=(5, 5) ) -> int: '''simple docstring''' A__ : Tuple =np.zeros(__lowerCamelCase ) A__ : str =world_size[0] A__ : Dict =world_size[1] def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' print(self.w ) def lowercase__ ( self : str , lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' A__ : Any =[ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : Optional[Any] =cell.position[0] A__ : Optional[Any] =cell.position[1] A__ : Tuple =[] for n in neughbour_cord: A__ : Any =current_x + n[0] A__ : Union[str, Any] =current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : Optional[Any] =Cell() A__ : Union[str, Any] =(x, y) A__ : List[Any] =cell neighbours.append(__lowerCamelCase ) return neighbours def __lowerCamelCase ( __snake_case : Any, __snake_case : Optional[int], __snake_case : int ) -> Any: """simple docstring""" A__ : Union[str, Any] =[] A__ : List[str] =[] _open.append(_lowerCamelCase ) while _open: A__ : List[str] =np.argmin([n.f for n in _open] ) A__ : Dict =_open[min_f] _closed.append(_open.pop(_lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(_lowerCamelCase ): for c in _closed: if c == n: continue A__ : Optional[int] =current.g + 1 A__ : List[str] =n.position A__ : Dict =goal.position A__ : List[str] =(ya - ya) ** 2 + (xa - xa) ** 2 A__ : List[str] =n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_lowerCamelCase ) A__ : int =[] while current.parent is not None: path.append(current.position ) A__ : List[Any] =current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __snake_case : List[Any] = Gridworld() # Start position and goal __snake_case : List[Any] = Cell() __snake_case : Optional[int] = (0, 0) __snake_case : Optional[int] = Cell() __snake_case : List[Any] = (4, 4) print(F"""path from {start.position} to {goal.position}""") __snake_case : Optional[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: __snake_case : Optional[int] = 1 print(world.w)
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' __snake_case = 'levit' def __init__( self : Optional[Any] , lowerCAmelCase_ : int=2_24 , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : Dict=16 , lowerCAmelCase_ : Dict=[1_28, 2_56, 3_84] , lowerCAmelCase_ : Any=[4, 8, 12] , lowerCAmelCase_ : List[Any]=[4, 4, 4] , lowerCAmelCase_ : Union[str, Any]=[16, 16, 16] , lowerCAmelCase_ : Union[str, Any]=0 , lowerCAmelCase_ : Tuple=[2, 2, 2] , lowerCAmelCase_ : Tuple=[2, 2, 2] , lowerCAmelCase_ : List[str]=0.02 , **lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase_ ) A__ : List[Any] =image_size A__ : List[str] =num_channels A__ : Any =kernel_size A__ : Tuple =stride A__ : Dict =padding A__ : int =hidden_sizes A__ : Optional[int] =num_attention_heads A__ : Tuple =depths A__ : List[Any] =key_dim A__ : Optional[int] =drop_path_rate A__ : Tuple =patch_size A__ : List[str] =attention_ratio A__ : Optional[Any] =mlp_ratio A__ : str =initializer_range A__ : List[str] =[ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase__ ( self : str ) -> float: '''simple docstring''' return 1e-4
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __snake_case : Tuple = logging.get_logger(__name__) class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' __snake_case = ['audio_values', 'audio_mask'] def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[Any]=20_48 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : Any=[16, 16] , lowerCAmelCase_ : Optional[int]=1_28 , lowerCAmelCase_ : Union[str, Any]=4_41_00 , lowerCAmelCase_ : List[str]=86 , lowerCAmelCase_ : int=20_48 , lowerCAmelCase_ : Optional[Any]=0.0 , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase , ) A__ : int =spectrogram_length A__ : Optional[Any] =num_channels A__ : Optional[Any] =patch_size A__ : Any =feature_size // self.patch_size[1] A__ : List[Any] =n_fft A__ : Optional[Any] =sampling_rate // hop_length_to_sampling_rate A__ : Optional[Any] =sampling_rate A__ : Any =padding_value A__ : Tuple =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCamelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=__UpperCamelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T def lowercase__ ( self : Dict , lowerCAmelCase_ : np.array ) -> np.ndarray: '''simple docstring''' A__ : int =spectrogram( __UpperCamelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) A__ : Union[str, Any] =log_spec[:, :-1] A__ : Any =log_spec - 20.0 A__ : Union[str, Any] =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[bool] = True , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : str , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ : Optional[Any] =isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A__ : Dict =is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : Tuple =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): A__ : Any =np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ : str =raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ : List[str] =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis A__ : Union[str, Any] =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __UpperCamelCase ): A__ : str =[np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask A__ : Dict =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: A__ : Union[str, Any] =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] A__ : Tuple =np.array(__UpperCamelCase ).astype(np.floataa ) # convert into correct format for padding A__ : int =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch A__ : Optional[int] =np.ones([len(__UpperCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) A__ : Any =padded_audio_features * self.padding_value for i in range(len(__UpperCamelCase ) ): A__ : int =audio_features[i] A__ : Tuple =feature # return as BatchFeature if return_attention_mask: A__ : Union[str, Any] ={"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: A__ : Tuple ={"""audio_values""": padded_audio_features} A__ : List[Any] =BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) return encoded_inputs
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowerCamelCase : def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Any=99 , lowerCAmelCase_ : Optional[Any]=[1, 1, 2] , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : int=32 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : int=37 , lowerCAmelCase_ : int="gelu_new" , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Tuple=False , ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =parent A__ : Dict =batch_size A__ : Optional[int] =seq_length A__ : str =is_training A__ : Tuple =use_input_mask A__ : Union[str, Any] =use_token_type_ids A__ : List[Any] =use_labels A__ : Dict =vocab_size A__ : Union[str, Any] =block_sizes A__ : str =num_decoder_layers A__ : List[str] =d_model A__ : Tuple =n_head A__ : Union[str, Any] =d_head A__ : Any =d_inner A__ : Union[str, Any] =hidden_act A__ : str =hidden_dropout A__ : str =attention_dropout A__ : Dict =activation_dropout A__ : Tuple =max_position_embeddings A__ : Tuple =type_vocab_size A__ : List[Any] =2 A__ : Any =num_labels A__ : Optional[int] =num_choices A__ : int =scope A__ : Any =initializer_std # Used in the tests to check the size of the first attention layer A__ : List[str] =n_head # Used in the tests to check the size of the first hidden state A__ : Optional[int] =self.d_model # Used in the tests to check the number of output hidden states/attentions A__ : List[Any] =sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A__ : Optional[Any] =self.num_hidden_layers + 2 def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : int =None if self.use_input_mask: A__ : int =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] =None if self.use_token_type_ids: A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Tuple =None A__ : List[str] =None A__ : str =None if self.use_labels: A__ : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] =FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , ) -> Optional[int]: '''simple docstring''' A__ : int =TFFunnelModel(config=snake_case_ ) A__ : Tuple ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : Tuple =model(snake_case_ ) A__ : Optional[Any] =[input_ids, input_mask] A__ : Union[str, Any] =model(snake_case_ ) A__ : Optional[int] =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A__ : str =False A__ : Union[str, Any] =TFFunnelModel(config=snake_case_ ) A__ : List[Any] =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A__ : Any =False A__ : int =TFFunnelModel(config=snake_case_ ) A__ : Tuple =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , ) -> Any: '''simple docstring''' A__ : Optional[Any] =TFFunnelBaseModel(config=snake_case_ ) A__ : Tuple ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : List[str] =model(snake_case_ ) A__ : str =[input_ids, input_mask] A__ : Tuple =model(snake_case_ ) A__ : List[str] =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) A__ : Any =False A__ : Optional[int] =TFFunnelBaseModel(config=snake_case_ ) A__ : List[Any] =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) A__ : Dict =False A__ : str =TFFunnelBaseModel(config=snake_case_ ) A__ : Tuple =model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =TFFunnelForPreTraining(config=snake_case_ ) A__ : Union[str, Any] ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : int =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] =TFFunnelForMaskedLM(config=snake_case_ ) A__ : str ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : Dict =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =self.num_labels A__ : Optional[int] =TFFunnelForSequenceClassification(config=snake_case_ ) A__ : int ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : Optional[Any] =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =self.num_choices A__ : Any =TFFunnelForMultipleChoice(config=snake_case_ ) A__ : List[str] =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A__ : Dict =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A__ : str =tf.tile(tf.expand_dims(snake_case_ , 1 ) , (1, self.num_choices, 1) ) A__ : Optional[Any] ={ """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } A__ : Union[str, Any] =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , ) -> List[Any]: '''simple docstring''' A__ : Optional[Any] =self.num_labels A__ : Dict =TFFunnelForTokenClassification(config=snake_case_ ) A__ : Tuple ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : Union[str, Any] =model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] =TFFunnelForQuestionAnswering(config=snake_case_ ) A__ : int ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} A__ : int =model(snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : List[str] =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Any =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCamelCase ( _a , _a , unittest.TestCase ): __snake_case = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __snake_case = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __snake_case = False __snake_case = False def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : List[Any] =TFFunnelModelTester(self ) A__ : Dict =ConfigTester(self , config_class=snake_case_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @require_tf class lowerCamelCase ( _a , unittest.TestCase ): __snake_case = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __snake_case = False __snake_case = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' A__ : List[Any] =TFFunnelModelTester(self , base=snake_case_ ) A__ : List[str] =ConfigTester(self , config_class=snake_case_ ) def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*snake_case_ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ )
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __snake_case : List[str] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) __snake_case : Optional[int] = [] __snake_case : int = [] __snake_case : Optional[int] = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} __snake_case : str = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", '''emoji''': True, }, } ] __snake_case : Union[str, Any] = 0 for log in Path().glob('*.log'): __snake_case : Dict = 0 with open(log, 'r') as f: for line in f: __snake_case : Dict = json.loads(line) if line.get('nodeid', '') != "": __snake_case : Optional[int] = line['''nodeid'''] if line.get('duration', None) is not None: __snake_case : int = F"""{line['duration']:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __snake_case : Dict = [] log.unlink() __snake_case : Union[str, Any] = '''''' __snake_case : Union[str, Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __snake_case : List[str] = [] __snake_case : Optional[int] = {} for test in failed_tests: __snake_case : Tuple = test[0].split('::') __snake_case : Any = data[0].split('/')[-1] if data[0] not in filesafailed: __snake_case : Union[str, Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __snake_case : str = [test[0] for test in failed_table] __snake_case : Optional[int] = list(set(files)) # Count number of instances in failed_tests __snake_case : Dict = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __snake_case : List[Any] = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __snake_case : List[str] = '''Too many failed tests, please see the full report in the Action results.''' __snake_case : List[Any] = len(err) + 10 __snake_case : int = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: __snake_case : Optional[Any] = '''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient __snake_case : List[str] = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": __snake_case : List[str] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) __snake_case : Optional[int] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) __snake_case : List[str] = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) __snake_case : Optional[Any] = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) __snake_case : Union[str, Any] = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __snake_case : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: __snake_case : List[str] = row[0] else: __snake_case : Optional[Any] = '''''' __snake_case : Union[str, Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' import argparse import copy def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] ={} with open(snake_case__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: A__ : Any =[] _list.append([line.split()[1], line.split()[2]] ) A__ : List[str] =_list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: A__ : Any =[] _list.append([line.split()[0], line.split()[2]] ) A__ : Union[str, Any] =_list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __lowerCamelCase ( __snake_case : str, __snake_case : Any ) -> List[Any]: """simple docstring""" with open(snake_case__ ) as f: A__ : Union[str, Any] =f.read(1 ) A__ : List[Any] =start_node A__ : Dict =[] A__ : Union[str, Any] =start_node A__ : Optional[Any] =0 while visiting not in first_solution: A__ : Dict =10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(snake_case__ ) and k[0] not in first_solution: A__ : Optional[Any] =k[1] A__ : Optional[Any] =k[0] first_solution.append(snake_case__ ) A__ : int =distance_of_first_solution + int(snake_case__ ) A__ : Optional[int] =best_node first_solution.append(snake_case__ ) A__ : List[Any] =0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 A__ : Dict =( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Dict: """simple docstring""" A__ : Union[str, Any] =[] for n in solution[1:-1]: A__ : Tuple =solution.index(snake_case__ ) for kn in solution[1:-1]: A__ : Dict =solution.index(snake_case__ ) if n == kn: continue A__ : Optional[Any] =copy.deepcopy(snake_case__ ) A__ : Optional[Any] =kn A__ : Any =n A__ : Optional[int] =0 for k in _tmp[:-1]: A__ : List[str] =_tmp[_tmp.index(snake_case__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: A__ : Dict =distance + int(i[1] ) _tmp.append(snake_case__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) A__ : List[str] =len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __snake_case : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : Any, __snake_case : List[str] ) -> List[Any]: """simple docstring""" A__ : Optional[Any] =1 A__ : Union[str, Any] =first_solution A__ : Optional[int] =[] A__ : Union[str, Any] =distance_of_first_solution A__ : Union[str, Any] =solution while count <= iters: A__ : Optional[int] =find_neighborhood(snake_case__, snake_case__ ) A__ : Union[str, Any] =0 A__ : Union[str, Any] =neighborhood[index_of_best_solution] A__ : Any =len(snake_case__ ) - 1 A__ : int =False while not found: A__ : Union[str, Any] =0 while i < len(snake_case__ ): if best_solution[i] != solution[i]: A__ : List[str] =best_solution[i] A__ : Tuple =solution[i] break A__ : int =i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) A__ : Optional[int] =True A__ : Optional[int] =best_solution[:-1] A__ : Optional[int] =neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: A__ : str =cost A__ : List[str] =solution else: A__ : Dict =index_of_best_solution + 1 A__ : List[Any] =neighborhood[index_of_best_solution] if len(snake_case__ ) >= size: tabu_list.pop(0 ) A__ : List[Any] =count + 1 return best_solution_ever, best_cost def __lowerCamelCase ( __snake_case : List[str]=None ) -> int: """simple docstring""" A__ : Any =generate_neighbours(args.File ) A__ , A__ : List[Any] =generate_first_solution( args.File, snake_case__ ) A__ , A__ : Optional[Any] =tabu_search( snake_case__, snake_case__, snake_case__, args.Iterations, args.Size, ) print(f"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Optional[int] = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[str], __snake_case : Optional[int] ) -> Any: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): A__ : List[str] =[image] if isinstance(image[0], PIL.Image.Image ): A__ : Any =[np.array(i.resize((w, h), resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] A__ : Optional[int] =np.concatenate(__snake_case, axis=0 ) A__ : Optional[Any] =np.array(__snake_case ).astype(np.floataa ) / 2_55.0 A__ : Optional[Any] =image.transpose(0, 3, 1, 2 ) A__ : int =2.0 * image - 1.0 A__ : Optional[Any] =torch.from_numpy(__snake_case ) elif isinstance(image[0], torch.Tensor ): A__ : Any =torch.cat(__snake_case, dim=0 ) return image def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int], __snake_case : Any, __snake_case : Dict=0.99_95 ) -> List[str]: """simple docstring""" if not isinstance(__snake_case, np.ndarray ): A__ : Optional[int] =True A__ : Union[str, Any] =va.device A__ : Optional[Any] =va.cpu().numpy() A__ : int =va.cpu().numpy() A__ : Union[str, Any] =np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) ) if np.abs(__snake_case ) > DOT_THRESHOLD: A__ : Tuple =(1 - t) * va + t * va else: A__ : str =np.arccos(__snake_case ) A__ : Any =np.sin(__snake_case ) A__ : Tuple =theta_a * t A__ : Dict =np.sin(__snake_case ) A__ : List[Any] =np.sin(theta_a - theta_t ) / sin_theta_a A__ : Optional[Any] =sin_theta_t / sin_theta_a A__ : List[str] =sa * va + sa * va if inputs_are_torch: A__ : Tuple =torch.from_numpy(__snake_case ).to(__snake_case ) return va def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : str ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] =F.normalize(__snake_case, dim=-1 ) A__ : List[str] =F.normalize(__snake_case, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : str ) -> Optional[int]: """simple docstring""" for param in model.parameters(): A__ : Optional[Any] =value class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , clip_model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , coca_model=lowerCAmelCase_ , coca_tokenizer=lowerCAmelCase_ , coca_transform=lowerCAmelCase_ , ) A__ : Tuple =( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase_ ) else feature_extractor.size["""shortest_edge"""] ) A__ : str =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase_ ) set_requires_grad(self.clip_model , lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : List[Any] = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ : Tuple =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' set_requires_grad(self.vae , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' set_requires_grad(self.vae , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Dict: '''simple docstring''' set_requires_grad(self.unet , lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' set_requires_grad(self.unet , lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' # get the original timestep using init_timestep A__ : str =min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) A__ : Optional[int] =max(num_inference_steps - init_timestep , 0 ) A__ : Dict =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any]=None ) -> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase_ )}" ) A__ : Optional[Any] =image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =[ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] A__ : int =torch.cat(lowerCAmelCase_ , dim=0 ) else: A__ : List[str] =self.vae.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ : Optional[Any] =0.18215 * init_latents A__ : List[Any] =init_latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) A__ : List[str] =randn_tensor(init_latents.shape , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents A__ : Optional[int] =self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =init_latents return latents def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =self.coca_transform(lowerCAmelCase_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): A__ : Tuple =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) A__ : Tuple =self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' A__ : int =self.feature_extractor.preprocess(lowerCAmelCase_ ) A__ : Optional[int] =torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() A__ : Union[str, Any] =self.clip_model.get_image_features(lowerCAmelCase_ ) A__ : List[str] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase_ ) A__ : List[str] =image_embeddings_clip.repeat_interleave(lowerCAmelCase_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , ) -> Dict: '''simple docstring''' A__ : int =latents.detach().requires_grad_() A__ : Tuple =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual A__ : str =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): A__ : int =self.scheduler.alphas_cumprod[timestep] A__ : Any =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ : str =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 A__ : List[Any] =torch.sqrt(lowerCAmelCase_ ) A__ : Union[str, Any] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase_ ): A__ : List[str] =self.scheduler.sigmas[index] A__ : List[Any] =latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ : Optional[int] =1 / 0.18215 * sample A__ : int =self.vae.decode(lowerCAmelCase_ ).sample A__ : int =(image / 2 + 0.5).clamp(0 , 1 ) A__ : Union[str, Any] =transforms.Resize(self.feature_extractor_size )(lowerCAmelCase_ ) A__ : Union[str, Any] =self.normalize(lowerCAmelCase_ ).to(latents.dtype ) A__ : Dict =self.clip_model.get_image_features(lowerCAmelCase_ ) A__ : Optional[Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase_ ) A__ : Optional[Any] =spherical_dist_loss(lowerCAmelCase_ , lowerCAmelCase_ ).mean() * clip_guidance_scale A__ : List[Any] =-torch.autograd.grad(lowerCAmelCase_ , lowerCAmelCase_ )[0] if isinstance(self.scheduler , lowerCAmelCase_ ): A__ : Optional[int] =latents.detach() + grads * (sigma**2) A__ : Optional[int] =noise_pred_original else: A__ : Tuple =noise_pred_original - torch.sqrt(lowerCAmelCase_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[Any] = 5_12 , lowerCAmelCase_ : List[Any] = 5_12 , lowerCAmelCase_ : Any = 0.6 , lowerCAmelCase_ : List[Any] = 50 , lowerCAmelCase_ : int = 7.5 , lowerCAmelCase_ : Any = 1 , lowerCAmelCase_ : List[str] = 0.0 , lowerCAmelCase_ : List[Any] = 1_00 , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = "pil" , lowerCAmelCase_ : Optional[Any] = True , lowerCAmelCase_ : Any = 0.8 , lowerCAmelCase_ : List[Any] = 0.1 , lowerCAmelCase_ : List[Any] = 0.1 , ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(lowerCAmelCase_ )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(lowerCAmelCase_ , torch.Generator ) and batch_size > 1: A__ : str =[generator] + [None] * (batch_size - 1) A__ : List[Any] =[ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] A__ : Dict =[x[0] for x in coca_is_none if x[1]] A__ : Union[str, Any] =""", """.join(lowerCAmelCase_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase_ ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) A__ : Tuple =self.get_image_description(lowerCAmelCase_ ) if style_prompt is None: if len(lowerCAmelCase_ ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) A__ : Optional[Any] =self.get_image_description(lowerCAmelCase_ ) # get prompt text embeddings for content and style A__ : Optional[Any] =self.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""pt""" , ) A__ : str =self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] A__ : Union[str, Any] =self.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""pt""" , ) A__ : Any =self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] A__ : Optional[Any] =slerp(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # duplicate text embeddings for each generation per prompt A__ : Optional[Any] =text_embeddings.repeat_interleave(lowerCAmelCase_ , dim=0 ) # set timesteps A__ : Optional[Any] ="""offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) A__ : Optional[Any] ={} if accepts_offset: A__ : Any =1 self.scheduler.set_timesteps(lowerCAmelCase_ , **lowerCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) A__ , A__ : int =self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , self.device ) A__ : Tuple =timesteps[:1].repeat(lowerCAmelCase_ ) # Preprocess image A__ : Dict =preprocess(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text_embeddings.dtype , self.device , lowerCAmelCase_ ) A__ : int =preprocess(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[Any] =self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text_embeddings.dtype , self.device , lowerCAmelCase_ ) A__ : Dict =slerp(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if clip_guidance_scale > 0: A__ : List[Any] =self.get_clip_image_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =self.get_clip_image_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =slerp( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ : Any =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ : Tuple =content_text_input.input_ids.shape[-1] A__ : List[str] =self.tokenizer([""""""] , padding="""max_length""" , max_length=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : Optional[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt A__ : List[Any] =uncond_embeddings.repeat_interleave(lowerCAmelCase_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ : Union[str, Any] =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ : List[Any] =(batch_size, self.unet.config.in_channels, height // 8, width // 8) A__ : str =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps A__ : int =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to( self.device ) else: A__ : Optional[Any] =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A__ : Tuple =latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ : List[Any] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : int ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : Union[str, Any] ={} if accepts_eta: A__ : Tuple =eta # check if the scheduler accepts generator A__ : str ="""generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: A__ : Tuple =generator with self.progress_bar(total=lowerCAmelCase_ ): for i, t in enumerate(lowerCAmelCase_ ): # expand the latents if we are doing classifier free guidance A__ : str =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : List[str] =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual A__ : Optional[Any] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample # perform classifier free guidance if do_classifier_free_guidance: A__ , A__ : int =noise_pred.chunk(2 ) A__ : Optional[int] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: A__ : List[str] =( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) A__ , A__ : Any =self.cond_fn( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # compute the previous noisy sample x_t -> x_t-1 A__ : List[str] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ : List[Any] =1 / 0.18215 * latents A__ : Tuple =self.vae.decode(lowerCAmelCase_ ).sample A__ : Dict =(image / 2 + 0.5).clamp(0 , 1 ) A__ : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : str =self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from math import factorial class lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' A__ : str =real if isinstance(__A , __A ): A__ : Optional[Any] =[1] * rank else: A__ : int =rank def __repr__( self : Optional[Any] ) -> List[str]: '''simple docstring''' return ( f"{self.real}+" f"{'+'.join(str(__A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __A ) def __add__( self : List[Any] , lowerCAmelCase_ : Dict ) -> str: '''simple docstring''' if not isinstance(__A , __A ): return Dual(self.real + other , self.duals ) A__ : str =self.duals.copy() A__ : List[str] =other.duals.copy() if len(__A ) > len(__A ): o_dual.extend([1] * (len(__A ) - len(__A )) ) elif len(__A ) < len(__A ): s_dual.extend([1] * (len(__A ) - len(__A )) ) A__ : str =[] for i in range(len(__A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __A ) __snake_case = __add__ def __sub__( self : Optional[int] , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' return self + other * -1 def __mul__( self : List[str] , lowerCAmelCase_ : str ) -> Tuple: '''simple docstring''' if not isinstance(__A , __A ): A__ : str =[] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __A ) A__ : Tuple =[0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __A ) __snake_case = __mul__ def __truediv__( self : Dict , lowerCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' if not isinstance(__A , __A ): A__ : Union[str, Any] =[] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __A ) raise ValueError def __floordiv__( self : Tuple , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if not isinstance(__A , __A ): A__ : List[str] =[] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __A ) raise ValueError def __pow__( self : Tuple , lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' if n < 0 or isinstance(__A , __A ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self A__ : Any =self for _ in range(n - 1 ): x *= self return x def __lowerCamelCase ( __snake_case : int, __snake_case : Optional[int], __snake_case : int ) -> Any: """simple docstring""" if not callable(snake_case_ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(snake_case_, (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(snake_case_, snake_case_ ): raise ValueError("""differentiate() requires an int as input for order""" ) A__ : Optional[Any] =Dual(snake_case_, 1 ) A__ : Optional[int] =func(snake_case_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() def __lowerCamelCase ( __snake_case : List[str] ) -> int: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' __snake_case = 'encoder-decoder' __snake_case = True def __init__( self : Optional[int] , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ : List[Any] =kwargs.pop("""encoder""" ) A__ : Optional[Any] =encoder_config.pop("""model_type""" ) A__ : Any =kwargs.pop("""decoder""" ) A__ : List[Any] =decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig A__ : List[Any] =AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Dict =True @classmethod def lowercase__ ( cls : int , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : List[str] ) -> PretrainedConfig: '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A__ : Tuple =True A__ : List[Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' A__ : str =copy.deepcopy(self.__dict__ ) A__ : Dict =self.encoder.to_dict() A__ : List[Any] =self.decoder.to_dict() A__ : Dict =self.__class__.model_type return output
