code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['image_processor', 'feature_extractor'] __snake_case = 'TvltImageProcessor' __snake_case = 'TvltFeatureExtractor' def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> List[str]: '''simple docstring''' super().__init__(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : List[Any] =image_processor A__ : Any =feature_extractor def __call__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : str=False , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[Any] , ) -> List[Any]: '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) A__ : Dict =None if images is not None: A__ : Any =self.image_processor(lowerCAmelCase_ , mask_pixel=lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) if images_mixed is not None: A__ : Any =self.image_processor(lowerCAmelCase_ , is_mixed=lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) if audio is not None: A__ : Optional[int] =self.feature_extractor( lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , mask_audio=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[str] ={} if audio is not None: output_dict.update(lowerCAmelCase_ ) if images is not None: output_dict.update(lowerCAmelCase_ ) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase_ ) return output_dict @property def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : List[Any] =self.image_processor.model_input_names A__ : Union[str, Any] =self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) (A__ ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) (A__ ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( A__ ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : str = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'layoutlmv3' def __init__( self : str , lowerCAmelCase_ : Optional[Any]=5_02_65 , lowerCAmelCase_ : List[str]=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : Tuple=30_72 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Union[str, Any]=1e-5 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : str=10_24 , lowerCAmelCase_ : List[Any]=1_28 , lowerCAmelCase_ : Optional[int]=1_28 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : Union[str, Any]=1_28 , lowerCAmelCase_ : Union[str, Any]=64 , lowerCAmelCase_ : Tuple=2_56 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=2_24 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[int] , ) -> List[Any]: '''simple docstring''' super().__init__( vocab_size=lowerCAmelCase_ , hidden_size=lowerCAmelCase_ , num_hidden_layers=lowerCAmelCase_ , num_attention_heads=lowerCAmelCase_ , intermediate_size=lowerCAmelCase_ , hidden_act=lowerCAmelCase_ , hidden_dropout_prob=lowerCAmelCase_ , attention_probs_dropout_prob=lowerCAmelCase_ , max_position_embeddings=lowerCAmelCase_ , type_vocab_size=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , layer_norm_eps=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : List[str] =max_ad_position_embeddings A__ : Dict =coordinate_size A__ : List[Any] =shape_size A__ : Dict =has_relative_attention_bias A__ : Tuple =rel_pos_bins A__ : List[Any] =max_rel_pos A__ : List[str] =has_spatial_attention_bias A__ : Any =rel_ad_pos_bins A__ : str =max_rel_ad_pos A__ : str =text_embed A__ : List[Any] =visual_embed A__ : Any =input_size A__ : Optional[int] =num_channels A__ : Union[str, Any] =patch_size A__ : int =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.12' ) @property def lowercase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return 12 def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : "ProcessorMixin" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 40 , lowerCAmelCase_ : int = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , """apply_ocr""" , lowerCAmelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A__ : Optional[int] =compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ : Optional[Any] =processor.tokenizer.num_special_tokens_to_add(lowerCAmelCase_ ) A__ : Optional[int] =compute_effective_axis_dimension( lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_ ) # Generate dummy inputs according to compute batch and sequence A__ : List[Any] =[[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes A__ : str =[[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) A__ : Optional[Any] =self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =dict( processor( lowerCAmelCase_ , text=lowerCAmelCase_ , boxes=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , ) ) return inputs
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __snake_case : Optional[Any] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' __snake_case : List[Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' __snake_case : Optional[Any] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): def lowercase__ ( self : List[Any] ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def lowercase__ ( self : Any , lowerCAmelCase_ : List[List[List[str]]] , lowerCAmelCase_ : List[List[str]] , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 4_000_000 ) -> int: """simple docstring""" A__ : Any =[0, 1] A__ : Dict =0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 A__ : int =0 for j in range(len(__snake_case ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"""{solution() = }""")
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'roberta' def __init__( self : List[str] , lowerCAmelCase_ : Optional[Any]=5_02_65 , lowerCAmelCase_ : Optional[int]=7_68 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Tuple="absolute" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[Any] =vocab_size A__ : int =hidden_size A__ : Tuple =num_hidden_layers A__ : int =num_attention_heads A__ : List[str] =hidden_act A__ : int =intermediate_size A__ : List[Any] =hidden_dropout_prob A__ : Any =attention_probs_dropout_prob A__ : List[Any] =max_position_embeddings A__ : Any =type_vocab_size A__ : Any =initializer_range A__ : Optional[Any] =layer_norm_eps A__ : List[str] =position_embedding_type A__ : Tuple =use_cache A__ : Optional[int] =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : List[str] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=13 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : List[Any]=64 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Union[str, Any]=1 , ) -> Tuple: '''simple docstring''' A__ : int =parent A__ : Union[str, Any] =batch_size A__ : Dict =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_mask A__ : Tuple =use_token_type_ids A__ : Tuple =use_labels A__ : List[Any] =vocab_size A__ : Any =hidden_size A__ : str =num_hidden_layers A__ : Tuple =num_attention_heads A__ : List[str] =intermediate_size A__ : Optional[Any] =hidden_act A__ : Dict =hidden_dropout_prob A__ : Tuple =attention_probs_dropout_prob A__ : Optional[Any] =max_position_embeddings A__ : Tuple =type_vocab_size A__ : List[str] =type_sequence_label_size A__ : Tuple =initializer_range A__ : str =num_labels A__ : Any =num_choices A__ : Optional[int] =scope A__ : Dict =q_groups A__ : Any =k_groups A__ : List[Any] =v_groups A__ : List[str] =post_attention_groups A__ : Dict =intermediate_groups A__ : Dict =output_groups def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple =None if self.use_input_mask: A__ : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] =None A__ : str =None A__ : Tuple =None if self.use_labels: A__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any =ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[Any] =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Any ) -> Any: '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> Dict: '''simple docstring''' A__ : Optional[Any] =SqueezeBertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' A__ : List[Any] =SqueezeBertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ) -> Dict: '''simple docstring''' A__ : List[Any] =SqueezeBertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' A__ : List[str] =self.num_labels A__ : List[str] =SqueezeBertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> Any: '''simple docstring''' A__ : Optional[Any] =self.num_labels A__ : Optional[Any] =SqueezeBertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' A__ : int =self.num_choices A__ : Optional[Any] =SqueezeBertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Union[str, Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : str =self.prepare_config_and_inputs() (A__) : Tuple =config_and_inputs A__ : Optional[int] ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __snake_case = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = True __snake_case = False def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =SqueezeBertModelTester(self ) A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase_ ) @slow def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Dict =SqueezeBertModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : List[str] =SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" ) A__ : Dict =torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) A__ : List[Any] =model(lowerCAmelCase_ )[0] A__ : int =torch.Size((1, 3) ) self.assertEqual(output.shape , lowerCAmelCase_ ) A__ : int =torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) )
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __lowerCamelCase ( __snake_case : str, __snake_case : str = "cpu", __snake_case : Union[str, None] = None ) -> None: """simple docstring""" A__ : Optional[int] =torch.load(__snake_case, map_location=__snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(__snake_case, torch.Tensor ): raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" ) A__ : List[str] =v.half() if save_path is None: # overwrite src_path A__ : Union[str, Any] =src_path torch.save(__snake_case, __snake_case ) if __name__ == "__main__": fire.Fire(convert)
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'levit' def __init__( self : Any , lowerCAmelCase_ : Union[str, Any]=2_24 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : List[str]=16 , lowerCAmelCase_ : Dict=[1_28, 2_56, 3_84] , lowerCAmelCase_ : Tuple=[4, 8, 12] , lowerCAmelCase_ : List[str]=[4, 4, 4] , lowerCAmelCase_ : List[str]=[16, 16, 16] , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[Any]=[2, 2, 2] , lowerCAmelCase_ : List[Any]=[2, 2, 2] , lowerCAmelCase_ : Optional[Any]=0.02 , **lowerCAmelCase_ : Optional[int] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) A__ : List[Any] =image_size A__ : Any =num_channels A__ : List[Any] =kernel_size A__ : int =stride A__ : Dict =padding A__ : Union[str, Any] =hidden_sizes A__ : Any =num_attention_heads A__ : List[Any] =depths A__ : List[Any] =key_dim A__ : int =drop_path_rate A__ : Dict =patch_size A__ : Tuple =attention_ratio A__ : Optional[int] =mlp_ratio A__ : Optional[Any] =initializer_range A__ : Dict =[ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase__ ( self : int ) -> float: '''simple docstring''' return 1e-4
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCamelCase ( __snake_case : List[str] ) -> Tuple: """simple docstring""" A__ : int =filter(lambda __snake_case : p.requires_grad, model.parameters() ) A__ : Dict =sum([np.prod(p.size() ) for p in model_parameters] ) return params __snake_case : int = logging.getLogger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any] ) -> int: """simple docstring""" if metric == "rouge2": A__ : str ="""{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": A__ : Union[str, Any] ="""{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": A__ : Union[str, Any] ="""{val_avg_em:.4f}-{step_count}""" elif metric == "loss": A__ : Union[str, Any] ="""{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) A__ : List[str] =ModelCheckpoint( dirpath=__snake_case, filename=__snake_case, monitor=f"val_{metric}", mode="""max""", save_top_k=1, every_n_epochs=1, ) return checkpoint_callback def __lowerCamelCase ( __snake_case : List[Any], __snake_case : str ) -> int: """simple docstring""" return EarlyStopping( monitor=f"val_{metric}", mode="""min""" if """loss""" in metric else """max""", patience=__snake_case, verbose=__snake_case, ) class lowerCamelCase ( pl.Callback ): '''simple docstring''' def lowercase__ ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] ={f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase_ ) @rank_zero_only def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=True ) -> None: '''simple docstring''' logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) A__ : Optional[Any] =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results A__ : Any =Path(pl_module.hparams.output_dir ) if type_path == "test": A__ : Union[str, Any] =od / """test_results.txt""" A__ : str =od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A__ : List[str] =od / f"{type_path}_results/{trainer.global_step:05d}.txt" A__ : Any =od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_ , """a+""" ) as writer: for key in sorted(lowerCAmelCase_ ): if key in ["log", "progress_bar", "preds"]: continue A__ : str =metrics[key] if isinstance(lowerCAmelCase_ , torch.Tensor ): A__ : Optional[Any] =val.item() A__ : List[str] =f"{key}: {val:.6f}\n" writer.write(lowerCAmelCase_ ) if not save_generations: return if "preds" in metrics: A__ : Optional[int] ="""\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowerCAmelCase_ ) @rank_zero_only def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' try: A__ : List[str] =pl_module.model.model.num_parameters() except AttributeError: A__ : int =pl_module.model.num_parameters() A__ : int =count_trainable_parameters(lowerCAmelCase_ ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ) -> Optional[int]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , """test""" ) @rank_zero_only def lowercase__ ( self : str , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' A__ : Union[str, Any] ="""ylacombe/bark-small""" A__ : Dict =tempfile.mkdtemp() A__ : str ="""en_speaker_1""" A__ : Any ="""This is a test string""" A__ : List[Any] ="""speaker_embeddings_path.json""" A__ : Union[str, Any] ="""speaker_embeddings""" def lowercase__ ( self : int , **lowerCAmelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : Tuple =self.get_tokenizer() A__ : Optional[Any] =BarkProcessor(tokenizer=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) A__ : str =BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) A__ : Tuple =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ : Tuple =BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) A__ : Dict =35 A__ : Union[str, Any] =2 A__ : Dict =8 A__ : Dict ={ """semantic_prompt""": np.ones(lowerCAmelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A__ : str =processor(text=self.input_string , voice_preset=lowerCAmelCase_ ) A__ : Optional[int] =inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file A__ : Optional[Any] =os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : str =processor(text=self.input_string , voice_preset=lowerCAmelCase_ ) A__ : int =inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub A__ : Union[str, Any] =processor(text=self.input_string , voice_preset=self.voice_preset ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Any =self.get_tokenizer() A__ : str =BarkProcessor(tokenizer=lowerCAmelCase_ ) A__ : List[Any] =processor(text=self.input_string ) A__ : List[Any] =tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCamelCase : '''simple docstring''' def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return None class lowerCamelCase : '''simple docstring''' def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return None class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowercase__ ( self : str ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase_ , """tf""" , 12 , **lowerCAmelCase_ ) @require_torch @slow def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCAmelCase_ , """pt""" , 12 , **lowerCAmelCase_ ) @require_torch @slow def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' from transformers import BertModel A__ : List[str] =["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(lowerCAmelCase_ ) ) vocab_file.flush() A__ : int =BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: A__ : Optional[int] =BertModel(BertConfig(vocab_size=len(lowerCAmelCase_ ) ) ) model.save_pretrained(lowerCAmelCase_ ) self._test_export(lowerCAmelCase_ , """pt""" , 12 , lowerCAmelCase_ ) @require_tf @slow def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ : Optional[int] =self._test_export(lowerCAmelCase_ , """tf""" , 12 , **lowerCAmelCase_ ) A__ : Optional[int] =quantize(Path(lowerCAmelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase_ ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def lowercase__ ( self : Dict ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: A__ : int =self._test_export(lowerCAmelCase_ , """pt""" , 12 , **lowerCAmelCase_ ) A__ : List[str] =quantize(lowerCAmelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCAmelCase_ ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def lowercase__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: A__ : List[str] =Path(lowerCAmelCase_ ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) return path except Exception as e: self.fail(lowerCAmelCase_ ) @require_torch @require_tokenizers @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' from transformers import BertModel A__ : Optional[int] =BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) A__ : Any =BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(lowerCAmelCase_ , lowerCAmelCase_ , """pt""" ) @require_tf @require_tokenizers @slow def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' from transformers import TFBertModel A__ : Tuple =TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) A__ : str =BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(lowerCAmelCase_ , lowerCAmelCase_ , """tf""" ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' A__ : Tuple =FeatureExtractionPipeline(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Tuple =["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] A__ : Optional[Any] =infer_shapes(lowerCAmelCase_ , lowerCAmelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCAmelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCAmelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =["""input_ids""", """attention_mask""", """token_type_ids"""] A__ : List[str] ={"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} A__ : int =ensure_valid_input(FuncContiguousArgs() , lowerCAmelCase_ , lowerCAmelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCAmelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCAmelCase_ ) , set(lowerCAmelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCAmelCase_ , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) A__ : Optional[int] =ensure_valid_input(FuncNonContiguousArgs() , lowerCAmelCase_ , lowerCAmelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCAmelCase_ ) , 1 ) self.assertEqual(len(lowerCAmelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : Dict =generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : float ) -> float: """simple docstring""" return 10 - x * x def __lowerCamelCase ( __snake_case : float, __snake_case : float ) -> float: """simple docstring""" if equation(__snake_case ) * equation(__snake_case ) >= 0: raise ValueError("""Wrong space!""" ) A__ : int =a while (b - a) >= 0.01: # Find middle point A__ : Optional[int] =(a + b) / 2 # Check if middle point is root if equation(__snake_case ) == 0.0: break # Decide the side to repeat the steps if equation(__snake_case ) * equation(__snake_case ) < 0: A__ : List[Any] =c else: A__ : Optional[int] =c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = RoCBertTokenizer __snake_case = None __snake_case = False __snake_case = True __snake_case = filter_non_english def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' super().setUp() A__ : Optional[Any] =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] A__ : int ={} A__ : Any ={} for i, value in enumerate(lowerCAmelCase_ ): A__ : Union[str, Any] =i A__ : List[str] =i A__ : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(lowerCAmelCase_ , lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(lowerCAmelCase_ , lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : str =tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(lowerCAmelCase_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase_ ) , [5, 6, 2, 5, 7, 8] ) def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : Optional[Any] =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowercase__ ( self : int ) -> Any: '''simple docstring''' A__ : int =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowercase__ ( self : str ) -> Any: '''simple docstring''' A__ : int =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowercase__ ( self : int ) -> str: '''simple docstring''' A__ : Dict =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ : Any =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' A__ : int =["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] A__ : List[str] ={} for i, token in enumerate(lowerCAmelCase_ ): A__ : List[Any] =i A__ : Union[str, Any] =RoCBertWordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def lowercase__ ( self : Dict ) -> Any: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : Union[str, Any] =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: A__ : List[Any] =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Dict =f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ : Dict =tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) A__ : Tuple =tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , """do_lower_case""" ) else False A__ : Optional[int] =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : List[Any] =["""的""", """人""", """有"""] A__ : Optional[int] ="""""".join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Any =True A__ : int =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Union[str, Any] =tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : str =tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : Tuple =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) A__ : Tuple =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : List[Any] =False A__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Dict =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Optional[int] =tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : Tuple =tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : List[str] =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". A__ : Optional[int] =[ f"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' A__ : List[Any] =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : str =tokenizer.encode("""你好""" , add_special_tokens=lowerCAmelCase_ ) A__ : str =tokenizer.encode("""你是谁""" , add_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Optional[int] =self.get_tokenizers(do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): A__ : Optional[int] ="""你好,你是谁""" A__ : List[Any] =tokenizer.tokenize(lowerCAmelCase_ ) A__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) A__ : str =tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase_ ) A__ : Any =tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.prepare_for_model( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Dict = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __snake_case : int = { 'gpt-neox-20b': 2048, } class lowerCamelCase ( lowercase_ ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : Tuple="<|endoftext|>" , lowerCAmelCase_ : Optional[Any]=False , **lowerCAmelCase_ : Optional[Any] , ) -> Any: '''simple docstring''' super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_ ) != add_prefix_space: A__ : List[Any] =getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""" ) ) A__ : str =add_prefix_space A__ : str =pre_tok_class(**lowerCAmelCase_ ) A__ : Optional[int] =add_prefix_space def lowercase__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A__ : Union[str, Any] =self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : "Conversation" ) -> List[int]: '''simple docstring''' A__ : Tuple =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: A__ : Optional[int] =input_ids[-self.model_max_length :] return input_ids
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' from collections import defaultdict class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 A__ : int =[ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCAmelCase_ ) ) ] A__ : Dict =defaultdict(lowerCAmelCase_ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 A__ : Union[str, Any] =(1 << len(lowerCAmelCase_ )) - 1 def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> List[str]: '''simple docstring''' # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement A__ : List[str] =self.count_ways_until(lowerCAmelCase_ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. A__ : Dict =total_ways_util return self.dp[mask][task_no] def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' # Store the list of persons for each task for i in range(len(lowerCAmelCase_ ) ): for j in task_performed[i]: self.task[j].append(lowerCAmelCase_ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": __snake_case : List[Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. __snake_case : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : str = logging.get_logger() @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = field(default_factory=lowercase_ ) __snake_case = field(default_factory=lowercase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tensor , lowerCAmelCase_ : Tensor ) -> str: '''simple docstring''' A__ : str =len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase_ , nn.Convad ) or isinstance(lowerCAmelCase_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase_ ) def __call__( self : List[str] , lowerCAmelCase_ : Tensor ) -> Optional[Any]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase_ ) [x.remove() for x in self.handles] return self @property def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return list(filter(lambda lowerCAmelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = 42 __snake_case = 1 __snake_case = field(default_factory=lowercase_ ) __snake_case = field(default_factory=lowercase_ ) __snake_case = True def __call__( self : int , lowerCAmelCase_ : Tensor ) -> Any: '''simple docstring''' A__ : Any =Tracker(self.dest )(lowerCAmelCase_ ).parametrized A__ : Tuple =Tracker(self.src )(lowerCAmelCase_ ).parametrized A__ : Any =list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.src_skip , lowerCAmelCase_ ) ) A__ : List[str] =list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.dest_skip , lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ) and self.raise_if_mismatch: raise Exception( f"Numbers of operations are different. Source module has {len(lowerCAmelCase_ )} operations while" f" destination module has {len(lowerCAmelCase_ )}." ) for dest_m, src_m in zip(lowerCAmelCase_ , lowerCAmelCase_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module ) -> Dict: '''simple docstring''' super().__init__() A__ : List[Tuple[str, nn.Module]] =[] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f"Unexpected layer name {k}" A__ : List[str] =len(lowerCAmelCase_ ) + 1 feature_blocks.append((f"res{block_index}", v) ) A__ : Optional[Any] =nn.ModuleDict(lowerCAmelCase_ ) def lowercase__ ( self : int , lowerCAmelCase_ : Tensor ) -> List[Any]: '''simple docstring''' return get_trunk_forward_outputs( lowerCAmelCase_ , out_feat_keys=lowerCAmelCase_ , feature_blocks=self._feature_blocks , ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any , lowerCAmelCase_ : str ) -> str: '''simple docstring''' A__ : Optional[Any] =x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : str , lowerCAmelCase_ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: '''simple docstring''' # default to timm! if x not in self: A__ : Any =self.convert_name_to_timm(lowerCAmelCase_ ) A__ : Dict =partial(lambda: (timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ).eval(), None) ) else: A__ : Optional[int] =super().