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
import argparse import os import re import packaging.version __snake_case : Optional[Any] = 'examples/' __snake_case : Union[str, Any] = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __snake_case : Optional[Any] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } __snake_case : str = 'README.md' def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Union[str, Any], __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" with open(__snake_case, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int =f.read() A__ : Union[str, Any] =REPLACE_PATTERNS[pattern] A__ : Union[str, Any] =replace.replace("""VERSION""", __snake_case ) A__ : List[Any] =re_pattern.sub(__snake_case, __snake_case ) with open(__snake_case, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.write(__snake_case ) def __lowerCamelCase ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(__snake_case ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__snake_case, __snake_case ), __snake_case, pattern="""examples""" ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Tuple=False ) -> List[Any]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__snake_case, __snake_case, __snake_case ) if not patch: update_version_in_examples(__snake_case ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ : Optional[Any] ="""🤗 Transformers currently provides the following architectures""" A__ : Optional[int] ="""1. Want to contribute a new model?""" with open(__snake_case, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] =f.readlines() # Find the start of the list. A__ : Optional[int] =0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A__ : List[str] =start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): A__ : Optional[int] =lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""", """https://huggingface.co/docs/diffusers/model_doc""", ) index += 1 with open(__snake_case, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(__snake_case ) def __lowerCamelCase ( ) -> str: """simple docstring""" with open(REPLACE_FILES["""init"""], """r""" ) as f: A__ : Optional[Any] =f.read() A__ : int =REPLACE_PATTERNS["""init"""][0].search(__snake_case ).groups()[0] return packaging.version.parse(__snake_case ) def __lowerCamelCase ( __snake_case : Dict=False ) -> Any: """simple docstring""" A__ : Dict =get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: A__ : Optional[int] =default_version.base_version elif patch: A__ : int =f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: A__ : Union[str, Any] =f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. A__ : Tuple =input(f"Which version are you releasing? [{default_version}]" ) if len(__snake_case ) == 0: A__ : List[str] =default_version print(f"Updating version to {version}." ) global_version_update(__snake_case, patch=__snake_case ) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =get_version() A__ : Tuple =f"{current_version.major}.{current_version.minor + 1}.0.dev0" A__ : List[str] =current_version.base_version # Check with the user we got that right. A__ : List[Any] =input(f"Which version are we developing now? [{dev_version}]" ) if len(__snake_case ) == 0: A__ : Tuple =dev_version print(f"Updating version to {version}." ) global_version_update(__snake_case ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __snake_case : Union[str, Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCamelCase ( __a , unittest.TestCase ): '''simple docstring''' __snake_case = VideoToVideoSDPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'} __snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'} __snake_case = PipelineTesterMixin.required_optional_params - {'latents'} __snake_case = False # No `output_type`. __snake_case = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) A__ : int =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) A__ : Optional[Any] =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) A__ : Any =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) A__ : Optional[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) A__ : Optional[Any] =CLIPTextModel(a_ ) A__ : Union[str, Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Dict ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowercase__ ( self : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]=0 ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) if str(a_ ).startswith("""mps""" ): A__ : Dict =torch.manual_seed(a_ ) else: A__ : List[Any] =torch.Generator(device=a_ ).manual_seed(a_ ) A__ : int ={ """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[Any] =self.get_dummy_components() A__ : int =VideoToVideoSDPipeline(**a_ ) A__ : int =sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) A__ : Optional[Any] =self.get_dummy_inputs(a_ ) A__ : Tuple ="""np""" A__ : Tuple =sd_pipe(**a_ ).frames A__ : Any =frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) A__ : int =np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a_ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' pass def lowercase__ ( self : int ) -> Any: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames A__ : List[Any] =torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ : Any =torch.randn((1, 10, 3, 10_24, 5_76) , generator=a_ ) A__ : Union[str, Any] =video.to("""cuda""" ) A__ : List[Any] ="""Spiderman is surfing""" A__ : Any =pipe(a_ , video=a_ , generator=a_ , num_inference_steps=3 , output_type="""pt""" ).frames A__ : int =np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Dict = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Dict = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : Any = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : Tuple = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __lowerCamelCase ( __snake_case : str ) -> str: """simple docstring""" with open(_lowercase, """rb""" ) as f: A__ : List[str] =Image.open(_lowercase ) return im.convert("""RGB""" ) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = field( default=a__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __snake_case = field( default=a__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __snake_case = field(default=a__ , metadata={'help': 'A folder containing the training data.'} ) __snake_case = field(default=a__ , metadata={'help': 'A folder containing the validation data.'} ) __snake_case = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __snake_case = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __snake_case = field( default=a__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( """You must specify either a dataset name from the hub or a train and/or validation directory.""" ) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __snake_case = field( default=a__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(a__ )} , ) __snake_case = field( default=a__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case = field( default=a__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __snake_case = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __snake_case = field(default=a__ , metadata={'help': 'Name or path of preprocessor config.'} ) __snake_case = field( default=a__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __snake_case = field( default=a__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowerCamelCase ( __snake_case : Tuple ) -> Dict: """simple docstring""" A__ : Tuple =torch.stack([example["""pixel_values"""] for example in examples] ) A__ : Dict =torch.tensor([example["""labels"""] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : str =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ : Union[str, Any] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ : int =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_image_classification""", _lowercase, _lowercase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ : Optional[int] =training_args.get_process_log_level() logger.setLevel(_lowercase ) transformers.utils.logging.set_verbosity(_lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. A__ : List[Any] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ : Optional[int] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A__ : Tuple =load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task="""image-classification""", use_auth_token=True if model_args.use_auth_token else None, ) else: A__ : Tuple ={} if data_args.train_dir is not None: A__ : int =os.path.join(data_args.train_dir, """**""" ) if data_args.validation_dir is not None: A__ : Any =os.path.join(data_args.validation_dir, """**""" ) A__ : Optional[Any] =load_dataset( """imagefolder""", data_files=_lowercase, cache_dir=model_args.cache_dir, task="""image-classification""", ) # If we don't have a validation split, split off a percentage of train as validation. A__ : int =None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _lowercase ) and data_args.train_val_split > 0.0: A__ : int =dataset["train"].train_test_split(data_args.train_val_split ) A__ : str =split["train"] A__ : Dict =split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A__ : List[str] =dataset["train"].features["labels"].names A__ : Union[str, Any] ={}, {} for i, label in enumerate(_lowercase ): A__ : int =str(_lowercase ) A__ : List[Any] =label # Load the accuracy metric from the datasets package A__ : Union[str, Any] =evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__snake_case : Optional[int] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A__ : Any =AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_lowercase ), labelaid=_lowercase, idalabel=_lowercase, finetuning_task="""image-classification""", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A__ : List[str] =AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=_lowercase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A__ : List[Any] =AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A__ : str =image_processor.size["shortest_edge"] else: A__ : List[str] =(image_processor.size["height"], image_processor.size["width"]) A__ : str =Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A__ : int =Compose( [ RandomResizedCrop(_lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A__ : List[str] =Compose( [ Resize(_lowercase ), CenterCrop(_lowercase ), ToTensor(), normalize, ] ) def train_transforms(__snake_case : List[str] ): A__ : List[Any] =[ _train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(__snake_case : List[Any] ): A__ : Union[str, Any] =[_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: A__ : Optional[int] =( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: A__ : Any =( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_lowercase ) # Initalize our trainer A__ : Union[str, Any] =Trainer( model=_lowercase, args=_lowercase, train_dataset=dataset["""train"""] if training_args.do_train else None, eval_dataset=dataset["""validation"""] if training_args.do_eval else None, compute_metrics=_lowercase, tokenizer=_lowercase, data_collator=_lowercase, ) # Training if training_args.do_train: A__ : List[str] =None if training_args.resume_from_checkpoint is not None: A__ : List[str] =training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ : Dict =last_checkpoint A__ : List[str] =trainer.train(resume_from_checkpoint=_lowercase ) trainer.save_model() trainer.log_metrics("""train""", train_result.metrics ) trainer.save_metrics("""train""", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ : Dict =trainer.evaluate() trainer.log_metrics("""eval""", _lowercase ) trainer.save_metrics("""eval""", _lowercase ) # Write model card and (optionally) push to hub A__ : List[str] ={ "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_lowercase ) else: trainer.create_model_card(**_lowercase ) if __name__ == "__main__": main()
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __snake_case : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name __snake_case : Dict = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int], __snake_case : Optional[int]=8 ) -> int: """simple docstring""" A__ : Dict =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 A__ : Dict =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : DDPMScheduler , lowerCAmelCase_ : VQModel , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase , scheduler=__lowerCAmelCase , movq=__lowerCAmelCase , ) A__ : List[Any] =2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' if latents is None: A__ : List[str] =randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) A__ : int =latents.to(__lowerCAmelCase ) A__ : Dict =latents * scheduler.init_noise_sigma return latents def lowercase__ ( self : Any , lowerCAmelCase_ : Any=0 ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A__ : Tuple =torch.device(f"cuda:{gpu_id}" ) A__ : List[str] =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Any=0 ) -> Any: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) A__ : Optional[int] =torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) A__ : Tuple =None for cpu_offloaded_model in [self.unet, self.movq]: A__ , A__ : Optional[int] =cpu_offload_with_hook(__lowerCAmelCase , __lowerCAmelCase , prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. A__ : Tuple =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self : List[str] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self._execution_device A__ : str =guidance_scale > 1.0 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ : Tuple =torch.cat(__lowerCAmelCase , dim=0 ) A__ : str =image_embeds.shape[0] * num_images_per_prompt if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ : Union[str, Any] =torch.cat(__lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: A__ : Any =image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) A__ : Optional[int] =negative_image_embeds.repeat_interleave(__lowerCAmelCase , dim=0 ) A__ : Optional[int] =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__lowerCAmelCase ) self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase ) A__ : Optional[int] =self.scheduler.timesteps A__ : List[str] =self.unet.config.in_channels A__ , A__ : Optional[int] =downscale_height_and_width(__lowerCAmelCase , __lowerCAmelCase , self.movq_scale_factor ) # create initial latent A__ : Optional[Any] =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A__ : Dict =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Dict ={"""image_embeds""": image_embeds} A__ : Optional[Any] =self.unet( sample=__lowerCAmelCase , timestep=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , added_cond_kwargs=__lowerCAmelCase , return_dict=__lowerCAmelCase , )[0] if do_classifier_free_guidance: A__ , A__ : List[str] =noise_pred.split(latents.shape[1] , dim=1 ) A__ , A__ : int =noise_pred.chunk(2 ) A__ , A__ : Dict =variance_pred.chunk(2 ) A__ : Optional[int] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) A__ : str =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): A__ , A__ : Optional[int] =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 A__ : Tuple =self.scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase , )[0] # post-processing A__ : Any =self.movq.decode(__lowerCAmelCase , force_not_quantize=__lowerCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: A__ : Union[str, Any] =image * 0.5 + 0.5 A__ : int =image.clamp(0 , 1 ) A__ : Dict =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": A__ : List[str] =self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCamelCase ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" A__ : Optional[Any] =args.pruning_method A__ : Any =args.threshold A__ : Dict =args.model_name_or_path.rstrip("""/""" ) A__ : List[Any] =args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}" ) A__ : Any =torch.load(os.path.join(_snake_case, """pytorch_model.bin""" ) ) A__ : Union[str, Any] ={} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ : Any =tensor print(f"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: A__ : List[Any] =tensor print(f"Copied layer {name}" ) elif "bias" in name: A__ : Optional[int] =tensor print(f"Copied layer {name}" ) else: if pruning_method == "magnitude": A__ : List[str] =MagnitudeBinarizer.apply(inputs=_snake_case, threshold=_snake_case ) A__ : Any =tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ : Union[str, Any] =name[:-6] A__ : str =model[f"{prefix_}mask_scores"] A__ : Tuple =TopKBinarizer.apply(_snake_case, _snake_case ) A__ : Optional[int] =tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ : Optional[int] =name[:-6] A__ : List[Any] =model[f"{prefix_}mask_scores"] A__ : int =ThresholdBinarizer.apply(_snake_case, _snake_case, _snake_case ) A__ : Optional[int] =tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ : Optional[int] =name[:-6] A__ : List[Any] =model[f"{prefix_}mask_scores"] A__ , A__ : Optional[int] =-0.1, 1.1 A__ : Dict =torch.sigmoid(_snake_case ) A__ : Union[str, Any] =s * (r - l) + l A__ : Any =s_bar.clamp(min=0.0, max=1.0 ) A__ : Union[str, Any] =tensor * mask print(f"Pruned layer {name}" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: A__ : Optional[int] =os.path.join( os.path.dirname(_snake_case ), f"bertarized_{os.path.basename(_snake_case )}" ) if not os.path.isdir(_snake_case ): shutil.copytree(_snake_case, _snake_case ) print(f"\nCreated folder {target_model_path}" ) torch.save(_snake_case, os.path.join(_snake_case, """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __snake_case : Optional[int] = parser.parse_args() main(args)
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from functools import lru_cache @lru_cache def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'speech_to_text' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , lowerCAmelCase_ : Optional[int]=1_00_00 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Union[str, Any]=20_48 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]="relu" , lowerCAmelCase_ : List[str]=2_56 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : int=60_00 , lowerCAmelCase_ : Tuple=10_24 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Union[str, Any]=(5, 5) , lowerCAmelCase_ : Union[str, Any]=10_24 , lowerCAmelCase_ : str=80 , lowerCAmelCase_ : Union[str, Any]=1 , **lowerCAmelCase_ : List[str] , ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =vocab_size A__ : int =d_model A__ : Tuple =encoder_ffn_dim A__ : List[Any] =encoder_layers A__ : Optional[Any] =encoder_attention_heads A__ : List[str] =decoder_ffn_dim A__ : Optional[int] =decoder_layers A__ : str =decoder_attention_heads A__ : int =dropout A__ : Optional[Any] =attention_dropout A__ : str =activation_dropout A__ : Optional[Any] =activation_function A__ : Tuple =init_std A__ : Union[str, Any] =encoder_layerdrop A__ : Tuple =decoder_layerdrop A__ : Union[str, Any] =use_cache A__ : Optional[int] =encoder_layers A__ : int =scale_embedding # scale factor will be sqrt(d_model) if True A__ : Dict =max_source_positions A__ : Any =max_target_positions A__ : str =num_conv_layers A__ : int =list(_SCREAMING_SNAKE_CASE ) A__ : str =conv_channels A__ : Optional[int] =input_feat_per_channel A__ : List[Any] =input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` """ f"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __snake_case : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def __lowerCamelCase ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: A__ : Optional[int] =k.replace(__snake_case, __snake_case ) return k def __lowerCamelCase ( __snake_case : List[str], __snake_case : List[str] ) -> Any: """simple docstring""" A__ : Any =DEFAULTS.copy() cfg_kwargs.update(__snake_case ) A__ : Tuple =PegasusConfig(**__snake_case ) A__ : Any =PegasusForConditionalGeneration(__snake_case ) A__ : Any =torch_model.model.state_dict() A__ : int ={} for k, v in tf_weights.items(): A__ : Any =rename_state_dict_key(__snake_case ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: A__ : Optional[int] =v.T A__ : Union[str, Any] =torch.tensor(__snake_case, dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected A__ : str =torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) A__ : Optional[int] =mapping["""shared.weight"""] A__ : Dict =mapping["""shared.weight"""] A__ : Union[str, Any] ={k: torch.zeros_like(__snake_case ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__snake_case ) A__ : Tuple =torch_model.model.load_state_dict(__snake_case, strict=__snake_case ) A__ : List[str] =[ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def __lowerCamelCase ( __snake_case : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Any: """simple docstring""" A__ : Optional[int] =tf.train.list_variables(__snake_case ) A__ : Any ={} A__ : Optional[Any] =["""Adafactor""", """global_step"""] for name, shape in tqdm(__snake_case, desc="""converting tf checkpoint to dict""" ): A__ : Union[str, Any] =any(pat in name for pat in ignore_name ) if skip_key: continue A__ : List[str] =tf.train.load_variable(__snake_case, __snake_case ) A__ : Union[str, Any] =array return tf_weights def __lowerCamelCase ( __snake_case : List[str], __snake_case : List[Any] ) -> Any: """simple docstring""" A__ : List[Any] =Path(__snake_case ).parent.name A__ : Optional[int] =task_specific_params[f"summarization_{dataset}"]["""max_position_embeddings"""] A__ : List[str] =PegasusTokenizer.from_pretrained("""sshleifer/pegasus""", model_max_length=__snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__snake_case ) # convert model A__ : Optional[Any] =get_tf_weights_as_numpy(__snake_case ) A__ : List[str] =task_specific_params[f"summarization_{dataset}"] if dataset == "large": A__ : Any =task_specific_params A__ : List[str] =convert_pegasus(__snake_case, __snake_case ) torch_model.save_pretrained(__snake_case ) A__ : int =torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__snake_case, Path(__snake_case ) / """pytorch_model.bin""" ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') __snake_case : Dict = parser.parse_args() if args.save_dir is None: __snake_case : Dict = Path(args.tf_ckpt_path).parent.name __snake_case : Optional[Any] = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase ( lowercase__ ): '''simple docstring''' __snake_case = ["""image_processor""", """tokenizer"""] __snake_case = """CLIPImageProcessor""" __snake_case = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : str , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Tuple ) -> int: '''simple docstring''' A__ : Union[str, Any] =None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __lowercase , ) A__ : Optional[Any] =kwargs.pop("""feature_extractor""" ) A__ : int =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__lowercase , __lowercase ) def __call__( self : str , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: A__ : Optional[int] =self.tokenizer(__lowercase , return_tensors=__lowercase , **__lowercase ) if images is not None: A__ : Optional[Any] =self.image_processor(__lowercase , return_tensors=__lowercase , **__lowercase ) if text is not None and images is not None: A__ : Tuple =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowercase ) , tensor_type=__lowercase ) def lowercase__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Tuple ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def lowercase__ ( self : int , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A__ : List[Any] =self.tokenizer.model_input_names A__ : int =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __lowercase , ) return self.image_processor_class @property def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __lowercase , ) return self.image_processor