__getitem__(lowerCAmelCase_ ) return val class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __getitem__( self : Any , lowerCAmelCase_ : str ) -> Callable[[], nn.Module]: '''simple docstring''' if "seer" in x and "in1k" not in x: A__ : Union[str, Any] =RegNetModel else: A__ : Optional[int] =RegNetForImageClassification return val def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : List[Tuple[str, str]] ) -> List[Any]: """simple docstring""" for from_key, to_key in keys: A__ : Tuple =from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def __lowerCamelCase ( __snake_case : str, __snake_case : Callable[[], nn.Module], __snake_case : Callable[[], nn.Module], __snake_case : RegNetConfig, __snake_case : Path, __snake_case : bool = True, ) -> Union[str, Any]: """simple docstring""" print(f"Converting {name}..." ) with torch.no_grad(): A__ : Tuple =from_model_func() A__ : Dict =our_model_func(__snake_case ).eval() A__ : Dict =ModuleTransfer(src=__snake_case, dest=__snake_case, raise_if_mismatch=__snake_case ) A__ : str =torch.randn((1, 3, 224, 224) ) module_transfer(__snake_case ) if from_state_dict is not None: A__ : List[str] =[] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: A__ : Any =[("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] A__ : Optional[Any] =manually_copy_vissl_head(__snake_case, our_model.state_dict(), __snake_case ) our_model.load_state_dict(__snake_case ) A__ : List[Any] =our_model(__snake_case, output_hidden_states=__snake_case ) A__ : Any =( our_outputs.logits if isinstance(__snake_case, __snake_case ) else our_outputs.last_hidden_state ) A__ : str =from_model(__snake_case ) A__ : Union[str, Any] =from_output[-1] if type(__snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: A__ : Union[str, Any] =our_outputs.hidden_states[-1] assert torch.allclose(__snake_case, __snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="""Add model""", use_temp_dir=__snake_case, ) A__ : Any =224 if """seer""" not in name else 384 # we can use the convnext one A__ : Optional[int] =AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""", size=__snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="""Add image processor""", use_temp_dir=__snake_case, ) print(f"Pushed {name}" ) def __lowerCamelCase ( __snake_case : Path, __snake_case : str = None, __snake_case : bool = True ) -> List[Any]: """simple docstring""" A__ : Tuple ="""imagenet-1k-id2label.json""" A__ : List[Any] =1_000 A__ : Optional[int] =(1, num_labels) A__ : Dict ="""huggingface/label-files""" A__ : str =num_labels A__ : Union[str, Any] =json.load(open(cached_download(hf_hub_url(__snake_case, __snake_case, repo_type="""dataset""" ) ), """r""" ) ) A__ : Any ={int(__snake_case ): v for k, v in idalabel.items()} A__ : Optional[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} A__ : Tuple =partial(__snake_case, num_labels=__snake_case, idalabel=__snake_case, labelaid=__snake_case ) A__ : List[str] ={ """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1_008], groups_width=48, layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1_360], groups_width=40, layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1_624], groups_width=56, layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1_920], groups_width=120, layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112, layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2_048], groups_width=128, layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1_344, 2_520], groups_width=168, layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1_512], groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1_088], groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1_296], groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2_016], groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1_232, 3_024], groups_width=112 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), } A__ : Optional[int] =NameToOurModelFuncMap() A__ : List[Any] =NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__snake_case : str, __snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: A__ : str =torch.hub.load_state_dict_from_url(__snake_case, model_dir=str(__snake_case ), map_location="""cpu""" ) A__ : Dict =model_func() # check if we have a head, if yes add it A__ : Union[str, Any] =files["""classy_state_dict"""]["""base_model"""]["""model"""] A__ : Dict =model_state_dict["""trunk"""] model.load_state_dict(__snake_case ) return model.eval(), model_state_dict["heads"] # pretrained A__ : Dict =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) A__ : int =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) A__ : List[Any] =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) A__ : Tuple =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned A__ : int =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) A__ : str =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) A__ : int =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) A__ : int =partial( __snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( __snake_case, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], __snake_case, __snake_case, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __snake_case, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], __snake_case, __snake_case, __snake_case, ) return config, expected_shape if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __snake_case : List[Any] = parser.parse_args() __snake_case : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __snake_case : Optional[int] = None __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __snake_case : Union[str, Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['input_ids', 'attention_mask'] __snake_case = TaTokenizer __snake_case = [] def __init__( self : Dict , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : Dict="<unk>" , lowerCAmelCase_ : Optional[int]="<pad>" , lowerCAmelCase_ : Union[str, Any]=1_00 , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Any , ) -> str: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A__ : List[str] =[f"<extra_id_{i}>" for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens A__ : Optional[Any] =len(set(filter(lambda lowerCAmelCase_ : bool("""extra_id_""" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : Union[str, Any] =vocab_file A__ : Any =False if not self.vocab_file else True A__ : str =extra_ids @staticmethod def lowercase__ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: A__ : Optional[Any] =TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , lowerCAmelCase_ , ) return max_model_length def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Any =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) logger.info(f"Copy vocab file to {out_vocab_file}" ) return (out_vocab_file,) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : int =token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: A__ : Optional[int] =token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Optional[int] =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' return list( set(filter(lambda lowerCAmelCase_ : bool(re.search(R"""<extra_id_\d+>""" , lowerCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return [self.convert_tokens_to_ids(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()]