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = None __snake_case = field(default='Translation' , init=__snake_case , repr=__snake_case ) def __call__( self : Tuple ) -> str: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = None __snake_case = None __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = None __snake_case = field(default='TranslationVariableLanguages' , init=__snake_case , repr=__snake_case ) def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : List[Any] =sorted(set(self.languages ) ) if self.languages else None A__ : str =len(self.languages ) if self.languages else None def __call__( self : Any ) -> Union[str, Any]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowercase__ ( self : int , lowerCAmelCase_ : Any ) -> List[str]: '''simple docstring''' A__ : Dict =set(self.languages ) if self.languages and set(A_ ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(A_ ) - lang_set ) )}) are not in valid set ({', '.join(A_ )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. A__ : List[str] =[] for lang, text in translation_dict.items(): if isinstance(A_ , A_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. A__ : Dict =zip(*sorted(A_ ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : Optional[Any] = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ : Dict =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : Optional[int] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : Union[str, Any] =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : List[str] =generator.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Tuple =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : List[str] ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : Any =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : str =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case = logging.getLogger(__name__) def __lowerCamelCase ( __snake_case : str=2, __snake_case : Optional[Any]=3, __snake_case : Union[str, Any]=16, __snake_case : Optional[int] = 10, __snake_case : List[Any] = 2 ) -> str: """simple docstring""" def get_dataset(__snake_case : Optional[int] ): A__ : Tuple =torch.randn(batch_size * n_batches, 1 ) return TensorDataset(__lowerCAmelCase, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) A__ : Dict =get_dataset(__lowerCAmelCase ) A__ : Optional[int] =get_dataset(__lowerCAmelCase ) A__ : Any =DataLoader(__lowerCAmelCase, shuffle=__lowerCAmelCase, batch_size=__lowerCAmelCase, num_workers=4 ) A__ : str =DataLoader(__lowerCAmelCase, shuffle=__lowerCAmelCase, batch_size=__lowerCAmelCase, num_workers=4 ) return (train_dataloader, valid_dataloader) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int], __snake_case : str, __snake_case : Optional[Any], __snake_case : int, __snake_case : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] =[] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: A__ : Optional[int] =batch A__ : Optional[int] =model(__lowerCAmelCase ) A__ : Optional[int] =torch.nn.functional.mse_loss(__lowerCAmelCase, __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> int: '''simple docstring''' super().__init__() A__ : Any =nn.Parameter(torch.randn(1 ) ) A__ : Tuple =nn.Parameter(torch.randn(1 ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return x * self.a + self.b class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : List[Any] =DummyModel() A__ : List[str] =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Union[str, Any] =dummy_dataloaders() A__ : Tuple =ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase__ , automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline A__ : List[str] =Accelerator(project_config=lowerCamelCase__ ) A__ : Optional[Any] =accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : List[Any] =DummyModel() A__ : Dict =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Union[str, Any] =dummy_dataloaders() # Train baseline A__ : List[str] =Accelerator() A__ : Optional[Any] =accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial A__ : Any =os.path.join(lowerCamelCase__ , """initial""" ) accelerator.save_state(lowerCamelCase__ ) (A__) : Union[str, Any] =model.a.item(), model.b.item() A__ : str =optimizer.state_dict() A__ : Tuple =train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (A__) : Optional[int] =model.a.item(), model.b.item() A__ : List[str] =optimizer.state_dict() # Train partially set_seed(42 ) A__ : Optional[Any] =DummyModel() A__ : int =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : List[Any] =dummy_dataloaders() A__ : Union[str, Any] =Accelerator() A__ : Optional[Any] =accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(lowerCamelCase__ ) (A__) : Tuple =model.a.item(), model.b.item() A__ : Union[str, Any] =optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) A__ : Optional[Any] =train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything A__ : Optional[Any] =os.path.join(lowerCamelCase__ , """checkpoint""" ) accelerator.save_state(lowerCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__ ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (A__) : Union[str, Any] =model.a.item(), model.b.item() A__ : Dict =optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] =DummyModel() A__ : int =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Any =dummy_dataloaders() A__ : Union[str, Any] =ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline A__ : str =Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) A__ : Optional[Any] =accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() (A__) : Optional[Any] =model.a.item(), model.b.item() A__ : Union[str, Any] =optimizer.state_dict() A__ : Optional[Any] =train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (A__) : Dict =model.a.item(), model.b.item() A__ : Optional[Any] =optimizer.state_dict() # Train partially set_seed(42 ) A__ : Optional[Any] =DummyModel() A__ : str =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Dict =dummy_dataloaders() A__ : Optional[Any] =ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase__ ) A__ : Optional[Any] =Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) A__ : Union[str, Any] =accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(os.path.join(lowerCamelCase__ , """checkpoints""" , """checkpoint_0""" ) ) (A__) : int =model.a.item(), model.b.item() A__ : int =optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) A__ : str =train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (A__) : Dict =model.a.item(), model.b.item() A__ : Dict =optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : int =torch.tensor([1, 2, 3] ) A__ : Any =torch.tensor([2, 3, 4] ) A__ : Optional[int] =DummyModel() A__ : List[Any] =torch.optim.Adam(net.parameters() ) A__ : Union[str, Any] =Accelerator() with self.assertRaises(lowerCamelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A__ : Tuple =str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[int] =DummyModel() A__ : int =torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : int =torch.optim.lr_scheduler.StepLR(lowerCamelCase__ , step_size=1 , gamma=0.99 ) A__ : Any =dummy_dataloaders() A__ : Any =ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline A__ : Optional[Any] =Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) A__ : int =accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() A__ : Union[str, Any] =scheduler.state_dict() train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(lowerCamelCase__ , scheduler.state_dict() ) def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Dict =DummyModel() A__ : int =ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ , total_limit=2 ) # Train baseline A__ : Optional[int] =Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) A__ : Union[str, Any] =accelerator.prepare(lowerCamelCase__ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__ , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : str =["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case = '/tmp/accelerate/state_checkpointing' __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case = group['params'][0].device break assert param_device.type == accelerator.device.type __snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __snake_case = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __snake_case = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( __a , __a ): '''simple docstring''' __snake_case = "bit" __snake_case = ["preactivation", "bottleneck"] __snake_case = ["SAME", "VALID"] def __init__( self : List[str] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[str]=64 , lowerCAmelCase_ : Optional[Any]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : int=[3, 4, 6, 3] , lowerCAmelCase_ : int="preactivation" , lowerCAmelCase_ : int="relu" , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Dict , ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : str =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : str =num_channels A__ : Dict =embedding_size A__ : int =hidden_sizes A__ : Optional[int] =depths A__ : Union[str, Any] =layer_type A__ : Union[str, Any] =hidden_act A__ : Tuple =global_padding A__ : str =num_groups A__ : Optional[int] =drop_path_rate A__ : List[Any] =embedding_dynamic_padding A__ : Tuple =output_stride A__ : List[Any] =width_factor A__ : Optional[int] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' from math import isclose, sqrt def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float ) -> tuple[float, float, float]: """simple docstring""" A__ : List[Any] =point_y / 4 / point_x A__ : Dict =2 * normal_gradient / (1 + normal_gradient * normal_gradient) A__ : Tuple =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) A__ : Optional[int] =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 A__ : Tuple =outgoing_gradient**2 + 4 A__ : List[Any] =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) A__ : Optional[int] =(point_y - outgoing_gradient * point_x) ** 2 - 100 A__ : Dict =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) A__ : Union[str, Any] =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point A__ : Union[str, Any] =x_minus if isclose(UpperCamelCase__, UpperCamelCase__ ) else x_plus A__ : str =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __lowerCamelCase ( __snake_case : float = 1.4, __snake_case : float = -9.6 ) -> int: """simple docstring""" A__ : int =0 A__ : float =first_x_coord A__ : float =first_y_coord A__ : float =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): A__ : Any =next_point(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = XLMTokenizer __snake_case = False def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ : Any =[ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A__ : Union[str, Any] =dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) A__ : List[str] =["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A__ : Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(UpperCAmelCase__ ) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any ) -> List[Any]: '''simple docstring''' A__ : Tuple ="""lower newer""" A__ : Any ="""lower newer""" return input_text, output_text def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : List[str] =XLMTokenizer(self.vocab_file , self.merges_file ) A__ : Any ="""lower""" A__ : List[Any] =["""low""", """er</w>"""] A__ : List[Any] =tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A__ : str =tokens + ["""<unk>"""] A__ : Tuple =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) A__ : List[str] =tokenizer.encode("""sequence builders""" , add_special_tokens=UpperCAmelCase__ ) A__ : List[Any] =tokenizer.encode("""multi-sequence build""" , add_special_tokens=UpperCAmelCase__ ) A__ : Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) A__ : str =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase ( __a ): '''simple docstring''' __snake_case = ['input_features', 'attention_mask'] def __init__( self : Dict , lowerCAmelCase_ : Any=80 , lowerCAmelCase_ : List[Any]=1_60_00 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=10 , lowerCAmelCase_ : Optional[Any]=25 , lowerCAmelCase_ : Union[str, Any]="hamming_window" , lowerCAmelCase_ : List[str]=3_27_68.0 , lowerCAmelCase_ : List[Any]=0.97 , lowerCAmelCase_ : Optional[int]=1.0 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(feature_size=A__ , sampling_rate=A__ , padding_value=A__ , **A__ ) A__ : Optional[Any] =feature_size A__ : List[str] =sampling_rate A__ : Tuple =padding_value A__ : List[Any] =hop_length A__ : Optional[Any] =win_length A__ : List[Any] =frame_signal_scale A__ : Union[str, Any] =preemphasis_coeff A__ : List[str] =mel_floor A__ : str =normalize_means A__ : Dict =normalize_vars A__ : Dict =win_function A__ : Optional[Any] =return_attention_mask A__ : Optional[int] =win_length * sampling_rate // 10_00 A__ : Tuple =hop_length * sampling_rate // 10_00 A__ : Dict =optimal_fft_length(self.sample_size ) A__ : List[str] =(self.n_fft // 2) + 1 def lowercase__ ( self : int , lowerCAmelCase_ : Tuple ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": A__ : Tuple =window_function(window_length=self.sample_size , name=self.win_function , periodic=A__ ) else: A__ : List[Any] =window_function(window_length=self.sample_size , name=self.win_function ) A__ : Optional[Any] =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A__ : Tuple =spectrogram( one_waveform * self.frame_signal_scale , window=A__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=A__ , preemphasis=self.preemphasis_coeff , mel_filters=A__ , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: A__ : Optional[int] =x[:input_length].mean(axis=0 ) A__ : Optional[int] =np.subtract(A__ , A__ ) if self.normalize_vars: A__ : List[str] =x[:input_length].std(axis=0 ) A__ : List[Any] =np.divide(A__ , A__ ) if input_length < x.shape[0]: A__ : int =padding_value # make sure array is in float32 A__ : Optional[Any] =x.astype(np.floataa ) return x def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str = None ) -> List[np.ndarray]: '''simple docstring''' A__ : str =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A__ , A__ , self.padding_value ) for x, n in zip(A__ , A__ )] def __call__( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] = False , lowerCAmelCase_ : Tuple = None , lowerCAmelCase_ : Any = False , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : Any = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ : Tuple =isinstance(A__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A__ : int =is_batched_numpy or ( isinstance(A__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : List[Any] =[np.asarray(A__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A__ , np.ndarray ): A__ : Tuple =np.asarray(A__ , dtype=np.floataa ) elif isinstance(A__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ : str =raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ : Optional[Any] =[raw_speech] # extract fbank features A__ : Optional[int] =[self._extract_mfsc_features(A__ ) for one_waveform in raw_speech] # convert into correct format for padding A__ : Optional[Any] =BatchFeature({"""input_features""": features} ) A__ : Dict =self.pad( A__ , padding=A__ , max_length=A__ , truncation=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , **A__ , ) # make sure list is in array format A__ : Tuple =padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , A__ ): A__ : Union[str, Any] =[np.asarray(A__ , dtype=np.floataa ) for feature in input_features] A__ : Optional[Any] =padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A__ : Tuple =[np.asarray(A__ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A__ : Dict =( np.array(A__ , dtype=np.intaa ) if self._get_padding_strategies(A__ , max_length=A__ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A__ : int =self.normalize( padded_inputs["""input_features"""] , attention_mask=A__ ) if return_tensors is not None: A__ : int =padded_inputs.convert_to_tensors(A__ ) return padded_inputs
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from PIL import Image def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Any ) -> Image: """simple docstring""" def brightness(__snake_case : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 __snake_case : List[Any] = change_brightness(img, 100) brigt_img.save('image_data/lena_brightness.png', format='png')
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import math class lowerCamelCase : '''simple docstring''' def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Dict: '''simple docstring''' A__ : Tuple =0.0 A__ : List[Any] =0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ) -> int: '''simple docstring''' for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Union[str, Any] =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A__ : str =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A__ : List[str] =SelfOrganizingMap() A__ : str =3 A__ : Optional[int] =0.5 for _ in range(lowercase__ ): for j in range(len(lowercase__ ) ): # training sample A__ : List[str] =training_samples[j] # Compute the winning vector A__ : Dict =self_organizing_map.get_winner(lowercase__, lowercase__ ) # Update the winning vector A__ : Dict =self_organizing_map.update(lowercase__, lowercase__, lowercase__, lowercase__ ) # classify test sample A__ : List[str] =[0, 0, 0, 1] A__ : List[Any] =self_organizing_map.get_winner(lowercase__, lowercase__ ) # results print(f"Clusters that the test sample belongs to : {winner}" ) print(f"Weights that have been trained : {weights}" ) # running the main() function if __name__ == "__main__": main()
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __snake_case : int = (720, 1280) # Height, Width __snake_case : Union[str, Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. __snake_case : List[str] = 1 / 100 __snake_case : List[Any] = '' __snake_case : Union[str, Any] = '' __snake_case : List[str] = '' __snake_case : Optional[int] = 250 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[str] =get_dataset(lowerCAmelCase_, lowerCAmelCase_ ) for index in range(lowerCAmelCase_ ): A__ : Dict =random.sample(range(len(lowerCAmelCase_ ) ), 4 ) A__ : List[Any] =update_image_and_anno( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, filter_scale=lowerCAmelCase_, ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ : Optional[Any] =random_chars(32 ) A__ : List[Any] =path.split(os.sep )[-1].rsplit(""".""", 1 )[0] A__ : str =f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(f"{file_root}.jpg", lowerCAmelCase_, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) A__ : Optional[int] =[] for anno in new_annos: A__ : str =anno[3] - anno[1] A__ : Any =anno[4] - anno[2] A__ : Dict =anno[1] + width / 2 A__ : Union[str, Any] =anno[2] + height / 2 A__ : Union[str, Any] =f"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(lowerCAmelCase_ ) with open(f"{file_root}.txt", """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[Any] ) -> Tuple: """simple docstring""" A__ : Dict =[] A__ : str =[] for label_file in glob.glob(os.path.join(lowerCAmelCase_, """*.txt""" ) ): A__ : Union[str, Any] =label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(lowerCAmelCase_ ) as in_file: A__ : int =in_file.readlines() A__ : Union[str, Any] =os.path.join(lowerCAmelCase_, f"{label_name}.jpg" ) A__ : Any =[] for obj_list in obj_lists: A__ : Dict =obj_list.rstrip("""\n""" ).split(""" """ ) A__ : Union[str, Any] =float(obj[1] ) - float(obj[3] ) / 2 A__ : str =float(obj[2] ) - float(obj[4] ) / 2 A__ : Any =float(obj[1] ) + float(obj[3] ) / 2 A__ : Optional[Any] =float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(lowerCAmelCase_ ) labels.append(lowerCAmelCase_ ) return img_paths, labels def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : Optional[int], __snake_case : int = 0.0, ) -> Optional[Any]: """simple docstring""" A__ : Optional[Any] =np.zeros([output_size[0], output_size[1], 3], dtype=np.uinta ) A__ : Tuple =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ : Dict =scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) A__ : List[str] =int(scale_x * output_size[1] ) A__ : List[Any] =int(scale_y * output_size[0] ) A__ : List[Any] =[] A__ : Any =[] for i, index in enumerate(lowerCAmelCase_ ): A__ : Tuple =all_img_list[index] path_list.append(lowerCAmelCase_ ) A__ : List[Any] =all_annos[index] A__ : Optional[Any] =cva.imread(lowerCAmelCase_ ) if i == 0: # top-left A__ : List[str] =cva.resize(lowerCAmelCase_, (divid_point_x, divid_point_y) ) A__ : str =img for bbox in img_annos: A__ : List[Any] =bbox[1] * scale_x A__ : str =bbox[2] * scale_y A__ : Any =bbox[3] * scale_x A__ : List[str] =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right A__ : List[Any] =cva.resize(lowerCAmelCase_, (output_size[1] - divid_point_x, divid_point_y) ) A__ : Union[str, Any] =img for bbox in img_annos: A__ : int =scale_x + bbox[1] * (1 - scale_x) A__ : List[str] =bbox[2] * scale_y A__ : List[str] =scale_x + bbox[3] * (1 - scale_x) A__ : Dict =bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left A__ : Optional[int] =cva.resize(lowerCAmelCase_, (divid_point_x, output_size[0] - divid_point_y) ) A__ : Dict =img for bbox in img_annos: A__ : int =bbox[1] * scale_x A__ : Optional[int] =scale_y + bbox[2] * (1 - scale_y) A__ : int =bbox[3] * scale_x A__ : int =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right A__ : Union[str, Any] =cva.resize( lowerCAmelCase_, (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) A__ : Union[str, Any] =img for bbox in img_annos: A__ : Union[str, Any] =scale_x + bbox[1] * (1 - scale_x) A__ : Dict =scale_y + bbox[2] * (1 - scale_y) A__ : str =scale_x + bbox[3] * (1 - scale_x) A__ : str =scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: A__ : int =[ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowerCamelCase ( __snake_case : Dict ) -> Any: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" A__ : Dict =ascii_lowercase + digits return "".join(random.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) if __name__ == "__main__": main() print('DONE ✅')
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Union[tf.Tensor, np.ndarray] ) -> Dict: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE__, np.ndarray ): return list(tensor.shape ) A__ : Optional[int] =tf.shape(SCREAMING_SNAKE_CASE__ ) if tensor.shape == tf.TensorShape(SCREAMING_SNAKE_CASE__ ): return dynamic A__ : List[str] =tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(SCREAMING_SNAKE_CASE__ )] def __lowerCamelCase ( __snake_case : tf.Tensor, __snake_case : Optional[int] = None, __snake_case : Optional[str] = None ) -> Union[str, Any]: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9, axis=SCREAMING_SNAKE_CASE__, name=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : Tuple, __snake_case : Optional[int], __snake_case : Optional[Any]=1E-5, __snake_case : Union[str, Any]=-1 ) -> Optional[Any]: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized A__ : str =tf.nn.moments(SCREAMING_SNAKE_CASE__, axes=[axis], keepdims=SCREAMING_SNAKE_CASE__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A__ : Optional[Any] =[1] * inputs.shape.rank A__ : Any =shape_list(SCREAMING_SNAKE_CASE__ )[axis] A__ : List[str] =tf.reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) A__ : List[Any] =tf.reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Compute layer normalization using the batch_normalization # function. A__ : List[Any] =tf.nn.batch_normalization( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, offset=SCREAMING_SNAKE_CASE__, scale=SCREAMING_SNAKE_CASE__, variance_epsilon=SCREAMING_SNAKE_CASE__, ) return outputs def __lowerCamelCase ( __snake_case : Dict, __snake_case : Dict=0, __snake_case : Dict=-1 ) -> List[Any]: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A__ : int =tf.shape(SCREAMING_SNAKE_CASE__ ) A__ : str =tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A__ : List[str] =tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]], axis=0 ) return tf.reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( __snake_case : tf.Tensor ) -> Union[str, Any]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, tf.Tensor ): A__ : Optional[Any] =tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A__ : Optional[int] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A__ : List[Any] =encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A__ : int =( tf.cast(1, encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __lowerCamelCase ( __snake_case : tf.Tensor, __snake_case : int, __snake_case : str = "input_ids" ) -> Optional[Any]: """simple docstring""" tf.debugging.assert_less( SCREAMING_SNAKE_CASE__, tf.cast(SCREAMING_SNAKE_CASE__, dtype=tensor.dtype ), message=( f"The maximum value of {tensor_name} ({tf.math.reduce_max(SCREAMING_SNAKE_CASE__ )}) must be smaller than the embedding " f"layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time." ), ) def __lowerCamelCase ( __snake_case : int, __snake_case : Optional[Any], __snake_case : int ) -> Dict: """simple docstring""" A__ : Any =64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A__ : Optional[int] =[x for x in data if len(SCREAMING_SNAKE_CASE__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ f"they are larger than {HDF5_OBJECT_HEADER_LIMIT} " f"bytes: {bad_attributes}" ) A__ : str =np.asarray(SCREAMING_SNAKE_CASE__ ) A__ : Union[str, Any] =1 A__ : Optional[Any] =np.array_split(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A__ : Any =np.array_split(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(SCREAMING_SNAKE_CASE__ ): A__ : List[Any] =chunk_data else: A__ : Union[str, Any] =data def __lowerCamelCase ( __snake_case : int, __snake_case : Dict ) -> Dict: """simple docstring""" if name in group.attrs: A__ : Tuple =[n.decode("""utf8""" ) if hasattr(SCREAMING_SNAKE_CASE__, """decode""" ) else n for n in group.attrs[name]] else: A__ : Tuple =[] A__ : Optional[Any] =0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(SCREAMING_SNAKE_CASE__, """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def __lowerCamelCase ( __snake_case : List[str] ) -> Dict: """simple docstring""" def _expand_single_ad_tensor(__snake_case : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__, tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(SCREAMING_SNAKE_CASE__, axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor, SCREAMING_SNAKE_CASE__ )
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
def __lowerCamelCase ( __snake_case : list ) -> List[str]: """simple docstring""" A__ : str =len(a_ ) for _ in range(a_ ): for i in range(_ % 2, arr_size - 1, 2 ): if arr[i + 1] < arr[i]: A__ : Optional[Any] =arr[i + 1], arr[i] return arr if __name__ == "__main__": __snake_case : Tuple = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case : int = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' pass class lowerCamelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : Any ) -> None: '''simple docstring''' A__ : Any =data A__ : Node | None =None def __iter__( self : Union[str, Any] ) -> int: '''simple docstring''' A__ : Any =self A__ : Tuple =[] while node: if node in visited: raise ContainsLoopError visited.append(__a ) yield node.data A__ : List[Any] =node.next_node @property def lowercase__ ( self : Dict ) -> bool: '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __snake_case : str = Node(1) __snake_case : Optional[Any] = Node(2) __snake_case : List[str] = Node(3) __snake_case : List[str] = Node(4) print(root_node.has_loop) # False __snake_case : int = root_node.next_node print(root_node.has_loop) # True __snake_case : int = Node(5) __snake_case : int = Node(6) __snake_case : Union[str, Any] = Node(5) __snake_case : List[Any] = Node(6) print(root_node.has_loop) # False __snake_case : Optional[int] = Node(1) print(root_node.has_loop) # False
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' from collections import defaultdict def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int] ) -> bool: """simple docstring""" A__ : Tuple =first_str.lower().strip() A__ : List[Any] =second_str.lower().strip() # Remove whitespace A__ : List[Any] =first_str.replace(""" """, """""" ) A__ : Any =second_str.replace(""" """, """""" ) # Strings of different lengths are not anagrams if len(__UpperCamelCase ) != len(__UpperCamelCase ): return False # Default values for count should be 0 A__ : Union[str, Any] =defaultdict(__UpperCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__UpperCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __snake_case : str = input('Enter the first string ').strip() __snake_case : Optional[int] = input('Enter the second string ').strip() __snake_case : int = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ : str =current_set.copy() for row_index, row in enumerate(__snake_case ): A__ : Union[str, Any] =row[0] for column_index, column in enumerate(__snake_case ): if magnitude == 0: A__ : Optional[int] =column continue A__ : Any =column / magnitude # Subtract to cancel term A__ : str =current_set[0] A__ : str =[first_row] A__ : Union[str, Any] =current_set[1::] for row in current_set: A__ : Any =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__snake_case ) continue for column_index in range(len(__snake_case ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__snake_case ) # Create next recursion iteration set if len(final_set[0] ) != 3: A__ : Union[str, Any] =final_set[0] A__ : Optional[Any] =[] A__ : str =[] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) A__ : List[Any] =simplify(__snake_case ) for i in range(len(__snake_case ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, __snake_case ) A__ : int =resultant return final_set def __lowerCamelCase ( __snake_case : int ) -> Optional[Any]: """simple docstring""" if len(__snake_case ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) A__ : List[str] =len(__snake_case ) + 1 if any(len(__snake_case ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(__snake_case, (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(__snake_case ) == 1: return [equations[0][-1] / equations[0][0]] A__ : int =equations.copy() if any(0 in row for row in data_set ): A__ : str =data_set.copy() A__ : str =[] for row_index, row in enumerate(__snake_case ): if 0 not in row: A__ : Optional[int] =data_set.pop(__snake_case ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0, __snake_case ) A__ : Any =data_set.copy() A__ : Any =simplify(__snake_case ) A__ : str =simplified[::-1] A__ : Tuple =[] for row in simplified: A__ : Dict =row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue A__ : Optional[int] =row.copy()[: len(__snake_case ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__snake_case ) == 0: solutions.append(0 ) continue A__ : List[Any] =temp_row[1::] A__ : Any =temp_row[::-1] for column_index, column in enumerate(__snake_case ): current_solution -= column * solutions[column_index] solutions.append(__snake_case ) A__ : int =[] for item in solutions: final.append(float(round(__snake_case, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Union[str, Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : Any =tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) A__ : Optional[int] =tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above A__ : int =tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above A__ : Union[str, Any] =tf_top_k_top_p_filtering(_a , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) A__ : Tuple =output[output != -float("""inf""" )] A__ : List[Any] =tf.cast( tf.where(tf.not_equal(_a , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_a , _a , rtol=1e-12 ) tf.debugging.assert_equal(_a , _a ) @require_tf class lowerCamelCase ( unittest.TestCase , UpperCamelCase__ ): '''simple docstring''' if is_tf_available(): __snake_case = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' # TF-only test: tf.saved_model export A__ : Optional[Any] =TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : int =2 A__ : int =2 class lowerCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' super(_a , self ).__init__() A__ : int =model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_a , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] ) -> Any: '''simple docstring''' A__ : Any =self.model.generate( input_ids=_a , attention_mask=_a , max_new_tokens=_a , return_dict_in_generate=_a , ) return {"sequences": outputs["sequences"]} A__ : int =[[2, 0], [1_02, 1_03]] A__ : Any =[[1, 0], [1, 1]] A__ : Optional[int] =DummyModel(model=_a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_a , _a , signatures={"""serving_default""": dummy_model.serving} ) A__ : Union[str, Any] =tf.saved_model.load(_a ).signatures["""serving_default"""] for batch_size in range(1 , len(_a ) + 1 ): A__ : List[Any] ={ """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } A__ : List[Any] =serving_func(**_a )["""sequences"""] A__ : List[Any] =test_model.generate(**_a , max_new_tokens=_a ) tf.debugging.assert_equal(_a , _a ) @slow def lowercase__ ( self : Dict ) -> str: '''simple docstring''' # TF-only test: tf.saved_model export A__ : Tuple =TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : Union[str, Any] =1 A__ : str =2 class lowerCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : str ) -> str: '''simple docstring''' super(_a , self ).__init__() A__ : Optional[Any] =model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=_a , ) def lowercase__ ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =self.model.generate( input_ids=_a , attention_mask=_a , max_new_tokens=_a , return_dict_in_generate=_a , ) return {"sequences": outputs["sequences"]} A__ : Optional[Any] =[[2], [1_02, 1_03]] A__ : List[Any] =[[1], [1, 1]] A__ : List[Any] =DummyModel(model=_a ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_a , _a , signatures={"""serving_default""": dummy_model.serving} ) A__ : Optional[int] =tf.saved_model.load(_a ).signatures["""serving_default"""] for input_row in range(len(_a ) ): A__ : List[str] ={ """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } A__ : int =serving_func(**_a )["""sequences"""] A__ : str =test_model.generate(**_a , max_new_tokens=_a ) tf.debugging.assert_equal(_a , _a ) @slow @require_tensorflow_text def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=_a ) class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().__init__() A__ : str =text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_a , """spiece.model""" ) , """rb""" ).read() ) A__ : str =TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Tuple , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[Any] ) -> str: '''simple docstring''' A__ : Any =self.tokenizer.tokenize(_a ) A__ : Any =text.pad_model_inputs( _a , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) A__ : Any =self.model.generate(input_ids=_a , attention_mask=_a ) return self.tokenizer.detokenize(_a ) A__ : Optional[int] =CompleteSentenceTransformer() A__ : Dict =tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) A__ : List[str] =complete_model(_a ) A__ : List[Any] =tf.keras.Model(_a , _a ) keras_model.save(_a ) def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' # Has PT equivalent: this test relies on random sampling A__ : Optional[int] ={ """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } A__ : Any =14 A__ : Optional[int] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : str ="""Hello, my dog is cute and""" A__ : Optional[Any] =tokenizer(_a , return_tensors="""tf""" ) A__ : List[str] =TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) A__ : Optional[Any] =6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A__ : Dict =model.generate(**_a , eos_token_id=_a , **_a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) A__ : int =[6_38, 1_98] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) A__ : int =model.generate(**_a , eos_token_id=_a , **_a ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' # Has PT equivalent: ample use of framework-specific code A__ : Any =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A__ : Tuple ="""Hugging Face is a technology company based in New York and Paris.""" A__ : Union[str, Any] =bart_tokenizer(_a , return_tensors="""tf""" ).input_ids A__ : Dict =TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A__ : Optional[Any] =bart_model.generate(_a ).numpy() class lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' return super().call(_a , **_a ) A__ : Union[str, Any] =FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) A__ : List[str] =bart_model.generate(_a , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(_a , _a ) ) class lowerCamelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def lowercase__ ( self : str , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' return super().call(_a , **_a ) A__ : Optional[int] =FakeEncoder(bart_model.config , bart_model.model.shared ) A__ : Optional[int] =fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) A__ : Optional[int] =bart_model.generate(_a ).numpy() with self.assertRaises(_a ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_a , foo="""bar""" )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCamelCase ( __snake_case : List[str], __snake_case : Tuple="shi-labs/oneformer_demo" ) -> Dict: """simple docstring""" with open(hf_hub_download(__UpperCamelCase, __UpperCamelCase, repo_type="""dataset""" ), """r""" ) as f: A__ : List[str] =json.load(__UpperCamelCase ) A__ : int ={} A__ : Dict =[] A__ : Tuple =[] for key, info in class_info.items(): A__ : Dict =info['''name'''] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(__UpperCamelCase ) ) A__ : Union[str, Any] =thing_ids A__ : Dict =class_names return metadata class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[Any]=30 , lowerCAmelCase_ : str=4_00 , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Optional[Any]=10 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : int=2_55 , lowerCAmelCase_ : Any="shi-labs/oneformer_demo" , lowerCAmelCase_ : Dict="ade20k_panoptic.json" , lowerCAmelCase_ : int=10 , ) -> Optional[int]: '''simple docstring''' A__ : Any =parent A__ : Union[str, Any] =batch_size A__ : Any =num_channels A__ : Optional[int] =min_resolution A__ : Optional[int] =max_resolution A__ : Optional[int] =do_resize A__ : List[Any] ={'''shortest_edge''': 32, '''longest_edge''': 13_33} if size is None else size A__ : List[str] =do_normalize A__ : Any =image_mean A__ : Union[str, Any] =image_std A__ : int =class_info_file A__ : Optional[Any] =prepare_metadata(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] =num_text A__ : Optional[int] =repo_path # for the post_process_functions A__ : Dict =2 A__ : Any =10 A__ : Tuple =10 A__ : List[Any] =3 A__ : Dict =4 A__ : int =num_labels A__ : Union[str, Any] =do_reduce_labels A__ : List[str] =ignore_index def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any=False ) -> List[str]: '''simple docstring''' if not batched: A__ : List[str] =image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): A__ : Any =image.size else: A__ : int =image.shape[1], image.shape[2] if w < h: A__ : List[Any] =int(self.size["""shortest_edge"""] * h / w ) A__ : str =self.size['''shortest_edge'''] elif w > h: A__ : List[Any] =self.size['''shortest_edge'''] A__ : Dict =int(self.size["""shortest_edge"""] * w / h ) else: A__ : List[str] =self.size['''shortest_edge'''] A__ : Optional[int] =self.size['''shortest_edge'''] else: A__ : Tuple =[] for image in image_inputs: A__ : Tuple =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ : List[Any] =max(UpperCamelCase__ , key=lambda lowerCAmelCase_ : item[0] )[0] A__ : Union[str, Any] =max(UpperCamelCase__ , key=lambda lowerCAmelCase_ : item[1] )[1] return expected_height, expected_width def lowercase__ ( self : str ) -> int: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCamelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __snake_case = image_processing_class def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =OneFormerImageProcessorTester(self ) @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ : Tuple =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """ignore_index""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """class_info_file""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """num_text""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """repo_path""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """metadata""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_reduce_labels""" ) ) def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' pass def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' # Initialize image_processor A__ : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Dict =prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ : int =image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values A__ : Any =self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : str =self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ : Optional[Any] =image_processor( UpperCamelCase__ , ["""semantic"""] * len(UpperCamelCase__ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # Initialize image_processor A__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Dict =prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ : int =image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values A__ : Optional[Any] =self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : List[str] =self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ : Optional[Any] =image_processor( UpperCamelCase__ , ["""semantic"""] * len(UpperCamelCase__ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' # Initialize image_processor A__ : str =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Union[str, Any] =prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ : Optional[int] =image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values A__ : Union[str, Any] =self.image_processing_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : int =self.image_processing_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ : Any =image_processor( UpperCamelCase__ , ["""semantic"""] * len(UpperCamelCase__ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : str="np" ) -> Optional[Any]: '''simple docstring''' A__ : Any =self.image_processing_class(**self.image_processor_dict ) # prepare image and target A__ : Optional[int] =self.image_processing_tester.num_labels A__ : Tuple =None A__ : Optional[int] =None A__ : List[str] =prepare_image_inputs(self.image_processing_tester , equal_resolution=UpperCamelCase__ ) if with_segmentation_maps: A__ : Dict =num_labels if is_instance_map: A__ : Any =list(range(UpperCamelCase__ ) ) * 2 A__ : List[Any] =dict(enumerate(UpperCamelCase__ ) ) A__ : Tuple =[ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A__ : Optional[int] =[Image.fromarray(UpperCamelCase__ ) for annotation in annotations] A__ : Optional[int] =image_processor( UpperCamelCase__ , ["""semantic"""] * len(UpperCamelCase__ ) , UpperCamelCase__ , return_tensors="""pt""" , instance_id_to_semantic_id=UpperCamelCase__ , pad_and_return_pixel_mask=UpperCamelCase__ , ) return inputs def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' def common(lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=None ): A__ : List[Any] =self.comm_get_image_processor_inputs( with_segmentation_maps=UpperCamelCase__ , is_instance_map=UpperCamelCase__ , segmentation_type=UpperCamelCase__ ) A__ : Optional[int] =inputs['''mask_labels'''] A__ : Union[str, Any] =inputs['''class_labels'''] A__ : Dict =inputs['''pixel_values'''] A__ : Union[str, Any] =inputs['''text_inputs'''] # check the batch_size for mask_label, class_label, text_input in zip(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(UpperCamelCase__ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=UpperCamelCase__ ) common(is_instance_map=UpperCamelCase__ , segmentation_type="""pil""" ) common(is_instance_map=UpperCamelCase__ , segmentation_type="""pil""" ) def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Union[str, Any] =np.zeros((20, 50) ) A__ : Any =1 A__ : str =1 A__ : Dict =1 A__ : Tuple =binary_mask_to_rle(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) A__ : List[Any] =self.image_processing_tester.get_fake_oneformer_outputs() A__ : Union[str, Any] =fature_extractor.post_process_semantic_segmentation(UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A__ : Dict =[(1, 4) for i in range(self.image_processing_tester.batch_size )] A__ : Optional[int] =fature_extractor.post_process_semantic_segmentation(UpperCamelCase__ , target_sizes=UpperCamelCase__ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) A__ : int =self.image_processing_tester.get_fake_oneformer_outputs() A__ : str =image_processor.post_process_instance_segmentation(UpperCamelCase__ , threshold=0 ) self.assertTrue(len(UpperCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCamelCase__ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : Tuple =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) A__ : Tuple =self.image_processing_tester.get_fake_oneformer_outputs() A__ : int =image_processor.post_process_panoptic_segmentation(UpperCamelCase__ , threshold=0 ) self.assertTrue(len(UpperCamelCase__ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , UpperCamelCase__ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def __lowerCamelCase ( __snake_case : Any, __snake_case : Dict=7 ) -> List[str]: """simple docstring""" A__ : Union[str, Any] =None if token is not None: A__ : Optional[Any] ={"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} # The id of a workflow (not of a workflow run) A__ : Optional[Any] ="""636036""" A__ : Optional[int] =f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" A__ : int =requests.get(lowerCamelCase_, headers=lowerCamelCase_ ).json() return result["workflow_runs"] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> List[Any]: """simple docstring""" A__ : int =get_daily_ci_runs(lowerCamelCase_ ) A__ : Dict =None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ : Tuple =workflow_run["""id"""] break return workflow_run_id def __lowerCamelCase ( __snake_case : List[Any], __snake_case : int, __snake_case : List[str] ) -> List[Any]: """simple docstring""" A__ : List[Any] =get_last_daily_ci_runs(lowerCamelCase_ ) if workflow_run_id is not None: A__ : Any =get_artifacts_links(worflow_run_id=lowerCamelCase_, token=lowerCamelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ : List[str] =artifacts_links[artifact_name] download_artifact( artifact_name=lowerCamelCase_, artifact_url=lowerCamelCase_, output_dir=lowerCamelCase_, token=lowerCamelCase_ ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str], __snake_case : Any ) -> Union[str, Any]: """simple docstring""" get_last_daily_ci_artifacts(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) A__ : int ={} for artifact_name in artifact_names: A__ : List[str] =os.path.join(lowerCamelCase_, f"{artifact_name}.zip" ) if os.path.isfile(lowerCamelCase_ ): A__ : Dict ={} with zipfile.ZipFile(lowerCamelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_ ): # read the file with z.open(lowerCamelCase_ ) as f: A__ : Dict =f.read().decode("""UTF-8""" ) return results
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Optional[Any]="shi-labs/oneformer_demo" ) -> List[str]: """simple docstring""" with open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) as f: A__ : Any =json.load(__snake_case ) A__ : Dict ={} A__ : int =[] A__ : Optional[int] =[] for key, info in class_info.items(): A__ : Optional[int] =info["name"] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(__snake_case ) ) A__ : Any =thing_ids A__ : Dict =class_names return metadata class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str=7 , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : Dict=30 , lowerCAmelCase_ : Dict=4_00 , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : int=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Union[str, Any]=10 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Dict=2_55 , lowerCAmelCase_ : str="shi-labs/oneformer_demo" , lowerCAmelCase_ : List[str]="ade20k_panoptic.json" , lowerCAmelCase_ : Dict=10 , ) -> Tuple: '''simple docstring''' A__ : Any =parent A__ : Optional[int] =batch_size A__ : Any =num_channels A__ : Dict =min_resolution A__ : Any =max_resolution A__ : Optional[Any] =do_resize A__ : Dict ={"shortest_edge": 32, "longest_edge": 13_33} if size is None else size A__ : List[str] =do_normalize A__ : Optional[Any] =image_mean A__ : List[Any] =image_std A__ : List[Any] =class_info_file A__ : Optional[Any] =prepare_metadata(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =num_text A__ : List[str] =repo_path # for the post_process_functions A__ : List[str] =2 A__ : str =10 A__ : Optional[int] =10 A__ : Tuple =3 A__ : List[Any] =4 A__ : Any =num_labels A__ : List[Any] =do_reduce_labels A__ : Union[str, Any] =ignore_index def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowercase__ ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict=False ) -> List[str]: '''simple docstring''' if not batched: A__ : int =image_inputs[0] if isinstance(lowerCAmelCase_ , Image.Image ): A__ : Any =image.size else: A__ : List[str] =image.shape[1], image.shape[2] if w < h: A__ : List[str] =int(self.size["""shortest_edge"""] * h / w ) A__ : Optional[int] =self.size["shortest_edge"] elif w > h: A__ : Dict =self.size["shortest_edge"] A__ : str =int(self.size["""shortest_edge"""] * w / h ) else: A__ : Optional[Any] =self.size["shortest_edge"] A__ : Dict =self.size["shortest_edge"] else: A__ : Optional[int] =[] for image in image_inputs: A__ : List[Any] =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ : Tuple =max(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : item[0] )[0] A__ : Tuple =max(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : item[1] )[1] return expected_height, expected_width def lowercase__ ( self : Any ) -> str: '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __snake_case = image_processing_class def lowercase__ ( self : Dict ) -> str: '''simple docstring''' A__ : Union[str, Any] =OneFormerImageProcessorTester(self ) @property def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """ignore_index""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """class_info_file""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """num_text""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """repo_path""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """metadata""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_reduce_labels""" ) ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' pass def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' # Initialize image_processor A__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : List[str] =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input A__ : Any =image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values A__ : Optional[int] =self.image_processing_tester.get_expected_values(lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : Optional[Any] =self.image_processing_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_ ) A__ : Optional[int] =image_processor( lowerCAmelCase_ , ["""semantic"""] * len(lowerCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' # Initialize image_processor A__ : Any =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Union[str, Any] =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input A__ : str =image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values A__ : str =self.image_processing_tester.get_expected_values(lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : int =self.image_processing_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_ ) A__ : Tuple =image_processor( lowerCAmelCase_ , ["""semantic"""] * len(lowerCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' # Initialize image_processor A__ : Optional[int] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Tuple =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input A__ : Optional[Any] =image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values A__ : List[Any] =self.image_processing_tester.get_expected_values(lowerCAmelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ : Any =self.image_processing_tester.get_expected_values(lowerCAmelCase_ , batched=lowerCAmelCase_ ) A__ : List[Any] =image_processor( lowerCAmelCase_ , ["""semantic"""] * len(lowerCAmelCase_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Optional[Any]="np" ) -> List[Any]: '''simple docstring''' A__ : Any =self.image_processing_class(**self.image_processor_dict ) # prepare image and target A__ : Dict =self.image_processing_tester.num_labels A__ : Tuple =None A__ : Optional[Any] =None A__ : Dict =prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase_ ) if with_segmentation_maps: A__ : str =num_labels if is_instance_map: A__ : List[str] =list(range(lowerCAmelCase_ ) ) * 2 A__ : Tuple =dict(enumerate(lowerCAmelCase_ ) ) A__ : int =[ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A__ : int =[Image.fromarray(lowerCAmelCase_ ) for annotation in annotations] A__ : List[str] =image_processor( lowerCAmelCase_ , ["""semantic"""] * len(lowerCAmelCase_ ) , lowerCAmelCase_ , return_tensors="""pt""" , instance_id_to_semantic_id=lowerCAmelCase_ , pad_and_return_pixel_mask=lowerCAmelCase_ , ) return inputs def lowercase__ ( self : int ) -> int: '''simple docstring''' pass def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' def common(lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Union[str, Any]=None ): A__ : Any =self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCAmelCase_ , is_instance_map=lowerCAmelCase_ , segmentation_type=lowerCAmelCase_ ) A__ : Optional[Any] =inputs["mask_labels"] A__ : Any =inputs["class_labels"] A__ : List[Any] =inputs["pixel_values"] A__ : List[str] =inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCAmelCase_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCAmelCase_ ) common(is_instance_map=lowerCAmelCase_ , segmentation_type="""pil""" ) common(is_instance_map=lowerCAmelCase_ , segmentation_type="""pil""" ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : Optional[Any] =np.zeros((20, 50) ) A__ : Optional[Any] =1 A__ : Optional[Any] =1 A__ : Any =1 A__ : Dict =binary_mask_to_rle(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) A__ : Optional[int] =self.image_processing_tester.get_fake_oneformer_outputs() A__ : List[Any] =fature_extractor.post_process_semantic_segmentation(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A__ : List[Any] =[(1, 4) for i in range(self.image_processing_tester.batch_size )] A__ : Optional[Any] =fature_extractor.post_process_semantic_segmentation(lowerCAmelCase_ , target_sizes=lowerCAmelCase_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : List[str] =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) A__ : List[str] =self.image_processing_tester.get_fake_oneformer_outputs() A__ : Dict =image_processor.post_process_instance_segmentation(lowerCAmelCase_ , threshold=0 ) self.assertTrue(len(lowerCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , lowerCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : str =self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) A__ : Tuple =self.image_processing_tester.get_fake_oneformer_outputs() A__ : List[Any] =image_processor.post_process_panoptic_segmentation(lowerCAmelCase_ , threshold=0 ) self.assertTrue(len(lowerCAmelCase_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , lowerCAmelCase_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__A ): A__ : Tuple =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) A__ : Union[str, Any] =FlaxAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__A ): A__ : Dict =AutoConfig.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) A__ : Optional[Any] =FlaxAutoModel.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , __A ) @slow def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: A__ : List[Any] =AutoTokenizer.from_pretrained(__A ) A__ : Optional[int] =FlaxBertModel.from_pretrained(__A ) A__ : Tuple =tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase_ : Dict ): return model(**__A ) eval(**__A ).block_until_ready() @slow def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: A__ : str =AutoTokenizer.from_pretrained(__A ) A__ : str =FlaxRobertaModel.from_pretrained(__A ) A__ : Tuple =tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase_ : Tuple ): return model(**__A ) eval(**__A ).block_until_ready() def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): A__ : List[Any] =FlaxAutoModel.from_pretrained("""bert-base""" ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' with self.assertRaisesRegex( __A , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A__ : Union[str, Any] =FlaxAutoModel.from_pretrained(__A , revision="""aaaaaa""" ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( __A , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): A__ : Dict =FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex(__A , """Use `from_pt=True` to load this model""" ): A__ : str =FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any]=False ) -> Optional[Any]: """simple docstring""" A__ : List[str] =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : List[Any] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Any, __snake_case : List[str], __snake_case : Optional[Any]=False ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : List[str] ="""""" else: A__ : int ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : List[Any] =state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) A__ : List[Any] =state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Dict =in_proj_weight[ : config.hidden_size, : ] A__ : Dict =in_proj_bias[: config.hidden_size] A__ : Any =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : int =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Any =in_proj_weight[ -config.hidden_size :, : ] A__ : int =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Dict ) -> int: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase__, UpperCamelCase__ ) def __lowerCamelCase ( __snake_case : Dict ) -> Optional[int]: """simple docstring""" A__ : int =[ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__, UpperCamelCase__ ) def __lowerCamelCase ( __snake_case : int, __snake_case : str, __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Tuple =dct.pop(UpperCamelCase__ ) A__ : List[str] =val def __lowerCamelCase ( __snake_case : List[Any], __snake_case : int ) -> Union[str, Any]: """simple docstring""" A__ : Union[str, Any] =ViTMSNConfig() A__ : int =1_000 A__ : Union[str, Any] ="""datasets/huggingface/label-files""" A__ : Optional[int] ="""imagenet-1k-id2label.json""" A__ : List[str] =json.load(open(hf_hub_download(UpperCamelCase__, UpperCamelCase__ ), """r""" ) ) A__ : Tuple ={int(UpperCamelCase__ ): v for k, v in idalabel.items()} A__ : Tuple =idalabel A__ : Optional[Any] ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: A__ : Dict =384 A__ : Dict =1_536 A__ : Union[str, Any] =6 elif "l16" in checkpoint_url: A__ : int =1_024 A__ : str =4_096 A__ : List[Any] =24 A__ : List[str] =16 A__ : Optional[int] =0.1 elif "b4" in checkpoint_url: A__ : Tuple =4 elif "l7" in checkpoint_url: A__ : Union[str, Any] =7 A__ : List[Any] =1_024 A__ : Dict =4_096 A__ : Optional[int] =24 A__ : Union[str, Any] =16 A__ : Dict =0.1 A__ : Dict =ViTMSNModel(UpperCamelCase__ ) A__ : str =torch.hub.load_state_dict_from_url(UpperCamelCase__, map_location="""cpu""" )["""target_encoder"""] A__ : Optional[Any] =ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCamelCase__ ) A__ : Tuple =create_rename_keys(UpperCamelCase__, base_model=UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__, UpperCamelCase__, base_model=UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() A__ : Optional[int] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : List[str] =Image.open(requests.get(UpperCamelCase__, stream=UpperCamelCase__ ).raw ) A__ : Tuple =ViTImageProcessor( size=config.image_size, image_mean=UpperCamelCase__, image_std=UpperCamelCase__ ) A__ : Dict =image_processor(images=UpperCamelCase__, return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) A__ : List[Any] =model(**UpperCamelCase__ ) A__ : Union[str, Any] =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: A__ : str =torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: A__ : Dict =torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: A__ : List[Any] =torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: A__ : Optional[Any] =torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: A__ : Union[str, Any] =torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3], UpperCamelCase__, atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : Any = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : Tuple ) -> Optional[Any]: # This function is recursive """simple docstring""" A__ : Optional[int] =len(_UpperCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A__ : Optional[Any] =array[0] A__ : Union[str, Any] =False A__ : str =1 A__ : int =[] while not is_found and i < array_length: if array[i] < pivot: A__ : int =True A__ : Dict =[element for element in array[i:] if element >= array[i]] A__ : Optional[Any] =longest_subsequence(_UpperCAmelCase ) if len(_UpperCAmelCase ) > len(_UpperCAmelCase ): A__ : Union[str, Any] =temp_array else: i += 1 A__ : str =[element for element in array[1:] if element >= pivot] A__ : str =[pivot, *longest_subsequence(_UpperCAmelCase )] if len(_UpperCAmelCase ) > len(_UpperCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] ='ZinengTang/tvlt-base' A__ : Optional[Any] =tempfile.mkdtemp() def lowercase__ ( self : Optional[int] , **lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **__a ) def lowercase__ ( self : int , **lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__a ) def lowercase__ ( self : str ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =self.get_image_processor() A__ : Optional[int] =self.get_feature_extractor() A__ : Optional[int] =TvltProcessor(image_processor=__a , feature_extractor=__a ) processor.save_pretrained(self.tmpdirname ) A__ : Optional[int] =TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __a ) self.assertIsInstance(processor.image_processor , __a ) def lowercase__ ( self : Any ) -> List[str]: '''simple docstring''' A__ : List[Any] =self.get_image_processor() A__ : Union[str, Any] =self.get_feature_extractor() A__ : Optional[Any] =TvltProcessor(image_processor=__a , feature_extractor=__a ) A__ : Dict =np.ones([1_20_00] ) A__ : Tuple =feature_extractor(__a , return_tensors="""np""" ) A__ : int =processor(audio=__a , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' A__ : Optional[int] =self.get_image_processor() A__ : Union[str, Any] =self.get_feature_extractor() A__ : Optional[Any] =TvltProcessor(image_processor=__a , feature_extractor=__a ) A__ : List[str] =np.ones([3, 2_24, 2_24] ) A__ : Union[str, Any] =image_processor(__a , return_tensors="""np""" ) A__ : Optional[Any] =processor(images=__a , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Optional[int] =self.get_image_processor() A__ : Optional[Any] =self.get_feature_extractor() A__ : Dict =TvltProcessor(image_processor=__a , feature_extractor=__a ) A__ : Tuple =np.ones([1_20_00] ) A__ : Union[str, Any] =np.ones([3, 2_24, 2_24] ) A__ : List[Any] =processor(audio=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =self.get_image_processor() A__ : Union[str, Any] =self.get_feature_extractor() A__ : List[Any] =TvltProcessor(image_processor=__a , feature_extractor=__a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int = None , lowerCAmelCase_ : int = None ) -> Any: '''simple docstring''' super().