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" assert isinstance(__snake_case, __snake_case ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: A__ : Any =f"The input value of [n={number}] has to be > 0" raise ValueError(__snake_case ) else: A__ : str =sylvester(number - 1 ) A__ : List[str] =num - 1 A__ : Optional[Any] =num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : int = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'bert' def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : List[Any]=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Any=30_72 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Optional[int]="absolute" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =vocab_size A__ : Any =hidden_size A__ : Dict =num_hidden_layers A__ : Optional[int] =num_attention_heads A__ : Union[str, Any] =hidden_act A__ : Any =intermediate_size A__ : Union[str, Any] =hidden_dropout_prob A__ : str =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Union[str, Any] =type_vocab_size A__ : List[Any] =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : Tuple =position_embedding_type A__ : Tuple =use_cache A__ : Any =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : List[str] ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCamelCase ( ) -> None: """simple docstring""" print("""Making key files...""" ) make_key_files("""rsa""", 1_024 ) print("""Key files generation successful.""" ) def __lowerCamelCase ( __snake_case : int ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print("""Generating prime p...""" ) A__ : Optional[Any] =rabinMiller.generate_large_prime(__snake_case ) print("""Generating prime q...""" ) A__ : Any =rabinMiller.generate_large_prime(__snake_case ) A__ : str =p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: A__ : List[Any] =random.randrange(2 ** (key_size - 1), 2 ** (key_size) ) if cryptoMath.gcd(__snake_case, (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) A__ : Tuple =cryptoMath.find_mod_inverse(__snake_case, (p - 1) * (q - 1) ) A__ : int =(n, e) A__ : Optional[Any] =(n, d) return (public_key, private_key) def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> None: """simple docstring""" if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print("""\nWARNING:""" ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" """Use a different name or delete these files and re-run this program.""" ) sys.exit() A__ : Union[str, Any] =generate_key(__snake_case ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt", """w""" ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt", """w""" ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __snake_case : Dict = Mapping[str, np.ndarray] __snake_case : Optional[Any] = Mapping[str, Any] # Is a nested dict. __snake_case : Optional[Any] = 0.01 @dataclasses.dataclass(frozen=lowercase_ ) class lowerCamelCase : '''simple docstring''' __snake_case = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __snake_case = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __snake_case = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __snake_case = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __snake_case = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __snake_case = None # Optional remark about the protein. Included as a comment in output PDB # files __snake_case = None # Templates used to generate this protein (prediction-only) __snake_case = None # Chain corresponding to each parent __snake_case = None def __lowerCamelCase ( __snake_case : str ) -> Protein: """simple docstring""" A__ : str =r"""(\[[A-Z]+\]\n)""" A__ : List[str] =[tag.strip() for tag in re.split(__snake_case, __snake_case ) if len(__snake_case ) > 0] A__ : Iterator[Tuple[str, List[str]]] =zip(tags[0::2], [l.split("""\n""" ) for l in tags[1::2]] ) A__ : List[str] =["N", "CA", "C"] A__ : Optional[int] =None A__ : int =None A__ : Dict =None for g in groups: if "[PRIMARY]" == g[0]: A__ : Optional[int] =g[1][0].strip() for i in range(len(__snake_case ) ): if seq[i] not in residue_constants.restypes: A__ : List[str] ="""X""" # FIXME: strings are immutable A__ : Optional[Any] =np.array( [residue_constants.restype_order.get(__snake_case, residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: A__ : List[List[float]] =[] for axis in range(3 ): tertiary.append(list(map(__snake_case, g[1][axis].split() ) ) ) A__ : Optional[int] =np.array(__snake_case ) A__ : Dict =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): A__ : Optional[int] =np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: A__ : Tuple =np.array(list(map({"""-""": 0, """+""": 1}.get, g[1][0].strip() ) ) ) A__ : Dict =np.zeros( ( len(__snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): A__ : Optional[int] =1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__snake_case, atom_mask=__snake_case, aatype=__snake_case, residue_index=np.arange(len(__snake_case ) ), b_factors=__snake_case, ) def __lowerCamelCase ( __snake_case : Protein, __snake_case : int = 0 ) -> List[str]: """simple docstring""" A__ : List[str] =[] A__ : str =prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}" ) A__ : Optional[Any] =prot.parents A__ : Any =prot.parents_chain_index if parents is not None and parents_chain_index is not None: A__ : Tuple =[p for i, p in zip(__snake_case, __snake_case ) if i == chain_id] if parents is None or len(__snake_case ) == 0: A__ : Optional[Any] =["""N/A"""] pdb_headers.append(f"PARENT {' '.join(__snake_case )}" ) return pdb_headers def __lowerCamelCase ( __snake_case : Protein, __snake_case : str ) -> str: """simple docstring""" A__ : List[str] =[] A__ : Union[str, Any] =pdb_str.split("""\n""" ) A__ : Dict =prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}" ) A__ : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: A__ : str =[] if prot.parents_chain_index is not None: A__ : Dict[str, List[str]] ={} for p, i in zip(prot.parents, prot.parents_chain_index ): parent_dict.setdefault(str(__snake_case ), [] ) parent_dict[str(__snake_case )].append(__snake_case ) A__ : Any =max([int(__snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): A__ : List[str] =parent_dict.get(str(__snake_case ), ["""N/A"""] ) parents_per_chain.append(__snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: A__ : Dict =[["""N/A"""]] def make_parent_line(__snake_case : Sequence[str] ) -> str: return f"PARENT {' '.join(__snake_case )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) A__ : Any =0 for i, l in enumerate(__snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__snake_case ): A__ : Dict =parents_per_chain[chain_counter] else: A__ : List[str] =["""N/A"""] out_pdb_lines.append(make_parent_line(__snake_case ) ) return "\n".join(__snake_case ) def __lowerCamelCase ( __snake_case : Protein ) -> str: """simple docstring""" A__ : Any =residue_constants.restypes + ["""X"""] def res_atoa(__snake_case : int ) -> str: return residue_constants.restype_atoa.get(restypes[r], """UNK""" ) A__ : Any =residue_constants.atom_types A__ : List[str] =[] A__ : Union[str, Any] =prot.atom_mask