__init__() A__ : List[str] =pad_token_id A__ : Union[str, Any] =max_length A__ : List[str] =vocab A__ : List[str] =merges A__ : Tuple =BytePairTokenizer(__A , __A , sequence_length=__A ) @classmethod def lowercase__ ( cls : int , lowerCAmelCase_ : GPTaTokenizer , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' A__ : List[str] =[""" """.join(__A ) for m in tokenizer.bpe_ranks.keys()] A__ : List[Any] =tokenizer.get_vocab() return cls(__A , __A , *__A , **__A ) @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : Union[str, os.PathLike] , *lowerCAmelCase_ : str , **lowerCAmelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =GPTaTokenizer.from_pretrained(__A , *__A , **__A ) return cls.from_tokenizer(__A , *__A , **__A ) @classmethod def lowercase__ ( cls : int , lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' return cls(**__A ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int = None ) -> Dict: '''simple docstring''' A__ : List[Any] =self.tf_tokenizer(__A ) A__ : Optional[int] =tf.ones_like(__A ) if self.pad_token_id is not None: # pad the tokens up to max length A__ : Optional[int] =max_length if max_length is not None else self.max_length if max_length is not None: A__ , A__ : Union[str, Any] =pad_model_inputs( __A , max_seq_length=__A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : Any =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) A__ : List[str] ="""A painting of a squirrel eating a burger""" A__ : Any =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : Optional[int] =sd_pipe.prepare_inputs(_lowercase ) A__ : Optional[Any] =replicate(_lowercase ) A__ : Any =shard(_lowercase ) A__ : List[Any] =jax.random.PRNGKey(0 ) A__ : Dict =jax.random.split(_lowercase , jax.device_count() ) A__ : List[str] =sd_pipe(_lowercase , _lowercase , _lowercase , num_inference_steps=25 , jit=_lowercase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) A__ : Optional[int] =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ : int =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Union[str, Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : str =jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : str ="""stabilityai/stable-diffusion-2""" A__ : int =FlaxDPMSolverMultistepScheduler.from_pretrained(_lowercase , subfolder="""scheduler""" ) A__ : Any =FlaxStableDiffusionPipeline.from_pretrained( _lowercase , scheduler=_lowercase , revision="""bf16""" , dtype=jnp.bfloataa , ) A__ : List[str] =scheduler_params A__ : List[str] ="""A painting of a squirrel eating a burger""" A__ : List[str] =jax.device_count() A__ : Dict =num_samples * [prompt] A__ : str =sd_pipe.prepare_inputs(_lowercase ) A__ : Dict =replicate(_lowercase ) A__ : Tuple =shard(_lowercase ) A__ : Tuple =jax.random.PRNGKey(0 ) A__ : Dict =jax.random.split(_lowercase , jax.device_count() ) A__ : Union[str, Any] =sd_pipe(_lowercase , _lowercase , _lowercase , num_inference_steps=25 , jit=_lowercase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) A__ : Optional[Any] =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ : Any =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : List[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : List[str] =jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : List[str] = 25_6047 __snake_case : Union[str, Any] = 25_6145 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): __snake_case = NllbTokenizer __snake_case = NllbTokenizerFast __snake_case = True __snake_case = True __snake_case = {} def lowercase__ ( self : Any ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =NllbTokenizer(A__ , keep_accents=A__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' A__ : Optional[int] =NllbTokenizer(A__ , keep_accents=A__ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Dict =tokenizer.convert_tokens_to_ids(A__ ) self.assertListEqual( A__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(A__ ) self.assertListEqual( A__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : int =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Tuple =self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) A__ : List[Any] =self.tokenizer_class.from_pretrained(A__ , **A__ ) A__ : Optional[int] =tempfile.mkdtemp() A__ : str =tokenizer_r.save_pretrained(A__ ) A__ : str =tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A__ : List[str] =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way A__ : str =tokenizer_r.from_pretrained(A__ ) A__ : Union[str, Any] =tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=True A__ : str =tempfile.mkdtemp() A__ : Optional[Any] =tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) A__ : Union[str, Any] =tokenizer_p.save_pretrained(A__ ) # Checks it save with the same files self.assertSequenceEqual(A__ , A__ ) # Checks everything loads correctly in the same way A__ : Optional[int] =tokenizer_r.from_pretrained(A__ ) A__ : Union[str, Any] =tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) # Save tokenizer rust, legacy_format=False A__ : Dict =tempfile.mkdtemp() A__ : int =tokenizer_r.save_pretrained(A__ , legacy_format=A__ ) A__ : Optional[int] =tokenizer_p.save_pretrained(A__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ : int =tokenizer_r.from_pretrained(A__ ) A__ : str =tokenizer_p.from_pretrained(A__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A__ , A__ ) ) shutil.rmtree(A__ ) @require_torch def lowercase__ ( self : int ) -> int: '''simple docstring''' if not self.test_seqaseq: return A__ : List[Any] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. A__ : Tuple =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] A__ : Tuple =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: A__ : Dict =tokenizer.prepare_seqaseq_batch( src_texts=A__ , tgt_texts=A__ , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified A__ : Optional[int] =tokenizer.prepare_seqaseq_batch( A__ , tgt_texts=A__ , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) A__ : List[Any] =tokenizer.prepare_seqaseq_batch( src_texts=A__ , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , A__ ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' pass def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : int =[AddedToken("""<special>""" , lstrip=A__ )] A__ : List[str] =self.rust_tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , **A__ ) A__ : Tuple =tokenizer_r.encode("""Hey this is a <special> token""" ) A__ : int =tokenizer_r.encode("""<special>""" , add_special_tokens=A__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A__ : Dict =self.rust_tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , **A__ , ) A__ : Union[str, Any] =self.tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , **A__ ) A__ : Tuple =tokenizer_p.encode("""Hey this is a <special> token""" ) A__ : Any =tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(A__ , A__ ) self.assertEqual(A__ , A__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): __snake_case = '''facebook/nllb-200-distilled-600M''' __snake_case = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __snake_case = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __snake_case = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def lowercase__ ( cls : Dict ) -> Tuple: '''simple docstring''' A__ : NllbTokenizer =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) A__ : Any =1 return cls def lowercase__ ( self : int ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 25_60_57 ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : List[Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A__ ) def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' self.assertIn(A__ , self.tokenizer.all_special_ids ) # fmt: off A__ : Union[str, Any] =[RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on A__ : List[Any] =self.tokenizer.decode(A__ , skip_special_tokens=A__ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A__ ) self.assertEqual(A__ , A__ ) self.assertNotIn(self.tokenizer.eos_token , A__ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A__ ) A__ : int =10 A__ : List[Any] =self.tokenizer(A__ , max_length=A__ , truncation=A__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , A__ ) self.assertEqual(len(A__ ) , A__ ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_62_03, 3] ) def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : int =tempfile.mkdtemp() A__ : str =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A__ ) A__ : List[str] =NllbTokenizer.from_pretrained(A__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A__ ) @require_torch def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' A__ : List[str] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Optional[Any] =shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(A__ , A__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) A__ : int =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A__ ) self.assertEqual(A__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , padding=A__ , truncation=A__ , max_length=3 , return_tensors="""pt""" ) A__ : str =self.tokenizer( text_target=self.tgt_text , padding=A__ , truncation=A__ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[int] =targets["""input_ids"""] A__ : Dict =shift_tokens_right( A__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : List[Any] =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(A__ ) , { # A, test, EOS, en_XX """input_ids""": [[25_60_47, 70, 73_56, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_60_57, } , ) @require_torch def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' A__ : str =True A__ : int =self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) A__ : Any =False A__ : Any =self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' class lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class lowerCamelCase : '''simple docstring''' def __init__( self : str ) -> str: '''simple docstring''' A__ : List[Any] =[ [], [], [], ] def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' try: if len(self.queues[priority] ) >= 1_00: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(_a ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : List[str] ) -> Any: '''simple docstring''' return "\n".join(f"Priority {i}: {q}" for i, q in enumerate(self.queues ) ) class lowerCamelCase : '''simple docstring''' def __init__( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ : Any =[] def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' if len(self.queue ) == 1_00: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(_a ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: A__ : List[str] =min(self.queue ) self.queue.remove(_a ) return data def __str__( self : Dict ) -> Union[str, Any]: '''simple docstring''' return str(self.queue ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : Optional[int] =FixedPriorityQueue() fpq.enqueue(0, 10 ) fpq.enqueue(1, 70 ) fpq.enqueue(0, 100 ) fpq.enqueue(2, 1 ) fpq.enqueue(2, 5 ) fpq.enqueue(1, 7 ) fpq.enqueue(2, 4 ) fpq.enqueue(1, 64 ) fpq.enqueue(0, 128 ) print(lowerCAmelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCAmelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ : Tuple =ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowerCAmelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCAmelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInstructPixaPixPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) A__ : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : Any =PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) A__ : Dict =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : Optional[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ : Optional[Any] =CLIPTextModel(UpperCamelCase__ ) A__ : List[Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Dict ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str=0 ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ : Any =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : Tuple =Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): A__ : str =torch.manual_seed(UpperCamelCase__ ) else: A__ : Union[str, Any] =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ : Any ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : str =self.get_dummy_components() A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ : int =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Optional[Any] =self.get_dummy_inputs(UpperCamelCase__ ) A__ : Tuple =sd_pipe(**UpperCamelCase__ ).images A__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Optional[int] =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : List[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Tuple =self.get_dummy_components() A__ : str =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ : List[str] =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : str =self.get_dummy_inputs(UpperCamelCase__ ) A__ : Tuple ="""french fries""" A__ : Tuple =sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) A__ : Union[str, Any] =output.images A__ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Any =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[Any] =self.get_dummy_components() A__ : Tuple =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ : Any =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Tuple =self.get_dummy_inputs(UpperCamelCase__ ) A__ : Any =[inputs["""prompt"""]] * 2 A__ : Tuple =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A__ : List[Any] =torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) A__ : List[str] =image / 2 + 0.5 A__ : Any =image.permute(0 , 3 , 1 , 2 ) A__ : Optional[int] =image.repeat(2 , 1 , 1 , 1 ) A__ : Union[str, Any] =sd_pipe(**UpperCamelCase__ ).images A__ : Optional[int] =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ : Any =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' A__ : int ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[Any] =self.get_dummy_components() A__ : Tuple =EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A__ : int =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ : Tuple =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Any =self.get_dummy_inputs(UpperCamelCase__ ) A__ : Tuple =sd_pipe(**UpperCamelCase__ ).images A__ : Tuple =image[0, -3:, -3:, -1] A__ : Tuple =[round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(UpperCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ : Optional[int] =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Optional[Any] =self.get_dummy_components() A__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) A__ : int =VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A__ : str =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ : Dict =pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="""pt""" ) )[0] A__ : List[str] =components["""vae"""] A__ : str =self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ : List[str] =vae.encode(inputs[image_param] ).latent_dist.mode() A__ : Any =pipe(**UpperCamelCase__ )[0] A__ : Union[str, Any] =np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase__ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : int ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Tuple=0 ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =torch.manual_seed(UpperCamelCase__ ) A__ : Tuple =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A__ : int ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : Union[str, Any] =self.get_inputs() A__ : Union[str, Any] =pipe(**UpperCamelCase__ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : str =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : Tuple =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ ) A__ : Dict =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : Optional[int] =self.get_inputs() A__ : Any =pipe(**UpperCamelCase__ ).images A__ : int =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ ) A__ : Any =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : Dict =self.get_inputs() A__ : Optional[int] =pipe(**UpperCamelCase__ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : List[str] =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ : Any =0 def callback_fn(lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> None: A__ : List[Any] =True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ : Optional[Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : int =latents[0, -3:, -3:, -1] A__ : List[str] =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ : str =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Optional[int] =latents[0, -3:, -3:, -1] A__ : Tuple =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ : int =False A__ : Tuple =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ : List[str] =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) A__ : Any =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : List[Any] =self.get_inputs() A__ : Dict =pipe(**UpperCamelCase__ ) A__ : Dict =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : List[str] =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ : List[Any] =inputs["""image"""].resize((5_04, 5_04) ) A__ : str ="""timbrooks/instruct-pix2pix""" A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() A__ : Optional[int] =pipe(**UpperCamelCase__ ) A__ : int =output.images[0] A__ : int =image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ : Union[str, Any] =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder __snake_case : Tuple = """base_with_context""" def __lowerCamelCase ( __snake_case : int, __snake_case : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[str] =nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) A__ : List[str] =nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ), requires_grad=__snake_case ) for lyr_num, lyr in enumerate(model.encoders ): A__ : Union[str, Any] =weights[f"layers_{lyr_num}"] A__ : Dict =nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) A__ : Any =ly_weight["""attention"""] A__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) A__ : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) A__ : Tuple =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) A__ : int =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) A__ : int =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) A__ : Tuple =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) A__ : str =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) A__ : List[Any] =nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Union[str, Any] ) -> Dict: """simple docstring""" A__ : List[Any] =nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) A__ : Dict =nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ), requires_grad=__snake_case ) for lyr_num, lyr in enumerate(model.encoders ): A__ : List[str] =weights[f"layers_{lyr_num}"] A__ : Optional[Any] =ly_weight["""attention"""] A__ : Tuple =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) A__ : Any =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) A__ : Any =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) A__ : Any =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) A__ : List[str] =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) A__ : Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) A__ : int =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) A__ : Optional[int] =nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __lowerCamelCase ( __snake_case : Any, __snake_case : List[str] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ), requires_grad=__snake_case ) A__ : int =nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): A__ : Union[str, Any] =weights[f"layers_{lyr_num}"] A__ : Optional[int] =nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) A__ : Union[str, Any] =nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) A__ : str =ly_weight["""self_attention"""] A__ : str =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) A__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) A__ : Tuple =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) A__ : Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) A__ : Union[str, Any] =ly_weight["""MultiHeadDotProductAttention_0"""] A__ : Dict =nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) A__ : Tuple =nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) A__ : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) A__ : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) A__ : Dict =nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) A__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) A__ : List[Any] =nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) A__ : Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) A__ : Dict =nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) A__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) A__ : str =nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __lowerCamelCase ( __snake_case : Tuple ) -> List[Any]: """simple docstring""" A__ : Union[str, Any] =checkpoints.load_tax_checkpoint(args.checkpoint_path ) A__ : str =jnp.tree_util.tree_map(onp.array, __snake_case ) A__ : Any =[ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] A__ : Optional[Any] =os.path.join(args.checkpoint_path, """..""", """config.gin""" ) A__ : Tuple =inference.parse_training_gin_file(__snake_case, __snake_case ) A__ : List[Any] =inference.InferenceModel(args.checkpoint_path, __snake_case ) A__ : Optional[int] =DDPMScheduler(beta_schedule="""squaredcos_cap_v2""", variance_type="""fixed_large""" ) A__ : int =SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""], vocab_size=synth_model.model.module.config.vocab_size, d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="""gated-gelu""", ) A__ : List[str] =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims, targets_context_length=synth_model.sequence_length["""targets_context"""], d_model=synth_model.model.module.config.emb_dim, dropout_rate=synth_model.model.module.config.dropout_rate, num_layers=synth_model.model.module.config.num_encoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, feed_forward_proj="""gated-gelu""", ) A__ : Optional[int] =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims, targets_length=synth_model.sequence_length["""targets_context"""], max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time, d_model=synth_model.model.module.config.emb_dim, num_layers=synth_model.model.module.config.num_decoder_layers, num_heads=synth_model.model.module.config.num_heads, d_kv=synth_model.model.module.config.head_dim, d_ff=synth_model.model.module.config.mlp_dim, dropout_rate=synth_model.model.module.config.dropout_rate, ) A__ : Tuple =load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""], __snake_case ) A__ : List[Any] =load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""], __snake_case ) A__ : int =load_decoder(ta_checkpoint["""target"""]["""decoder"""], __snake_case ) A__ : Tuple =OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) A__ : Dict =SpectrogramDiffusionPipeline( notes_encoder=__snake_case, continuous_encoder=__snake_case, decoder=__snake_case, scheduler=__snake_case, melgan=__snake_case, ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='Path to the original jax model checkpoint.', ) __snake_case : Dict = parser.parse_args() main(args)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase ( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def lowercase__ ( self : Any , lowerCAmelCase_ : Any=0 ) -> Dict: '''simple docstring''' A__ : Any =floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(lowercase__ ) ) A__ : int =np.random.RandomState(lowercase__ ) A__ : Union[str, Any] ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' A__ : List[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Optional[Any] =self.get_dummy_inputs() A__ : str =pipe(**lowercase__ ).images A__ : Dict =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) A__ : Optional[int] =np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : List[Any] =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Tuple =self.get_dummy_inputs() A__ : Any =pipe(**lowercase__ ).images A__ : int =image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ : List[str] =np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : Any =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) # warmup pass to apply optimizations A__ : List[str] =pipe(**self.get_dummy_inputs() ) A__ : Any =self.get_dummy_inputs() A__ : Tuple =pipe(**lowercase__ ).images A__ : str =image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ : Optional[Any] =np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Optional[int] =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : List[Any] =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Optional[int] =self.get_dummy_inputs() A__ : Any =pipe(**lowercase__ ).images A__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ : Tuple =np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ : Any =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : str =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : List[str] =self.get_dummy_inputs() A__ : List[Any] =pipe(**lowercase__ ).images A__ : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ : int =np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : str =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A__ : List[str] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Tuple =self.get_dummy_inputs() A__ : Any =pipe(**lowercase__ ).images A__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) A__ : Optional[Any] =np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =ort.SessionOptions() A__ : Tuple =False return options def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ : Dict =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A__ : Optional[Any] =init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default A__ : Dict =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : int ="A fantasy landscape, trending on artstation" A__ : int =np.random.RandomState(0 ) A__ : Union[str, Any] =pipe( prompt=lowercase__ , image=lowercase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type="""np""" , ) A__ : Optional[int] =output.images A__ : Any =images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A__ : List[Any] =np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A__ : Any =init_image.resize((7_68, 5_12) ) A__ : Optional[Any] =LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A__ : List[str] =OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) A__ : Union[str, Any] ="A fantasy landscape, trending on artstation" A__ : Union[str, Any] =np.random.RandomState(0 ) A__ : Optional[Any] =pipe( prompt=lowercase__ , image=lowercase__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase__ , output_type="""np""" , ) A__ : Union[str, Any] =output.images A__ : Optional[Any] =images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) A__ : str =np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from math import factorial def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Optional[Any], __snake_case : str ) -> float: """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) A__ : Optional[int] =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A__ : Any =float(factorial(SCREAMING_SNAKE_CASE_ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Dict = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[Any]=False ) -> List[Any]: """simple docstring""" A__ : Tuple =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : str =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[Any]=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ='' else: A__ : Tuple ='vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Any =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : str =in_proj_weight[ : config.hidden_size, : ] A__ : Optional[Any] =in_proj_bias[: config.hidden_size] A__ : List[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Any =in_proj_weight[ -config.hidden_size :, : ] A__ : Union[str, Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Dict ) -> Any: """simple docstring""" A__ : List[str] =['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowercase, __lowercase ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =dct.pop(__lowercase ) A__ : str =val def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] ='http://images.cocodataset.org/val2017/000000039769.jpg' A__ : int =Image.open(requests.get(__lowercase, stream=__lowercase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Tuple, __snake_case : str ) -> Tuple: """simple docstring""" A__ : Optional[Any] =ViTConfig() A__ : str =False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A__ : Optional[int] =True A__ : List[Any] =int(vit_name[-12:-10] ) A__ : List[str] =int(vit_name[-9:-6] ) else: A__ : Optional[Any] =1_000 A__ : str ='huggingface/label-files' A__ : Optional[int] ='imagenet-1k-id2label.json' A__ : Any =json.load(open(hf_hub_download(__lowercase, __lowercase, repo_type="""dataset""" ), """r""" ) ) A__ : int ={int(__lowercase ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : Any ={v: k for k, v in idalabel.items()} A__ : Optional[Any] =int(vit_name[-6:-4] ) A__ : Tuple =int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): A__ : str =192 A__ : List[Any] =768 A__ : int =12 A__ : Dict =3 elif vit_name[9:].startswith("""small""" ): A__ : str =384 A__ : List[str] =1_536 A__ : Dict =12 A__ : Any =6 else: pass else: if vit_name[4:].startswith("""small""" ): A__ : Union[str, Any] =768 A__ : Optional[Any] =2_304 A__ : int =8 A__ : int =8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): A__ : Dict =1_024 A__ : List[Any] =4_096 A__ : Tuple =24 A__ : Union[str, Any] =16 elif vit_name[4:].startswith("""huge""" ): A__ : Tuple =1_280 A__ : Optional[Any] =5_120 A__ : List[Any] =32 A__ : Optional[Any] =16 # load original model from timm A__ : Dict =timm.create_model(__lowercase, pretrained=__lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[Any] =timm_model.state_dict() if base_model: remove_classification_head_(__lowercase ) A__ : Optional[int] =create_rename_keys(__lowercase, __lowercase ) for src, dest in rename_keys: rename_key(__lowercase, __lowercase, __lowercase ) read_in_q_k_v(__lowercase, __lowercase, __lowercase ) # load HuggingFace model if vit_name[-5:] == "in21k": A__ : Union[str, Any] =ViTModel(__lowercase ).eval() else: A__ : Any =ViTForImageClassification(__lowercase ).eval() model.load_state_dict(__lowercase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A__ : Optional[Any] =DeiTImageProcessor(size=config.image_size ) else: A__ : Tuple =ViTImageProcessor(size=config.image_size ) A__ : List[str] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : List[Any] =encoding['pixel_values'] A__ : Union[str, Any] =model(__lowercase ) if base_model: A__ : int =timm_model.forward_features(__lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowercase, outputs.pooler_output, atol=1E-3 ) else: A__ : Union[str, Any] =timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase, outputs.logits, atol=1E-3 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCamelCase ( enum.Enum ): '''simple docstring''' __snake_case = 0 __snake_case = 1 __snake_case = 2 @add_end_docstrings(__lowercase ) class lowerCamelCase ( __lowercase ): '''simple docstring''' __snake_case = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : Tuple , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : str ) -> str: '''simple docstring''' super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ : Optional[Any] =None if self.model.config.prefix is not None: A__ : Dict =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ : int =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ : Dict =self._sanitize_parameters(prefix=_A , **self._forward_params ) A__ : Union[str, Any] ={**self._preprocess_params, **preprocess_params} A__ : int ={**self._forward_params, **forward_params} def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Optional[int] , ) -> Optional[Any]: '''simple docstring''' A__ : str ={} if prefix is not None: A__ : Union[str, Any] =prefix if prefix: A__ : str =self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) A__ : List[str] =prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" """ [None, \'hole\']""" ) A__ : Union[str, Any] =handle_long_generation preprocess_params.update(_A ) A__ : Dict =generate_kwargs A__ : List[Any] ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) A__ : Optional[int] =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) A__ : Optional[int] =ReturnType.TENSORS if return_type is not None: A__ : str =return_type if clean_up_tokenization_spaces is not None: A__ : str =clean_up_tokenization_spaces if stop_sequence is not None: A__ : List[str] =self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) A__ : int =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self : int , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[str] , lowerCAmelCase_ : str , **lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' return super().__call__(_A , **_A ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int="" , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) A__ : Optional[Any] =prompt_text if handle_long_generation == "hole": A__ : Dict =inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: A__ : str =generate_kwargs["""max_new_tokens"""] else: A__ : List[Any] =generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ : int =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) A__ : str =inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: A__ : Any =inputs["""attention_mask"""][:, -keep_length:] return inputs def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' A__ : Any =model_inputs["""input_ids"""] A__ : List[str] =model_inputs.get("""attention_mask""" , _A ) # Allow empty prompts if input_ids.shape[1] == 0: A__ : Optional[int] =None A__ : Dict =None A__ : List[str] =1 else: A__ : Optional[Any] =input_ids.shape[0] A__ : Optional[Any] =model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ : Optional[int] =generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: A__ : Optional[int] ="""max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: A__ : List[str] =generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ : int ="""min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ : List[str] =self.model.generate(input_ids=_A , attention_mask=_A , **_A ) A__ : Dict =generated_sequence.shape[0] if self.framework == "pt": A__ : Tuple =generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": A__ : Optional[int] =tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase__ ( self : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any]=ReturnType.FULL_TEXT , lowerCAmelCase_ : Dict=True ) -> Any: '''simple docstring''' A__ : Any =model_outputs["""generated_sequence"""][0] A__ : Optional[Any] =model_outputs["""input_ids"""] A__ : str =model_outputs["""prompt_text"""] A__ : List[str] =generated_sequence.numpy().tolist() A__ : str =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ : List[str] ={"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ : Optional[Any] =self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ : List[Any] =0 else: A__ : int =len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: A__ : Dict =prompt_text + text[prompt_length:] else: A__ : Tuple =text[prompt_length:] A__ : Optional[Any] ={"""generated_text""": all_text} records.append(_A ) return records
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : str = '''▁''' __snake_case : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} __snake_case : str = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } __snake_case : Optional[int] = { '''google/pegasus-xsum''': 512, } __snake_case : Tuple = logging.get_logger(__name__) class lowerCamelCase ( __a ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : str="<pad>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : Dict="<unk>" , lowerCAmelCase_ : int="<mask_2>" , lowerCAmelCase_ : Union[str, Any]="<mask_1>" , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]=1_03 , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : List[str] , ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( f"additional_special_tokens should be of type {type(snake_case__ )}, but is" f" {type(snake_case__ )}" ) A__ : str =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) A__ : int =additional_special_tokens_extended else: A__ : Tuple =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] A__ : List[str] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , pad_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) A__ : int =mask_token_sent A__ : Optional[int] =vocab_file A__ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) # add special tokens to encoder dict A__ : str ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) A__ : Union[str, Any] ={v: k for k, v in self.encoder.items()} @property def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return len(self.sp_model ) + self.offset def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] ={self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : Optional[int] =self.__dict__.copy() A__ : Optional[int] =None return state def __setstate__( self : List[Any] , lowerCAmelCase_ : Dict ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Tuple ={} A__ : Any =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self : Any , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str ) -> Tuple: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] A__ : List[str] =self.sp_model.piece_to_id(snake_case__ ) return sp_id + self.offset def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: A__ : int =self.sp_model.IdToPiece(index - self.offset ) return token def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' A__ : Dict =[] A__ : Tuple ="""""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token A__ : Any =[] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def lowercase__ ( self : int , lowerCAmelCase_ : str=False ) -> Union[str, Any]: '''simple docstring''' return 1 def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> List[str]: '''simple docstring''' A__ : List[str] =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self : str , lowerCAmelCase_ : List , lowerCAmelCase_ : Optional[List] = None , lowerCAmelCase_ : bool = False ) -> str: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : str=None ) -> str: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Dict: '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : int =os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: A__ : str =self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : Any, __snake_case : str, __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict, __snake_case : str, ) -> Optional[Any]: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowerCamelCase ( __snake_case : Any, __snake_case : Optional[int], __snake_case : Any, ) -> List[str]: """simple docstring""" if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( lowerCAmelCase_, nominal_annual_percentage_rate / 365, number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : str = logging.get_logger(__name__) __snake_case : int = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): __snake_case = 'data2vec-vision' def __init__( self : str , lowerCAmelCase_ : Optional[int]=7_68 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Any=30_72 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : int=2_24 , lowerCAmelCase_ : int=16 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=[3, 5, 7, 11] , lowerCAmelCase_ : str=[1, 2, 3, 6] , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : int=0.4 , lowerCAmelCase_ : Optional[Any]=2_56 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Any=2_55 , **lowerCAmelCase_ : Union[str, Any] , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) A__ : Optional[int] =hidden_size A__ : Optional[int] =num_hidden_layers A__ : Union[str, Any] =num_attention_heads A__ : Union[str, Any] =intermediate_size A__ : Optional[Any] =hidden_act A__ : Dict =hidden_dropout_prob A__ : Any =attention_probs_dropout_prob A__ : int =initializer_range A__ : Tuple =layer_norm_eps A__ : Union[str, Any] =image_size A__ : str =patch_size A__ : Union[str, Any] =num_channels A__ : Union[str, Any] =use_mask_token A__ : Union[str, Any] =use_absolute_position_embeddings A__ : Optional[Any] =use_relative_position_bias A__ : str =use_shared_relative_position_bias A__ : Optional[Any] =layer_scale_init_value A__ : Tuple =drop_path_rate A__ : Tuple =use_mean_pooling # decode head attributes (semantic segmentation) A__ : int =out_indices A__ : List[Any] =pool_scales # auxiliary head attributes (semantic segmentation) A__ : Dict =use_auxiliary_head A__ : Any =auxiliary_loss_weight A__ : List[str] =auxiliary_channels A__ : Optional[int] =auxiliary_num_convs A__ : Dict =auxiliary_concat_input A__ : Any =semantic_loss_ignore_index class lowerCamelCase ( lowercase_ ): __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return 1e-4
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int], __snake_case : Dict ) -> Optional[Any]: """simple docstring""" if gpta_config_file == "": A__ : Tuple =GPTaConfig() else: A__ : List[str] =GPTaConfig.from_json_file(_A ) A__ : str =GPTaModel(_A ) # Load weights from numpy load_tf_weights_in_gpta(_A, _A, _A ) # Save pytorch-model A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Union[str, Any] =pytorch_dump_folder_path + """/""" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict(), _A ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_A, """w""", encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __snake_case : int = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Any = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class lowerCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __snake_case = PegasusTokenizer __snake_case = PegasusTokenizerFast __snake_case = True __snake_case = True def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : List[Any] =PegasusTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : int ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] ="""</s>""" A__ : Any =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : int =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(UpperCamelCase__ ) , 11_03 ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : Tuple =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A__ : Tuple =self.tokenizer_class.from_pretrained(self.tmpdirname ) A__ : int =( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) A__ : Optional[Any] =rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] A__ : Dict =py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Union[str, Any] =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A__ : Any ="""<mask_1> To ensure a <mask_2> flow of bank resolutions.""" A__ : Tuple =[2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] A__ : Tuple =tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 A__ : Dict ="""To ensure a smooth flow of bank resolutions.""" A__ : Optional[int] =[4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] A__ : int =tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__ : Dict =["""This is going to be way too long.""" * 1_50, """short example"""] A__ : Dict =["""not super long but more than 5 tokens""", """tiny"""] A__ : Optional[Any] =self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) A__ : Tuple =self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[Any] ={"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class lowerCamelCase ( _A , unittest.TestCase ): '''simple docstring''' __snake_case = PegasusTokenizer __snake_case = PegasusTokenizerFast __snake_case = True __snake_case = True def lowercase__ ( self : int ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Any =PegasusTokenizer(UpperCamelCase__ , offset=0 , mask_token_sent=UpperCamelCase__ , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase__ ( self : int ) -> str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def lowercase__ ( self : str , **lowerCAmelCase_ : int ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' return ("This is a test", "This is a test") def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Dict =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A__ : List[str] =self.tokenizer_class.from_pretrained(self.tmpdirname ) A__ : str =( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) A__ : str =rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] A__ : Dict =py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_torch def lowercase__ ( self : int ) -> Tuple: '''simple docstring''' A__ : Optional[int] =["""This is going to be way too long.""" * 10_00, """short example"""] A__ : Any =["""not super long but more than 5 tokens""", """tiny"""] A__ : Optional[int] =self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) A__ : List[Any] =self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : List[Any] =( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) A__ : Optional[int] =self._large_tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual( UpperCamelCase__ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' __snake_case : Any = '''Input must be a string of 8 numbers plus letter''' __snake_case : Optional[Any] = '''TRWAGMYFPDXBNJZSQVHLCKE''' def __lowerCamelCase ( __snake_case : List[Any] ) -> bool: """simple docstring""" if not isinstance(__snake_case, __snake_case ): A__ : List[str] =f"Expected string as input, found {type(__snake_case ).__name__}" raise TypeError(__snake_case ) A__ : List[Any] =spanish_id.replace("""-""", """""" ).upper() if len(__snake_case ) != 9: raise ValueError(__snake_case ) try: A__ : Any =int(spanish_id_clean[0:8] ) A__ : Tuple =spanish_id_clean[8] except ValueError as ex: raise ValueError(__snake_case ) from ex if letter.isdigit(): raise ValueError(__snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Any, __snake_case : Tuple, __snake_case : Union[str, Any] ) -> None: """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A__ , A__ : Optional[Any] =array[indexa], array[indexa] def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int], __snake_case : Dict, __snake_case : Union[str, Any] ) -> None: """simple docstring""" if length > 1: A__ : Optional[Any] =int(length / 2 ) for i in range(__snake_case, low + middle ): comp_and_swap(__snake_case, __snake_case, i + middle, __snake_case ) bitonic_merge(__snake_case, __snake_case, __snake_case, __snake_case ) bitonic_merge(__snake_case, low + middle, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str], __snake_case : Optional[int], __snake_case : Dict ) -> None: """simple docstring""" if length > 1: A__ : int =int(length / 2 ) bitonic_sort(__snake_case, __snake_case, __snake_case, 1 ) bitonic_sort(__snake_case, low + middle, __snake_case, 0 ) bitonic_merge(__snake_case, __snake_case, __snake_case, __snake_case ) if __name__ == "__main__": __snake_case : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __snake_case : Tuple = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case : str = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['ConvNextFeatureExtractor'] __snake_case : Tuple = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure)
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __snake_case : str = 25_0004 __snake_case : Tuple = 25_0020 @require_sentencepiece @require_tokenizers class lowerCamelCase ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = MBartTokenizer __snake_case = MBartTokenizerFast __snake_case = True __snake_case = True def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : List[str] =MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ : Dict =MBartTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ ) A__ : List[str] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : List[Any] =tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A__ : Tuple =tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) self.assertListEqual( UpperCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A__ : Any =(self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : str =self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) A__ : Optional[Any] =self.tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) A__ : int =tempfile.mkdtemp() A__ : Dict =tokenizer_r.save_pretrained(UpperCamelCase_ ) A__ : Optional[Any] =tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A__ : List[str] =tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way A__ : List[str] =tokenizer_r.from_pretrained(UpperCamelCase_ ) A__ : Dict =tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=True A__ : Optional[Any] =tempfile.mkdtemp() A__ : Any =tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) A__ : Union[str, Any] =tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCamelCase_ , UpperCamelCase_ ) # Checks everything loads correctly in the same way A__ : List[str] =tokenizer_r.from_pretrained(UpperCamelCase_ ) A__ : Optional[int] =tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) # Save tokenizer rust, legacy_format=False A__ : Any =tempfile.mkdtemp() A__ : List[str] =tokenizer_r.save_pretrained(UpperCamelCase_ , legacy_format=UpperCamelCase_ ) A__ : List[Any] =tokenizer_p.save_pretrained(UpperCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A__ : Union[str, Any] =tokenizer_r.from_pretrained(UpperCamelCase_ ) A__ : Optional[int] =tokenizer_p.from_pretrained(UpperCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) ) shutil.rmtree(UpperCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'facebook/mbart-large-en-ro' __snake_case = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __snake_case = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __snake_case = [8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2, EN_CODE] @classmethod def lowercase__ ( cls : List[Any] ) -> Tuple: '''simple docstring''' A__ : Any =MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) A__ : Dict =1 return cls def lowercase__ ( self : str ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' self.assertIn(UpperCamelCase_ , self.tokenizer.all_special_ids ) A__ : List[str] =[RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] A__ : Any =self.tokenizer.decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) A__ : Optional[Any] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase_ ) def lowercase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , UpperCamelCase_ ) A__ : List[Any] =10 A__ : Optional[int] =self.tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ , truncation=UpperCamelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase_ ) self.assertEqual(len(UpperCamelCase_ ) , UpperCamelCase_ ) def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_26, 25_00_01] ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ : List[Any] =tempfile.mkdtemp() A__ : Optional[Any] =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase_ ) A__ : Tuple =MBartTokenizer.from_pretrained(UpperCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase_ ) @require_torch def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , return_tensors="""pt""" ) A__ : List[Any] =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Union[str, Any] =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) A__ : Tuple =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : Optional[int] =self.tokenizer(self.src_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : List[str] =self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : Optional[int] =shift_tokens_right(UpperCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : List[str] =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(UpperCamelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __snake_case : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __snake_case = 'AutoTokenizer' __snake_case = ['tokenizer'] __snake_case = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict=None ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =speaker_embeddings @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple="speaker_embeddings_path.json" , **lowerCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' if speaker_embeddings_dict_path is not None: A__ : List[str] =get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , subfolder=kwargs.pop("""subfolder""" , lowerCAmelCase_ ) , cache_dir=kwargs.pop("""cache_dir""" , lowerCAmelCase_ ) , force_download=kwargs.pop("""force_download""" , lowerCAmelCase_ ) , proxies=kwargs.pop("""proxies""" , lowerCAmelCase_ ) , resume_download=kwargs.pop("""resume_download""" , lowerCAmelCase_ ) , local_files_only=kwargs.pop("""local_files_only""" , lowerCAmelCase_ ) , use_auth_token=kwargs.pop("""use_auth_token""" , lowerCAmelCase_ ) , revision=kwargs.pop("""revision""" , lowerCAmelCase_ ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) A__ : Optional[int] =None else: with open(lowerCAmelCase_ ) as speaker_embeddings_json: A__ : Tuple =json.load(lowerCAmelCase_ ) else: A__ : List[str] =None A__ : Tuple =AutoTokenizer.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) return cls(tokenizer=lowerCAmelCase_ , speaker_embeddings=lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any]="speaker_embeddings_path.json" , lowerCAmelCase_ : str="speaker_embeddings" , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : Tuple , ) -> Any: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ , """v2""" ) , exist_ok=lowerCAmelCase_ ) A__ : Tuple ={} A__ : Tuple =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A__ : Dict =self._load_voice_preset(lowerCAmelCase_ ) A__ : Optional[int] ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , lowerCAmelCase_ , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=lowerCAmelCase_ , ) A__ : Dict =os.path.join(lowerCAmelCase_ , f"{prompt_key}_{key}.npy" ) A__ : Tuple =tmp_dict with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) super().save_pretrained(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : str = None , **lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : List[str] =self.speaker_embeddings[voice_preset] A__ : Optional[int] ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) A__ : Tuple =get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , lowerCAmelCase_ ) , cache_dir=kwargs.pop("""cache_dir""" , lowerCAmelCase_ ) , force_download=kwargs.pop("""force_download""" , lowerCAmelCase_ ) , proxies=kwargs.pop("""proxies""" , lowerCAmelCase_ ) , resume_download=kwargs.pop("""resume_download""" , lowerCAmelCase_ ) , local_files_only=kwargs.pop("""local_files_only""" , lowerCAmelCase_ ) , use_auth_token=kwargs.pop("""use_auth_token""" , lowerCAmelCase_ ) , revision=kwargs.pop("""revision""" , lowerCAmelCase_ ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) A__ : Optional[int] =np.load(lowerCAmelCase_ ) return voice_preset_dict def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[dict] = None ) -> Tuple: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : Any , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Dict="pt" , lowerCAmelCase_ : str=2_56 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[str]=False , **lowerCAmelCase_ : List[str] , ) -> str: '''simple docstring''' if voice_preset is not None and not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A__ : Dict =self._load_voice_preset(lowerCAmelCase_ ) else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not voice_preset.endswith(""".npz""" ): A__ : Tuple =voice_preset + ".npz" A__ : Dict =np.load(lowerCAmelCase_ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[str] =BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) A__ : Dict =self.tokenizer( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding="""max_length""" , max_length=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) if voice_preset is not None: A__ : int =voice_preset return encoded_text
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = VQModel __snake_case = 'sample' @property def lowercase__ ( self : int , lowerCAmelCase_ : Any=(32, 32) ) -> List[str]: '''simple docstring''' A__ : List[Any] =4 A__ : List[str] =3 A__ : Dict =floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) return {"sample": image} @property def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : List[str] ={ """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } A__ : List[Any] =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ , A__ : Tuple =VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase_ ) A__ : Optional[int] =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Dict =VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(lowercase_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) A__ : Dict =torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) A__ : Tuple =image.to(lowercase_ ) with torch.no_grad(): A__ : Optional[int] =model(lowercase_ ).sample A__ : str =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A__ : Tuple =torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) )
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any]=13 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Dict=99 , lowerCAmelCase_ : Tuple=32 , lowerCAmelCase_ : Union[str, Any]=5 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=37 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : Optional[Any]=16 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]="None" , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : str=None , ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =parent A__ : List[Any] =batch_size A__ : Any =seq_length A__ : List[str] =is_training A__ : str =use_input_mask A__ : List[Any] =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : str =vocab_size A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : str =num_attention_heads A__ : int =intermediate_size A__ : int =hidden_act A__ : List[Any] =hidden_dropout_prob A__ : str =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : List[str] =type_vocab_size A__ : List[str] =type_sequence_label_size A__ : List[Any] =initializer_range A__ : List[str] =num_labels A__ : Any =num_choices A__ : Union[str, Any] =relative_attention A__ : int =position_biased_input A__ : Any =pos_att_type A__ : List[str] =scope def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[Any] =None if self.use_input_mask: A__ : str =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ : str =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Any =None A__ : str =None A__ : Any =None if self.use_labels: A__ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : int =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any =ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase__ ( self : int , lowerCAmelCase_ : List[Any] ) -> Any: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] ) -> List[Any]: '''simple docstring''' A__ : Dict =DebertaVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] A__ : Dict =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] A__ : List[Any] =model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =DebertaVaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> Any: '''simple docstring''' A__ : str =self.num_labels A__ : Union[str, Any] =DebertaVaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict ) -> str: '''simple docstring''' A__ : Tuple =self.num_labels A__ : Tuple =DebertaVaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =DebertaVaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ) -> str: '''simple docstring''' A__ : Any =DebertaVaForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Optional[Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : List[str] =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : int =config_and_inputs A__ : str ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False __snake_case = False def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =DebertaVaModelTester(self ) A__ : List[Any] =ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' A__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowercase__ ( self : str ) -> Any: '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[Any] =DebertaVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' pass @slow def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Dict =DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) A__ : List[Any] =torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) A__ : Union[str, Any] =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ : Optional[int] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. A__ : Optional[Any] =torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1e-4 ) , f"{output[:, 1:4, 1:4]}" )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import math def __lowerCamelCase ( __snake_case : int, __snake_case : int ): """simple docstring""" if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer __snake_case : Dict = logging.get_logger(__name__) class lowerCamelCase ( _snake_case ): '''simple docstring''' __snake_case = """AutoTokenizer""" __snake_case = ["""tokenizer"""] __snake_case = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=None ) -> int: '''simple docstring''' super().__init__(snake_case_ ) A__ : List[str] =speaker_embeddings @classmethod def lowercase__ ( cls : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any="speaker_embeddings_path.json" , **lowerCAmelCase_ : int ) -> Any: '''simple docstring''' if speaker_embeddings_dict_path is not None: A__ : List[Any] =get_file_from_repo( snake_case_ , snake_case_ , subfolder=kwargs.pop("""subfolder""" , snake_case_ ) , cache_dir=kwargs.pop("""cache_dir""" , snake_case_ ) , force_download=kwargs.pop("""force_download""" , snake_case_ ) , proxies=kwargs.pop("""proxies""" , snake_case_ ) , resume_download=kwargs.pop("""resume_download""" , snake_case_ ) , local_files_only=kwargs.pop("""local_files_only""" , snake_case_ ) , use_auth_token=kwargs.pop("""use_auth_token""" , snake_case_ ) , revision=kwargs.pop("""revision""" , snake_case_ ) , ) if speaker_embeddings_path is None: logger.warning( f"`{os.path.join(snake_case_ , snake_case_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) A__ : Dict =None else: with open(snake_case_ ) as speaker_embeddings_json: A__ : int =json.load(snake_case_ ) else: A__ : int =None A__ : Dict =AutoTokenizer.from_pretrained(snake_case_ , **snake_case_ ) return cls(tokenizer=snake_case_ , speaker_embeddings=snake_case_ ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]="speaker_embeddings_path.json" , lowerCAmelCase_ : Optional[Any]="speaker_embeddings" , lowerCAmelCase_ : Tuple = False , **lowerCAmelCase_ : int , ) -> List[Any]: '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(snake_case_ , snake_case_ , """v2""" ) , exist_ok=snake_case_ ) A__ : int ={} A__ : int =save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": A__ : Union[str, Any] =self._load_voice_preset(snake_case_ ) A__ : List[str] ={} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , snake_case_ , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=snake_case_ , ) A__ : Optional[int] =os.path.join(snake_case_ , f"{prompt_key}_{key}.npy" ) A__ : Union[str, Any] =tmp_dict with open(os.path.join(snake_case_ , snake_case_ ) , """w""" ) as fp: json.dump(snake_case_ , snake_case_ ) super().save_pretrained(snake_case_ , snake_case_ , **snake_case_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : List[str] = None , **lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' A__ : Dict =self.speaker_embeddings[voice_preset] A__ : Optional[Any] ={} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) A__ : str =get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , snake_case_ ) , cache_dir=kwargs.pop("""cache_dir""" , snake_case_ ) , force_download=kwargs.pop("""force_download""" , snake_case_ ) , proxies=kwargs.pop("""proxies""" , snake_case_ ) , resume_download=kwargs.pop("""resume_download""" , snake_case_ ) , local_files_only=kwargs.pop("""local_files_only""" , snake_case_ ) , use_auth_token=kwargs.pop("""use_auth_token""" , snake_case_ ) , revision=kwargs.pop("""revision""" , snake_case_ ) , ) if path is None: raise ValueError( f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) A__ : str =np.load(snake_case_ ) return voice_preset_dict def lowercase__ ( self : str , lowerCAmelCase_ : List[str] = None ) -> Any: '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : Dict , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[int]="pt" , lowerCAmelCase_ : List[str]=2_56 , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=False , **lowerCAmelCase_ : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' if voice_preset is not None and not isinstance(snake_case_ , snake_case_ ): if ( isinstance(snake_case_ , snake_case_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): A__ : Any =self._load_voice_preset(snake_case_ ) else: if isinstance(snake_case_ , snake_case_ ) and not voice_preset.endswith(""".npz""" ): A__ : Any =voice_preset + ".npz" A__ : List[Any] =np.load(snake_case_ ) if voice_preset is not None: self._validate_voice_preset_dict(snake_case_ , **snake_case_ ) A__ : List[Any] =BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) A__ : Tuple =self.tokenizer( snake_case_ , return_tensors=snake_case_ , padding="""max_length""" , max_length=snake_case_ , return_attention_mask=snake_case_ , return_token_type_ids=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) if voice_preset is not None: A__ : Union[str, Any] =voice_preset return encoded_text
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __snake_case : int = logging.get_logger(__name__) class lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : List[str] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : str ) -> str: '''simple docstring''' warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import requests def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : str ) -> str: """simple docstring""" A__ : Tuple ={"""Content-Type""": """application/json"""} A__ : Optional[Any] =requests.post(_lowerCAmelCase, json={"""text""": message_body}, headers=_lowerCAmelCase ) if response.status_code != 200: A__ : str =( """Request to slack returned an error """ f"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) __snake_case : Optional[int] = logging.getLogger() __snake_case : Tuple = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase ( lowerCamelCase__ ): '''simple docstring''' def lowercase__ ( self : List[str] , lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) A__ : Any ={'''source''': '''What is love ?''', '''target''': '''life'''} A__ : Union[str, Any] ={'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: A__ : Dict ='''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(__lowerCamelCase , f"{split}.{field}" ) , """w""" ) as f: f.write(__lowerCamelCase ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any = "pytorch" ) -> Dict: '''simple docstring''' A__ : Dict =self.get_auto_remove_tmp_dir() A__ : str =os.path.join(__lowerCamelCase , """output""" ) A__ : Optional[Any] =os.path.join(__lowerCamelCase , """data""" ) self._create_dummy_data(data_dir=__lowerCamelCase ) A__ : Dict =f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) A__ : str =[sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__lowerCamelCase , env=self.get_env() ) A__ : Optional[int] =os.path.join(__lowerCamelCase , """metrics.json""" ) with open(__lowerCamelCase ) as f: A__ : Dict =json.load(__lowerCamelCase ) return result @require_torch_gpu def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ : List[str] =self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : Union[str, Any] =self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : Dict =self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case = BioGptTokenizer __snake_case = False def lowercase__ ( self : Any ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ : Optional[int] =[ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] A__ : str =dict(zip(_lowercase , range(len(_lowercase ) ) ) ) A__ : Union[str, Any] =["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(_lowercase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(_lowercase ) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A__ : int ="""lower newer""" A__ : int ="""lower newer""" return input_text, output_text def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Tuple =BioGptTokenizer(self.vocab_file , self.merges_file ) A__ : int ="""lower""" A__ : Tuple =["""low""", """er</w>"""] A__ : Optional[Any] =tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) A__ : Union[str, Any] =tokens + ["""<unk>"""] A__ : List[Any] =[14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) @slow def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : int =BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Tuple =tokenizer.encode("""sequence builders""" , add_special_tokens=_lowercase ) A__ : List[Any] =tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowercase ) A__ : Dict =tokenizer.build_inputs_with_special_tokens(_lowercase ) A__ : List[str] =tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' import sys __snake_case : Optional[int] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __lowerCamelCase ( __snake_case : List[str] = N ) -> List[Any]: """simple docstring""" A__ : Tuple =-sys.maxsize - 1 for i in range(len(__SCREAMING_SNAKE_CASE ) - 12 ): A__ : List[str] =1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: A__ : str =product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase ( _UpperCAmelCase ): '''simple docstring''' @slow @require_torch def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] =EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) A__ : str =BertTokenizer.from_pretrained("""bert-base-uncased""" ) A__ : Tuple =bertabert.config.encoder.vocab_size A__ : int =tokenizer.sep_token_id A__ : Dict =tokenizer.cls_token_id A__ : List[str] =1_28 A__ : str =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) A__ : int =datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) A__ : Union[str, Any] =train_dataset.select(range(32 ) ) A__ : int =val_dataset.select(range(16 ) ) A__ : int =4 def _map_to_encoder_decoder_inputs(lowerCAmelCase_ : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] A__ : Tuple =tokenizer(batch["""article"""] , padding="""max_length""" , truncation=A_ , max_length=5_12 ) A__ : Dict =tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=A_ , max_length=1_28 ) A__ : Tuple =inputs.input_ids A__ : int =inputs.attention_mask A__ : str =outputs.input_ids A__ : Dict =outputs.input_ids.copy() A__ : Optional[Any] =[ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] A__ : List[str] =outputs.attention_mask assert all(len(A_ ) == 5_12 for x in inputs.input_ids ) assert all(len(A_ ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase_ : str ): A__ : Optional[int] =pred.label_ids A__ : List[str] =pred.predictions # all unnecessary tokens are removed A__ : Union[str, Any] =tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) A__ : Optional[Any] =tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) A__ : List[Any] =sum([int(pred_str[i] == label_str[i] ) for i in range(len(A_ ) )] ) / len(A_ ) return {"accuracy": accuracy} # map train dataset A__ : List[str] =train_dataset.map( _map_to_encoder_decoder_inputs , batched=A_ , batch_size=A_ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset A__ : str =val_dataset.map( _map_to_encoder_decoder_inputs , batched=A_ , batch_size=A_ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) A__ : List[Any] =self.get_auto_remove_tmp_dir() A__ : Optional[int] =SeqaSeqTrainingArguments( output_dir=A_ , per_device_train_batch_size=A_ , per_device_eval_batch_size=A_ , predict_with_generate=A_ , evaluation_strategy="""steps""" , do_train=A_ , do_eval=A_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A__ : Tuple =SeqaSeqTrainer( model=A_ , args=A_ , compute_metrics=_compute_metrics , train_dataset=A_ , eval_dataset=A_ , tokenizer=A_ , ) # start training trainer.train()
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : List[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class lowerCamelCase ( __lowercase ): '''simple docstring''' __snake_case = 'distilbert' __snake_case = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : Tuple , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Optional[Any]=7_68 , lowerCAmelCase_ : Optional[int]=4 * 7_68 , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[str]=0.2 , lowerCAmelCase_ : List[Any]=0 , **lowerCAmelCase_ : List[Any] , ) -> Tuple: '''simple docstring''' A__ : Any =vocab_size A__ : List[str] =max_position_embeddings A__ : Tuple =sinusoidal_pos_embds A__ : Union[str, Any] =n_layers A__ : Tuple =n_heads A__ : int =dim A__ : Union[str, Any] =hidden_dim A__ : List[str] =dropout A__ : Dict =attention_dropout A__ : Any =activation A__ : Union[str, Any] =initializer_range A__ : Optional[Any] =qa_dropout A__ : Tuple =seq_classif_dropout super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ ) class lowerCamelCase ( __lowercase ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Tuple ={0: "batch", 1: "choice", 2: "sequence"} else: A__ : Dict ={0: "batch", 1: "sequence"} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Optional[int]=64 , lowerCAmelCase_ : List[Any]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : Any=[3, 4, 6, 3] , lowerCAmelCase_ : str="preactivation" , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : Any =num_channels A__ : Optional[Any] =embedding_size A__ : int =hidden_sizes A__ : Union[str, Any] =depths A__ : Tuple =layer_type A__ : List[str] =hidden_act A__ : List[str] =global_padding A__ : Dict =num_groups A__ : List[Any] =drop_path_rate A__ : Dict =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : str =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__UpperCamelCase ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" while b: A__ : int =b, a % b return a def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(__snake_case, a % b ) def __lowerCamelCase ( ) -> str: """simple docstring""" print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}" ) if __name__ == "__main__": main()
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers __snake_case : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : List[str] =os.path.dirname(os.path.realpath(lowerCAmelCase__ ) ) A__ : Union[str, Any] =os.path.join(lowerCAmelCase__, """words.txt""" ) A__ : str ='' with open(lowerCAmelCase__ ) as f: A__ : Optional[Any] =f.readline() A__ : Any =[word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] A__ : Dict =[ word for word in [sum(ord(lowerCAmelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : Dict ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> bool: """simple docstring""" A__ : Optional[Any] =0 A__ : int =number while duplicate > 0: A__ , A__ : List[str] =divmod(__snake_case, 10 ) fact_sum += factorial(__snake_case ) return fact_sum == number if __name__ == "__main__": print('Program to check whether a number is a Krisnamurthy Number or not.') __snake_case : Optional[int] = int(input('Enter number: ').strip()) print( F"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' __snake_case : Any = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : Optional[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __snake_case : Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , **lowerCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) self.check_model_type(lowerCAmelCase_ ) def lowercase__ ( self : str , **lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' A__ : Any ={} A__ : List[str] ={} A__ : int ={} # preprocess args if "points_per_batch" in kwargs: A__ : List[Any] =kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: A__ : Any =kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: A__ : Optional[Any] =kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: A__ : Union[str, Any] =kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: A__ : str =kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: A__ : List[str] =kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: A__ : Dict =kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: A__ : List[str] =kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: A__ : int =kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: A__ : List[str] =kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: A__ : str =kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: A__ : Union[str, Any] =kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Union[str, Any] , lowerCAmelCase_ : List[str] , *lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : str ) -> Tuple: '''simple docstring''' return super().__call__(lowerCAmelCase_ , *lowerCAmelCase_ , num_workers=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any]=64 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : float = 5_12 / 15_00 , lowerCAmelCase_ : Optional[int] = 32 , lowerCAmelCase_ : Optional[int] = 1 , ) -> str: '''simple docstring''' A__ : Any =load_image(lowerCAmelCase_ ) A__ : int =self.image_processor.size["""longest_edge"""] A__ , A__ , A__ , A__ : Dict =self.image_processor.generate_crop_boxes( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[str] =self.image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": A__ : Tuple =self.get_inference_context() with inference_context(): A__ : Union[str, Any] =self._ensure_tensor_on_device(lowerCAmelCase_ , device=self.device ) A__ : List[Any] =self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) A__ : int =image_embeddings A__ : Dict =grid_points.shape[1] A__ : List[Any] =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =grid_points[:, i : i + points_per_batch, :, :] A__ : List[str] =input_labels[:, i : i + points_per_batch] A__ : Dict =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase__ ( self : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any=0.88 , lowerCAmelCase_ : Tuple=0.95 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Dict=1 , ) -> Union[str, Any]: '''simple docstring''' A__ : str =model_inputs.pop("""input_boxes""" ) A__ : Union[str, Any] =model_inputs.pop("""is_last""" ) A__ : Union[str, Any] =model_inputs.pop("""original_sizes""" ).tolist() A__ : Tuple =model_inputs.pop("""reshaped_input_sizes""" ).tolist() A__ : Optional[int] =self.model(**lowerCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks A__ : Union[str, Any] =model_outputs["""pred_masks"""] A__ : str =self.image_processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , binarize=lowerCAmelCase_ ) A__ : int =model_outputs["""iou_scores"""] A__ , A__ , A__ : List[Any] =self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=0.7 , ) -> List[str]: '''simple docstring''' A__ : Dict =[] A__ : Any =[] A__ : Optional[int] =[] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) A__ : Optional[Any] =torch.cat(lowerCAmelCase_ ) A__ : Dict =torch.cat(lowerCAmelCase_ ) A__ , A__ , A__ , A__ : int =self.image_processor.post_process_for_mask_generation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[Any] =defaultdict(lowerCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase_ ) A__ : List[Any] ={} if output_rle_mask: A__ : List[Any] =rle_mask if output_bboxes_mask: A__ : int =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __snake_case : Any = True except ImportError: __snake_case : Union[str, Any] = False try: from torch.hub import _get_torch_home __snake_case : Optional[int] = _get_torch_home() except ImportError: __snake_case : int = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __snake_case : int = os.path.join(torch_cache_home, 'transformers') __snake_case : int = 'https://cdn.huggingface.co' __snake_case : List[str] = 'https://s3.amazonaws.com/models.huggingface.co/bert' __snake_case : Optional[int] = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __snake_case : int = os.path.join(PATH, 'config.yaml') __snake_case : Dict = os.path.join(PATH, 'attributes.txt') __snake_case : List[Any] = os.path.join(PATH, 'objects.txt') __snake_case : List[str] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __snake_case : Any = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __snake_case : Union[str, Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __snake_case : List[str] = 'pytorch_model.bin' __snake_case : Optional[int] = 'config.yaml' def __lowerCamelCase ( __snake_case : int=OBJECTS, __snake_case : str=ATTRIBUTES ) -> Any: """simple docstring""" A__ : Dict =[] with open(a_ ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) A__ : List[Any] =[] with open(a_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Any: """simple docstring""" A__ : List[str] =OrderedDict() with open(a_, """rb""" ) as f: A__ : Optional[int] =pkl.load(a_ )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): A__ : str =ckp.pop(a_ ) if isinstance(a_, np.ndarray ): A__ : List[str] =torch.tensor(a_ ) else: assert isinstance(a_, torch.tensor ), type(a_ ) A__ : int =v return r class lowerCamelCase : '''simple docstring''' __snake_case = {} def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict = "root" , lowerCAmelCase_ : Optional[int]=0 ) -> int: '''simple docstring''' A__ : Tuple =name A__ : Dict =level A__ : int ={} for k, v in dictionary.items(): if v is None: raise ValueError() A__ : Optional[int] =copy.deepcopy(_UpperCAmelCase ) A__ : str =copy.deepcopy(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A__ : List[Any] =Config(_UpperCAmelCase , name=_UpperCAmelCase , level=level + 1 ) A__ : int =v setattr(self , _UpperCAmelCase , _UpperCAmelCase ) A__ : Tuple =d def __repr__( self : Optional[int] ) -> List[Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =val A__ : Optional[Any] =val A__ : List[str] =key.split(""".""" ) A__ : Union[str, Any] =len(_UpperCAmelCase ) - 1 A__ : Any =self._pointer if len(_UpperCAmelCase ) > 1: for i, l in enumerate(_UpperCAmelCase ): if hasattr(self , _UpperCAmelCase ) and isinstance(getattr(self , _UpperCAmelCase ) , _UpperCAmelCase ): setattr(getattr(self , _UpperCAmelCase ) , """.""".join(levels[i:] ) , _UpperCAmelCase ) if l == last_level: A__ : str =val else: A__ : Any =pointer[l] def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' return self._pointer def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with open(f"{file_name}" , """w""" ) as stream: dump(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' with open(f"{file_name}" , """w""" ) as stream: json.dump(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowercase__ ( lowerCAmelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' with open(_UpperCAmelCase ) as stream: A__ : int =load(_UpperCAmelCase , Loader=_UpperCAmelCase ) return data def __str__( self : List[str] ) -> Tuple: '''simple docstring''' A__ : Tuple =''' ''' if self._name != "root": A__ : Union[str, Any] =f"{t * (self._level-1)}{self._name}:\n" else: A__ : Optional[Any] ='''''' A__ : Optional[Any] =self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): r += f"{t * (self._level)}{v}\n" self._level += 1 else: r += f"{t * (self._level)}{k}: {v} ({type(_UpperCAmelCase ).__name__})\n" A__ : Any =level return r[:-1] @classmethod def lowercase__ ( cls : Optional[int] , lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' A__ : Tuple =cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) return cls(_UpperCAmelCase ) @classmethod def lowercase__ ( cls : List[Any] , lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' A__ : Dict =kwargs.pop("""cache_dir""" , _UpperCAmelCase ) A__ : int =kwargs.pop("""force_download""" , _UpperCAmelCase ) A__ : Tuple =kwargs.pop("""resume_download""" , _UpperCAmelCase ) A__ : Dict =kwargs.pop("""proxies""" , _UpperCAmelCase ) A__ : Tuple =kwargs.pop("""local_files_only""" , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): A__ : List[str] =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif os.path.isfile(_UpperCAmelCase ) or is_remote_url(_UpperCAmelCase ): A__ : Optional[int] =pretrained_model_name_or_path else: A__ : List[str] =hf_bucket_url(_UpperCAmelCase , filename=_UpperCAmelCase , use_cdn=_UpperCAmelCase ) try: # Load from URL or cache if already cached A__ : List[str] =cached_path( _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError A__ : Tuple =Config.load_yaml(_UpperCAmelCase ) except EnvironmentError: A__ : Tuple ='''Can\'t load config for''' raise EnvironmentError(_UpperCAmelCase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(_UpperCAmelCase ), kwargs def __lowerCamelCase ( __snake_case : Any ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] =torch.load("""dump.pt""", map_location=in_tensor.device ) A__ : List[str] =in_tensor.numpy() A__ : List[Any] =out_tensor.numpy()[0] print(na.shape, na[0, 0, :5] ) print(na.shape, na[0, 0, :5] ) assert np.allclose(a_, a_, rtol=0.01, atol=0.1 ), ( f"{sum([1 for x in np.isclose(a_, a_, rtol=0.01, atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def __lowerCamelCase ( __snake_case : List[Any] ) -> List[Any]: """simple docstring""" A__ : List[str] =urlparse(a_ ) return parsed.scheme in ("http", "https") def __lowerCamelCase ( __snake_case : str, __snake_case : str, __snake_case : str=True ) -> str: """simple docstring""" A__ : Any =CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX A__ : Optional[int] ='''/''' not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[Any], __snake_case : List[str]=None, __snake_case : Optional[Any]=0, __snake_case : Optional[Any]=None, ) -> int: """simple docstring""" A__ : List[str] ='''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(a_, a_ ): ua += "; " + "; ".join("""{}/{}""".format(a_, a_ ) for k, v in user_agent.items() ) elif isinstance(a_, a_ ): ua += "; " + user_agent A__ : Optional[Any] ={'''user-agent''': ua} if resume_size > 0: A__ : Dict ='''bytes=%d-''' % (resume_size,) A__ : Dict =requests.get(a_, stream=a_, proxies=a_, headers=a_ ) if response.status_code == 416: # Range not satisfiable return A__ : Tuple =response.headers.get("""Content-Length""" ) A__ : Dict =resume_size + int(a_ ) if content_length is not None else None A__ : Optional[int] =tqdm( unit="""B""", unit_scale=a_, total=a_, initial=a_, desc="""Downloading""", ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(a_ ) ) temp_file.write(a_ ) progress.close() def __lowerCamelCase ( __snake_case : Dict, __snake_case : Tuple=None, __snake_case : Optional[Any]=False, __snake_case : List[Any]=None, __snake_case : Union[str, Any]=10, __snake_case : Union[str, Any]=False, __snake_case : List[Any]=None, __snake_case : Dict=False, ) -> Any: """simple docstring""" if cache_dir is None: A__ : int =TRANSFORMERS_CACHE if isinstance(a_, a_ ): A__ : List[str] =str(a_ ) os.makedirs(a_, exist_ok=a_ ) A__ : List[str] =None if not local_files_only: try: A__ : int =requests.head(a_, allow_redirects=a_, proxies=a_, timeout=a_ ) if response.status_code == 200: A__ : Any =response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass A__ : Any =url_to_filename(a_, a_ ) # get cache path to put the file A__ : Tuple =os.path.join(a_, a_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(a_ ): return cache_path else: A__ : Tuple =[ file for file in fnmatch.filter(os.listdir(a_ ), filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(a_ ) > 0: return os.path.join(a_, matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set \'local_files_only\'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(a_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. A__ : Dict =cache_path + '''.lock''' with FileLock(a_ ): # If the download just completed while the lock was activated. if os.path.exists(a_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: A__ : Optional[int] =cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(a_, """a+b""" ) as f: yield f A__ : Optional[int] =_resumable_file_manager if os.path.exists(a_ ): A__ : Optional[int] =os.stat(a_ ).st_size else: A__ : Any =0 else: A__ : List[str] =partial(tempfile.NamedTemporaryFile, dir=a_, delete=a_ ) A__ : int =0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""", a_, temp_file.name, ) http_get( a_, a_, proxies=a_, resume_size=a_, user_agent=a_, ) os.replace(temp_file.name, a_ ) A__ : Dict ={'''url''': url, '''etag''': etag} A__ : Optional[Any] =cache_path + '''.json''' with open(a_, """w""" ) as meta_file: json.dump(a_, a_ ) return cache_path def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[str]=None ) -> Any: """simple docstring""" A__ : Union[str, Any] =url.encode("""utf-8""" ) A__ : Tuple =shaaaa(a_ ) A__ : Optional[Any] =url_hash.hexdigest() if etag: A__ : Optional[Any] =etag.encode("""utf-8""" ) A__ : Tuple =shaaaa(a_ ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[int]=None, __snake_case : Tuple=False, __snake_case : Optional[int]=None, __snake_case : Union[str, Any]=False, __snake_case : Tuple=None, __snake_case : List[Any]=False, __snake_case : str=False, __snake_case : List[Any]=False, ) -> Any: """simple docstring""" if cache_dir is None: A__ : Dict =TRANSFORMERS_CACHE if isinstance(a_, a_ ): A__ : int =str(a_ ) if isinstance(a_, a_ ): A__ : List[Any] =str(a_ ) if is_remote_url(a_ ): # URL, so get it from the cache (downloading if necessary) A__ : List[str] =get_from_cache( a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, user_agent=a_, local_files_only=a_, ) elif os.path.exists(a_ ): # File, and it exists. A__ : Any =url_or_filename elif urlparse(a_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(a_ ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(a_ ) ) if extract_compressed_file: if not is_zipfile(a_ ) and not tarfile.is_tarfile(a_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" A__ : List[str] =os.path.split(a_ ) A__ : Optional[Any] =output_file.replace(""".""", """-""" ) + '''-extracted''' A__ : Optional[int] =os.path.join(a_, a_ ) if os.path.isdir(a_ ) and os.listdir(a_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions A__ : List[str] =output_path + '''.lock''' with FileLock(a_ ): shutil.rmtree(a_, ignore_errors=a_ ) os.makedirs(a_ ) if is_zipfile(a_ ): with ZipFile(a_, """r""" ) as zip_file: zip_file.extractall(a_ ) zip_file.close() elif tarfile.is_tarfile(a_ ): A__ : Dict =tarfile.open(a_ ) tar_file.extractall(a_ ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(a_ ) ) return output_path_extracted return output_path def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Optional[int]="," ) -> Optional[Any]: """simple docstring""" assert isinstance(a_, a_ ) if os.path.isfile(a_ ): with open(a_ ) as f: A__ : Any =eval(f.read() ) else: A__ : Tuple =requests.get(a_ ) try: A__ : int =requests.json() except Exception: A__ : Optional[Any] =req.content.decode() assert data is not None, "could not connect" try: A__ : Optional[int] =eval(a_ ) except Exception: A__ : Any =data.split("""\n""" ) req.close() return data def __lowerCamelCase ( __snake_case : List[str] ) -> str: """simple docstring""" A__ : List[Any] =requests.get(a_ ) A__ : Tuple =np.array(Image.open(BytesIO(response.content ) ) ) return img def __lowerCamelCase ( __snake_case : Dict ) -> Dict: """simple docstring""" A__ : List[Any] =url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(a_ ) with open(a_, """rb""" ) as stream: A__ : Optional[int] =pkl.load(a_ ) A__ : Optional[int] =weights.pop("""model""" ) A__ : Dict ={} for k, v in model.items(): A__ : str =torch.from_numpy(a_ ) if "running_var" in k: A__ : List[Any] =torch.tensor([0] ) A__ : Optional[Any] =k.replace("""running_var""", """num_batches_tracked""" ) A__ : str =zero return new def __lowerCamelCase ( ) -> int: """simple docstring""" print(f"{os.path.abspath(os.path.join(a_, os.pardir ) )}/demo.ipynb" ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : List[Any]="RGB" ) -> str: """simple docstring""" assert isinstance(a_, a_ ) if os.path.isfile(a_ ): A__ : str =cva.imread(a_ ) else: A__ : Dict =get_image_from_url(a_ ) assert img is not None, f"could not connect to: {im}" A__ : Tuple =cva.cvtColor(a_, cva.COLOR_BGR2RGB ) if input_format == "RGB": A__ : Dict =img[:, :, ::-1] return img def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : str=1 ) -> List[str]: """simple docstring""" return (images[i : i + batch] for i in range(0, len(a_ ), a_ ))
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : Any ) -> Dict: """simple docstring""" A__ : Any =[int(UpperCAmelCase__ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(UpperCAmelCase__ ) == 4 and all(0 <= int(UpperCAmelCase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __snake_case : List[Any] = input().strip() __snake_case : List[Any] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'bert-generation' def __init__( self : str , lowerCAmelCase_ : List[Any]=5_03_58 , lowerCAmelCase_ : str=10_24 , lowerCAmelCase_ : Optional[int]=24 , lowerCAmelCase_ : Union[str, Any]=16 , lowerCAmelCase_ : int=40_96 , lowerCAmelCase_ : Dict="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Tuple=1e-12 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Optional[Any]=True , **lowerCAmelCase_ : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) A__ : Any =vocab_size A__ : List[str] =hidden_size A__ : List[Any] =num_hidden_layers A__ : Optional[Any] =num_attention_heads A__ : Dict =hidden_act A__ : Dict =intermediate_size A__ : Union[str, Any] =hidden_dropout_prob A__ : Tuple =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : List[str] =initializer_range A__ : int =layer_norm_eps A__ : Tuple =position_embedding_type A__ : Any =use_cache
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case : Union[str, Any] = logging.getLogger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = """summarization""" __snake_case = ["""loss"""] __snake_case = ROUGE_KEYS __snake_case = """rouge2""" def __init__( self : List[str] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: A__ : str =False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCAmelCase_ , num_labels=lowerCAmelCase_ , mode=self.mode , **lowerCAmelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) A__ : Dict =Path(self.output_dir ) / """metrics.json""" A__ : int =Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) A__ : Optional[Any] =0 A__ : Optional[int] =defaultdict(lowerCAmelCase_ ) A__ : Any =self.config.model_type A__ : Dict =self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size A__ : Optional[Any] ={ """data_dir""": self.hparams.data_dir, """max_source_length""": self.hparams.max_source_length, """prefix""": self.model.config.prefix or """""", } A__ : Union[str, Any] ={ """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } A__ : int ={k: v if v >= 0 else None for k, v in n_observations_per_split.items()} A__ : int ={ """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) A__ : Any =get_git_info()["""repo_sha"""] A__ : Union[str, Any] =hparams.num_workers A__ : List[Any] =None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCAmelCase_ ): A__ : List[str] =self.tokenizer.lang_code_to_id[hparams.tgt_lang] A__ : Optional[Any] =self.decoder_start_token_id A__ : Any =( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) A__ : Union[str, Any] =False A__ : Optional[int] =self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: A__ : Union[str, Any] =self.hparams.eval_max_gen_length else: A__ : int =self.model.config.max_length A__ : Tuple =self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase__ ( self : str , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' A__ : Any ={ k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCAmelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) A__ : Any =True return readable_batch def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : str , **lowerCAmelCase_ : Optional[int] ) -> str: '''simple docstring''' return self.model(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' A__ : List[str] =self.tokenizer.batch_decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return lmap(str.strip , lowerCAmelCase_ ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ : List[str] =self.tokenizer.pad_token_id A__ , A__ : Any =batch["""input_ids"""], batch["""attention_mask"""] A__ : Any =batch["""labels"""] if isinstance(self.model , lowerCAmelCase_ ): A__ : Union[str, Any] =self.model._shift_right(lowerCAmelCase_ ) else: A__ : List[Any] =shift_tokens_right(lowerCAmelCase_ , lowerCAmelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero A__ : Dict =decoder_input_ids self.save_readable_batch(lowerCAmelCase_ ) A__ : Optional[int] =self(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , decoder_input_ids=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) A__ : str =outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id A__ : Optional[int] =nn.CrossEntropyLoss(ignore_index=lowerCAmelCase_ ) assert lm_logits.shape[-1] == self.vocab_size A__ : Union[str, Any] =ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: A__ : Any =nn.functional.log_softmax(lowerCAmelCase_ , dim=-1 ) A__ , A__ : int =label_smoothed_nll_loss( lowerCAmelCase_ , lowerCAmelCase_ , self.hparams.label_smoothing , ignore_index=lowerCAmelCase_ ) return (loss,) @property def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' return self.tokenizer.pad_token_id def lowercase__ ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' A__ : List[str] =self._step(lowerCAmelCase_ ) A__ : List[Any] =dict(zip(self.loss_names , lowerCAmelCase_ ) ) # tokens per batch A__ : int =batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() A__ : Optional[Any] =batch["""input_ids"""].shape[0] A__ : Tuple =batch["""input_ids"""].eq(self.pad ).sum() A__ : Optional[int] =batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' return self._generative_step(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]="val" ) -> Union[str, Any]: '''simple docstring''' self.step_count += 1 A__ : Optional[Any] ={k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} A__ : Union[str, Any] =losses["""loss"""] A__ : Optional[int] ={ k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } A__ : Any =( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) A__ : Optional[Any] =torch.tensor(lowerCAmelCase_ ).type_as(lowerCAmelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCAmelCase_ ) A__ : Union[str, Any] ={f"{prefix}_avg_{k}": x for k, x in losses.items()} A__ : str =self.step_count self.metrics[prefix].append(lowerCAmelCase_ ) # callback writes this to self.metrics_save_path A__ : Union[str, Any] =flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metric_tensor, } def lowercase__ ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' return calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[Any] ) -> int: '''simple docstring''' A__ : Dict =time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') A__ : Optional[Any] =self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCAmelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) A__ : str =(time.time() - ta) / batch["""input_ids"""].shape[0] A__ : Optional[Any] =self.ids_to_clean_text(lowerCAmelCase_ ) A__ : List[Any] =self.ids_to_clean_text(batch["""labels"""] ) A__ : Union[str, Any] =self._step(lowerCAmelCase_ ) A__ : Dict =dict(zip(self.loss_names , lowerCAmelCase_ ) ) A__ : Optional[int] =self.calc_generative_metrics(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[Any] =np.mean(lmap(lowerCAmelCase_ , lowerCAmelCase_ ) ) base_metrics.update(gen_time=lowerCAmelCase_ , gen_len=lowerCAmelCase_ , preds=lowerCAmelCase_ , target=lowerCAmelCase_ , **lowerCAmelCase_ ) return base_metrics def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' return self._generative_step(lowerCAmelCase_ ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Dict ) -> str: '''simple docstring''' return self.validation_epoch_end(lowerCAmelCase_ , prefix="""test""" ) def lowercase__ ( self : Any , lowerCAmelCase_ : Dict ) -> Tuple: '''simple docstring''' A__ : int =self.n_obs[type_path] A__ : Dict =self.target_lens[type_path] A__ : Dict =self.dataset_class( self.tokenizer , type_path=lowerCAmelCase_ , n_obs=lowerCAmelCase_ , max_target_length=lowerCAmelCase_ , **self.dataset_kwargs , ) return dataset def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] = False ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.get_dataset(lowerCAmelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": A__ : List[str] =dataset.make_sortish_sampler(lowerCAmelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase_ , num_workers=self.num_workers , sampler=lowerCAmelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": A__ : Tuple =dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCAmelCase_ , batch_sampler=lowerCAmelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCAmelCase_ , num_workers=self.num_workers , sampler=lowerCAmelCase_ , ) def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : int =self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCAmelCase_ ) return dataloader def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase__ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' BaseTransformer.add_model_specific_args(lowerCAmelCase_ , lowerCAmelCase_ ) add_generic_args(lowerCAmelCase_ , lowerCAmelCase_ ) parser.add_argument( """--max_source_length""" , default=10_24 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_42 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_42 , type=lowerCAmelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCAmelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCAmelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ ) parser.add_argument("""--logger_name""" , type=lowerCAmelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCAmelCase_ , default=-1 , required=lowerCAmelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCAmelCase_ , default=5_00 , required=lowerCAmelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCAmelCase_ , default=-1 , required=lowerCAmelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCAmelCase_ , default="""summarization""" , required=lowerCAmelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCAmelCase_ , default=0.0 , required=lowerCAmelCase_ ) parser.add_argument("""--src_lang""" , type=lowerCAmelCase_ , default="""""" , required=lowerCAmelCase_ ) parser.add_argument("""--tgt_lang""" , type=lowerCAmelCase_ , default="""""" , required=lowerCAmelCase_ ) parser.add_argument("""--eval_beams""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ ) parser.add_argument( """--val_metric""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , required=lowerCAmelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCAmelCase_ , default=1 , required=lowerCAmelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCAmelCase_ , default=-1 , required=lowerCAmelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = """translation""" __snake_case = ["""loss"""] __snake_case = ["""bleu"""] __snake_case = """bleu""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' super().__init__(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Dict =hparams.src_lang A__ : Any =hparams.tgt_lang def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Tuple: '''simple docstring''' return calculate_bleu(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : str=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=_UpperCamelCase ) check_output_dir(_UpperCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: A__ : str =SummarizationModule(_UpperCamelCase ) else: A__ : Any =TranslationModule(_UpperCamelCase ) A__ : str =Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): A__ : List[Any] =True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger A__ : Any =os.environ.get("""WANDB_PROJECT""", _UpperCamelCase ) A__ : Dict =WandbLogger(name=model.output_dir.name, project=_UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger A__ : Optional[int] =WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: A__ : str =get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: A__ : Union[str, Any] =False A__ : Union[str, Any] =args.val_metric == """loss""" A__ : int =generic_train( _UpperCamelCase, _UpperCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, _UpperCamelCase ), early_stopping_callback=_UpperCamelCase, logger=_UpperCamelCase, ) pickle_save(model.hparams, model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model A__ : str ="""""" A__ : str =sorted(glob.glob(os.path.join(args.output_dir, """*.ckpt""" ), recursive=_UpperCamelCase ) ) if checkpoints: A__ : int =checkpoints[-1] A__ : Optional[int] =checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() __snake_case : Any = pl.Trainer.add_argparse_args(parser) __snake_case : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case : Tuple = parser.parse_args() main(args)
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCamelCase ( __snake_case : Tuple ) -> Any: """simple docstring""" A__ : List[Any] =torch.exp(__snake_case ) A__ : Optional[int] =torch.sum(__snake_case, dim=1 ) # sum of exp(x_i) A__ : Union[str, Any] =torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : Tuple ) -> Tuple: '''simple docstring''' super().__init__() A__ : str =config.output_attentions A__ : Any =config.output_hidden_states A__ : Dict =nn.ModuleList([BertLayer(lowerCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) A__ : int =nn.ModuleList([BertHighway(lowerCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) A__ : Optional[Any] =[-1 for _ in range(config.num_hidden_layers )] def lowercase__ ( self : Tuple , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' if (type(lowerCAmelCase_ ) is float) or (type(lowerCAmelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): A__ : List[Any] =x else: A__ : List[str] =x def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int ) -> Tuple: '''simple docstring''' A__ : Any =pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , ) -> int: '''simple docstring''' A__ : List[str] =() A__ : List[Any] =() A__ : Tuple =() for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: A__ : List[str] =all_hidden_states + (hidden_states,) A__ : Optional[int] =layer_module( lowerCAmelCase_ , lowerCAmelCase_ , head_mask[i] , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =layer_outputs[0] if self.output_attentions: A__ : Dict =all_attentions + (layer_outputs[1],) A__ : Tuple =(hidden_states,) if self.output_hidden_states: A__ : Any =current_outputs + (all_hidden_states,) if self.output_attentions: A__ : Dict =current_outputs + (all_attentions,) A__ : Dict =self.highway[i](lowerCAmelCase_ ) # logits, pooled_output if not self.training: A__ : Optional[int] =highway_exit[0] A__ : Optional[Any] =entropy(lowerCAmelCase_ ) A__ : Optional[int] =highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy A__ : Union[str, Any] =all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: A__ : Optional[Any] =(highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowerCAmelCase_ , i + 1 ) else: A__ : Optional[Any] =all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: A__ : str =all_hidden_states + (hidden_states,) A__ : Union[str, Any] =(hidden_states,) if self.output_hidden_states: A__ : str =outputs + (all_hidden_states,) if self.output_attentions: A__ : Any =outputs + (all_attentions,) A__ : Optional[Any] =outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , __UpperCAmelCase , ) class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : Tuple =config A__ : Tuple =BertEmbeddings(lowerCAmelCase_ ) A__ : int =DeeBertEncoder(lowerCAmelCase_ ) A__ : Tuple =BertPooler(lowerCAmelCase_ ) self.init_weights() def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' return self.embeddings.word_embeddings def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Any ) -> List[str]: '''simple docstring''' A__ : Any =value def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowerCAmelCase_ ) @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , ) -> str: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: A__ : List[str] =input_ids.size() elif inputs_embeds is not None: A__ : str =inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) A__ : Dict =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: A__ : Optional[int] =torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ ) if encoder_attention_mask is None: A__ : Tuple =torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ ) if token_type_ids is None: A__ : Any =torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. A__ : int =self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: A__ : Optional[int] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: A__ : Optional[Any] =encoder_attention_mask[:, None, None, :] A__ : Optional[Any] =encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility A__ : Any =(1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] A__ : Optional[int] =self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers ) A__ : Union[str, Any] =self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ ) A__ : Tuple =self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) A__ : str =encoder_outputs[0] A__ : List[str] =self.pooler(lowerCAmelCase_ ) A__ : Dict =( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =message A__ : Optional[Any] =exit_layer # start from 1! class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' super().__init__() A__ : Dict =BertPooler(lowerCAmelCase_ ) A__ : Tuple =nn.Dropout(config.hidden_dropout_prob ) A__ : Union[str, Any] =nn.Linear(config.hidden_size , config.num_labels ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Optional[int] =encoder_outputs[0] A__ : Union[str, Any] =self.pooler(lowerCAmelCase_ ) # "return" pooler_output # BertModel A__ : int =(pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification A__ : List[str] =bmodel_output[1] A__ : Optional[int] =self.dropout(lowerCAmelCase_ ) A__ : int =self.classifier(lowerCAmelCase_ ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , __UpperCAmelCase , ) class lowerCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : Optional[Any] =config.num_labels A__ : Dict =config.num_hidden_layers A__ : int =DeeBertModel(lowerCAmelCase_ ) A__ : Tuple =nn.Dropout(config.hidden_dropout_prob ) A__ : Union[str, Any] =nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=-1 , lowerCAmelCase_ : str=False , ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =self.num_layers try: A__ : List[Any] =self.bert( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits A__ : Optional[int] =outputs[1] A__ : Optional[int] =self.dropout(lowerCAmelCase_ ) A__ : Optional[Any] =self.classifier(lowerCAmelCase_ ) A__ : str =(logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A__ : Optional[Any] =e.message A__ : int =e.exit_layer A__ : Optional[Any] =outputs[0] if not self.training: A__ : Tuple =entropy(lowerCAmelCase_ ) A__ : Union[str, Any] =[] A__ : Union[str, Any] =[] if labels is not None: if self.num_labels == 1: # We are doing regression A__ : Any =MSELoss() A__ : int =loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: A__ : Dict =CrossEntropyLoss() A__ : List[str] =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits A__ : str =[] for highway_exit in outputs[-1]: A__ : int =highway_exit[0] if not self.training: highway_logits_all.append(lowerCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A__ : List[Any] =MSELoss() A__ : str =loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: A__ : Any =CrossEntropyLoss() A__ : int =loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCAmelCase_ ) if train_highway: A__ : Tuple =(sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A__ : int =(loss,) + outputs if not self.training: A__ : int =outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A__ : Dict =( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-canny""" , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) A__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=lowerCAmelCase_ , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) A__ : int =controlnet_params A__ : Union[str, Any] ='''bird''' A__ : str =jax.device_count() A__ : int =pipe.prepare_text_inputs([prompts] * num_samples ) A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ) A__ : Optional[int] =pipe.prepare_image_inputs([canny_image] * num_samples ) A__ : int =jax.random.PRNGKey(0 ) A__ : Dict =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : Tuple =replicate(lowerCAmelCase_ ) A__ : int =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : Dict =pipe( prompt_ids=lowerCAmelCase_ , image=lowerCAmelCase_ , params=lowerCAmelCase_ , prng_seed=lowerCAmelCase_ , num_inference_steps=50 , jit=lowerCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) A__ : Optional[int] =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ : List[str] =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : List[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : int =jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Dict =FlaxControlNetModel.from_pretrained( """lllyasviel/sd-controlnet-openpose""" , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) A__ : Optional[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , controlnet=lowerCAmelCase_ , from_pt=lowerCAmelCase_ , dtype=jnp.bfloataa ) A__ : Any =controlnet_params A__ : Union[str, Any] ='''Chef in the kitchen''' A__ : Union[str, Any] =jax.device_count() A__ : str =pipe.prepare_text_inputs([prompts] * num_samples ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" ) A__ : Tuple =pipe.prepare_image_inputs([pose_image] * num_samples ) A__ : List[Any] =jax.random.PRNGKey(0 ) A__ : Any =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =replicate(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : Tuple =shard(lowerCAmelCase_ ) A__ : Optional[Any] =pipe( prompt_ids=lowerCAmelCase_ , image=lowerCAmelCase_ , params=lowerCAmelCase_ , prng_seed=lowerCAmelCase_ , num_inference_steps=50 , jit=lowerCAmelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) A__ : str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) A__ : Optional[Any] =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[Any] =jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : List[str] = {"""configuration_wavlm""": ["""WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WavLMConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ """WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """WavLMForAudioFrameClassification""", """WavLMForCTC""", """WavLMForSequenceClassification""", """WavLMForXVector""", """WavLMModel""", """WavLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 __snake_case = 42 def __lowerCamelCase ( __snake_case : Optional[Any] ) -> list[str]: """simple docstring""" if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(lowerCamelCase__ ) )] def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> BWTTransformDict: """simple docstring""" if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) A__ : Optional[Any] =all_rotations(lowerCamelCase__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation A__ : Optional[Any] ={ """bwt_string""": """""".join([word[-1] for word in rotations] ), """idx_original_string""": rotations.index(lowerCamelCase__ ), } return response def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[Any] ) -> str: """simple docstring""" if not isinstance(lowerCamelCase__, lowerCamelCase__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: A__ : Union[str, Any] =int(lowerCamelCase__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(lowerCamelCase__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) A__ : List[Any] =[""""""] * len(lowerCamelCase__ ) for _ in range(len(lowerCamelCase__ ) ): for i in range(len(lowerCamelCase__ ) ): A__ : str =bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __snake_case : Tuple = 'Provide a string that I will generate its BWT transform: ' __snake_case : Union[str, Any] = input(entry_msg).strip() __snake_case : Union[str, Any] = bwt_transform(s) print( F"""Burrows Wheeler transform for string \'{s}\' results """ F"""in \'{result['bwt_string']}\'""" ) __snake_case : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"""Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' """ F"""we get original string \'{original_string}\'""" )
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' __snake_case : Union[str, Any] = 'Alexander Joslin' import operator as op from .stack import Stack def __lowerCamelCase ( __snake_case : str ) -> int: """simple docstring""" A__ : Any ={"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} A__ : Stack[int] =Stack() A__ : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__snake_case ) ) elif i in operators: # RULE 2 operator_stack.push(__snake_case ) elif i == ")": # RULE 4 A__ : List[Any] =operator_stack.peek() operator_stack.pop() A__ : Any =operand_stack.peek() operand_stack.pop() A__ : Optional[int] =operand_stack.peek() operand_stack.pop() A__ : Dict =operators[opr](__snake_case, __snake_case ) operand_stack.push(__snake_case ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __snake_case : Optional[int] = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __snake_case : Union[str, Any] = numpy.array([0, 0]) __snake_case : int = numpy.array([0.5, 0.8660254]) __snake_case : List[Any] = numpy.array([1, 0]) __snake_case : Any = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __lowerCamelCase ( __snake_case : list[numpy.ndarray], __snake_case : int ) -> list[numpy.ndarray]: """simple docstring""" A__ : str =initial_vectors for _ in range(__snake_case ): A__ : List[str] =iteration_step(__snake_case ) return vectors def __lowerCamelCase ( __snake_case : list[numpy.ndarray] ) -> list[numpy.ndarray]: """simple docstring""" A__ : Tuple =[] for i, start_vector in enumerate(vectors[:-1] ): A__ : int =vectors[i + 1] new_vectors.append(__snake_case ) A__ : Tuple =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3, 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __lowerCamelCase ( __snake_case : numpy.ndarray, __snake_case : float ) -> numpy.ndarray: """simple docstring""" A__ : int =numpy.radians(__snake_case ) A__ : List[str] =numpy.cos(__snake_case ), numpy.sin(__snake_case ) A__ : Union[str, Any] =numpy.array(((c, -s), (s, c)) ) return numpy.dot(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : list[numpy.ndarray] ) -> None: """simple docstring""" A__ : Union[str, Any] =plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() A__ : int =zip(*__snake_case ) plt.plot(__snake_case, __snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Optional[int] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging __snake_case : Dict = logging.get_logger(__name__) def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : List[Any] =os.getenv("""SM_HP_MP_PARAMETERS""", """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. A__ : Optional[Any] =json.loads(__snake_case ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. A__ : Optional[Any] =os.getenv("""SM_FRAMEWORK_PARAMS""", """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". A__ : Any =json.loads(__snake_case ) if not mpi_options.get("""sagemaker_mpi_enabled""", __snake_case ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , lowerCAmelCase_ , ) @cached_property def lowercase__ ( self : str ) -> "torch.device": '''simple docstring''' logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: A__ : Union[str, Any] =torch.device("""cpu""" ) A__ : str =0 elif is_sagemaker_model_parallel_available(): A__ : int =smp.local_rank() A__ : Tuple =torch.device("""cuda""" , lowerCAmelCase_ ) A__ : Any =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) A__ : Tuple =int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) A__ : Any =torch.device("""cuda""" , self.local_rank ) A__ : Union[str, Any] =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 A__ : Any =torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. A__ : Union[str, Any] =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) A__ : Any =torch.device("""cuda""" , self.local_rank ) A__ : str =1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase_ ) return device @property def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return False
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0