A__ : List[str] =prot.aatype A__ : Union[str, Any] =prot.atom_positions A__ : List[Any] =prot.residue_index.astype(np.intaa ) A__ : Union[str, Any] =prot.b_factors A__ : int =prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("""Invalid aatypes.""" ) A__ : Dict =get_pdb_headers(__snake_case ) if len(__snake_case ) > 0: pdb_lines.extend(__snake_case ) A__ : Tuple =aatype.shape[0] A__ : Optional[Any] =1 A__ : List[str] =0 A__ : Union[str, Any] =string.ascii_uppercase A__ : List[str] =None # Add all atom sites. for i in range(__snake_case ): A__ : Tuple =res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__snake_case, atom_positions[i], atom_mask[i], b_factors[i] ): if mask < 0.5: continue A__ : List[Any] ="""ATOM""" A__ : Union[str, Any] =atom_name if len(__snake_case ) == 4 else f" {atom_name}" A__ : List[str] ="""""" A__ : Any ="""""" A__ : Optional[Any] =1.00 A__ : str =atom_name[0] # Protein supports only C, N, O, S, this works. A__ : Tuple ="""""" A__ : List[str] ="""A""" if chain_index is not None: A__ : int =chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! A__ : List[str] =( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_a:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(__snake_case ) atom_index += 1 A__ : List[str] =i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: A__ : Optional[Any] =True A__ : int =chain_index[i + 1] if should_terminate: # Close the chain. A__ : int ="""TER""" A__ : Optional[int] =( f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(__snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__snake_case, __snake_case ) ) pdb_lines.append("""END""" ) pdb_lines.append("""""" ) return "\n".join(__snake_case ) def __lowerCamelCase ( __snake_case : Protein ) -> np.ndarray: """simple docstring""" return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __lowerCamelCase ( __snake_case : FeatureDict, __snake_case : ModelOutput, __snake_case : Optional[np.ndarray] = None, __snake_case : Optional[np.ndarray] = None, __snake_case : Optional[str] = None, __snake_case : Optional[Sequence[str]] = None, __snake_case : Optional[Sequence[int]] = None, ) -> Protein: """simple docstring""" return Protein( aatype=features["""aatype"""], atom_positions=result["""final_atom_positions"""], atom_mask=result["""final_atom_mask"""], residue_index=features["""residue_index"""] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ), chain_index=__snake_case, remark=__snake_case, parents=__snake_case, parents_chain_index=__snake_case, )
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __snake_case = AutoencoderKL __snake_case = 'sample' __snake_case = 1E-2 @property def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Any =4 A__ : str =3 A__ : List[str] =(32, 32) A__ : str =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ ) return {"sample": image} @property def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' return (3, 32, 32) @property def lowercase__ ( self : str ) -> Any: '''simple docstring''' return (3, 32, 32) def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : List[str] ={ """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } A__ : str =self.dummy_input return init_dict, inputs_dict def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' pass def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.prepare_init_args_and_inputs_for_common() A__ : Tuple =self.model_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) assert not model.is_gradient_checkpointing and model.training A__ : Tuple =model(**lowerCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() A__ : Union[str, Any] =torch.randn_like(lowerCAmelCase_ ) A__ : Dict =(out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing A__ : List[str] =self.model_class(**lowerCAmelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCAmelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training A__ : Optional[Any] =model_a(**lowerCAmelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() A__ : int =(out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) A__ : Optional[int] =dict(model.named_parameters() ) A__ : Optional[Any] =dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ : int =AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase_ ) A__ : List[Any] =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] =AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) A__ : Any =model.to(lowerCAmelCase_ ) model.eval() if torch_device == "mps": A__ : Union[str, Any] =torch.manual_seed(0 ) else: A__ : List[Any] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : List[str] =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A__ : Tuple =image.to(lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[Any] =model(lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ , generator=lowerCAmelCase_ ).sample A__ : Optional[int] =output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": A__ : Union[str, Any] =torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": A__ : str =torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: A__ : Union[str, Any] =torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-2 ) ) @slow class lowerCamelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy" def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=(4, 3, 5_12, 5_12) , lowerCAmelCase_ : List[str]=False ) -> Optional[Any]: '''simple docstring''' A__ : str =torch.floataa if fpaa else torch.floataa A__ : int =torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) ).to(lowerCAmelCase_ ).to(lowerCAmelCase_ ) return image def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" , lowerCAmelCase_ : Optional[int]=False ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] ="""fp16""" if fpaa else None A__ : str =torch.floataa if fpaa else torch.floataa A__ : str =AutoencoderKL.from_pretrained( lowerCAmelCase_ , subfolder="""vae""" , torch_dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ , ) model.to(lowerCAmelCase_ ).eval() return model def lowercase__ ( self : str , lowerCAmelCase_ : Dict=0 ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCAmelCase_ ) return torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]: '''simple docstring''' A__ : str =self.get_sd_vae_model() A__ : Dict =self.get_sd_image(lowerCAmelCase_ ) A__ : str =self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A__ : Dict =model(lowerCAmelCase_ , generator=lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ ).sample assert sample.shape == image.shape A__ : List[Any] =sample[-1, -2:, -2:, :2].flatten().float().cpu() A__ : Dict =torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' A__ : Dict =self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A__ : Optional[int] =self.get_sd_image(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) A__ : Tuple =self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A__ : Tuple =model(lowerCAmelCase_ , generator=lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ ).sample assert sample.shape == image.shape A__ : Optional[int] =sample[-1, -2:, :2, -2:].flatten().float().cpu() A__ : Union[str, Any] =torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> int: '''simple docstring''' A__ : List[str] =self.get_sd_vae_model() A__ : Dict =self.get_sd_image(lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[Any] =model(lowerCAmelCase_ ).sample assert sample.shape == image.shape A__ : Optional[Any] =sample[-1, -2:, -2:, :2].flatten().float().cpu() A__ : Union[str, Any] =torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' A__ : Tuple =self.get_sd_vae_model() A__ : List[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): A__ : str =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] A__ : Optional[int] =sample[-1, -2:, :2, -2:].flatten().cpu() A__ : Optional[int] =torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> int: '''simple docstring''' A__ : List[str] =self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase_ ) with torch.no_grad(): A__ : List[Any] =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] A__ : int =sample[-1, -2:, :2, -2:].flatten().float().cpu() A__ : str =torch.tensor(lowerCAmelCase_ ) assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' A__ : List[Any] =self.get_sd_vae_model(fpaa=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase_ ) with torch.no_grad(): A__ : Optional[int] =model.decode(lowerCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): A__ : Tuple =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' A__ : int =self.get_sd_vae_model() A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): A__ : List[str] =model.decode(lowerCAmelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): A__ : Optional[int] =model.decode(lowerCAmelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> str: '''simple docstring''' A__ : int =self.get_sd_vae_model() A__ : int =self.get_sd_image(lowerCAmelCase_ ) A__ : List[str] =self.get_generator(lowerCAmelCase_ ) with torch.no_grad(): A__ : Tuple =model.encode(lowerCAmelCase_ ).latent_dist A__ : Optional[int] =dist.sample(generator=lowerCAmelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] A__ : Any =sample[0, -1, -3:, -3:].flatten().cpu() A__ : Tuple =torch.tensor(lowerCAmelCase_ ) A__ : Union[str, Any] =3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=lowerCAmelCase_ )
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowerCamelCase ( __snake_case : str, __snake_case : float | Decimal, __snake_case : float = 10**-10 ) -> float: """simple docstring""" A__ : str =a while True: A__ : List[Any] =Decimal(__snake_case ) - ( Decimal(eval(__snake_case ) ) / Decimal(eval(str(diff(__snake_case ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__snake_case ) ) < precision: # noqa: S307 return float(__snake_case ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __snake_case : Union[str, Any] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __snake_case : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) __snake_case : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __snake_case : str = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)') __snake_case : Optional[int] = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __lowerCamelCase ( __snake_case : Any ) -> Dict: """simple docstring""" A__ : Tuple =None # source code of `config_class` A__ : List[Any] =inspect.getsource(__snake_case ) A__ : int =_re_checkpoint.findall(__snake_case ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): A__ : str =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link A__ : Tuple =f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: A__ : Optional[int] =ckpt_name break return checkpoint def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ : Any =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue A__ : int =get_checkpoint_from_config_class(__snake_case ) A__ : Any =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__snake_case ) if len(__snake_case ) > 0: A__ : Tuple ="""\n""".join(sorted(__snake_case ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : List[Any] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ : str =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : Optional[int] =x * logaa(__snake_case ) A__ : Optional[Any] =i + 1 return result if __name__ == "__main__": print(solution())
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case : Tuple = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" if isinstance(__snake_case, torch.Tensor ): return image elif isinstance(__snake_case, PIL.Image.Image ): A__ : Optional[Any] =[image] if isinstance(image[0], PIL.Image.Image ): A__ : Optional[int] =[np.array(i.resize((w, h), resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] A__ : List[str] =np.concatenate(__snake_case, axis=0 ) A__ : List[Any] =np.array(__snake_case ).astype(np.floataa ) / 255.0 A__ : Tuple =image.transpose(0, 3, 1, 2 ) A__ : Any =2.0 * image - 1.0 A__ : Any =torch.from_numpy(__snake_case ) elif isinstance(image[0], torch.Tensor ): A__ : List[str] =torch.cat(__snake_case, dim=0 ) return image def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : List[Any]=0.99_95 ) -> Optional[Any]: """simple docstring""" if not isinstance(__snake_case, np.ndarray ): A__ : List[Any] =True A__ : Tuple =va.device A__ : str =va.cpu().numpy() A__ : List[str] =va.cpu().numpy() A__ : List[str] =np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) ) if np.abs(__snake_case ) > DOT_THRESHOLD: A__ : str =(1 - t) * va + t * va else: A__ : Optional[int] =np.arccos(__snake_case ) A__ : Optional[int] =np.sin(__snake_case ) A__ : Union[str, Any] =theta_a * t A__ : Union[str, Any] =np.sin(__snake_case ) A__ : Optional[Any] =np.sin(theta_a - theta_t ) / sin_theta_a A__ : Any =sin_theta_t / sin_theta_a A__ : Optional[int] =sa * va + sa * va if inputs_are_torch: A__ : Dict =torch.from_numpy(__snake_case ).to(__snake_case ) return va def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Any =F.normalize(__snake_case, dim=-1 ) A__ : List[str] =F.normalize(__snake_case, dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Any ) -> Tuple: """simple docstring""" for param in model.parameters(): A__ : Any =value class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowerCAmelCase_ : CLIPFeatureExtractor , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[str]=None , ) -> Any: '''simple docstring''' super().__init__() self.register_modules( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , clip_model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , coca_model=lowerCAmelCase_ , coca_tokenizer=lowerCAmelCase_ , coca_transform=lowerCAmelCase_ , ) A__ : Union[str, Any] =( feature_extractor.size if isinstance(feature_extractor.size , lowerCAmelCase_ ) else feature_extractor.size["""shortest_edge"""] ) A__ : List[str] =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowerCAmelCase_ ) set_requires_grad(self.clip_model , lowerCAmelCase_ ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ : Union[str, Any] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Any: '''simple docstring''' set_requires_grad(self.vae , lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' set_requires_grad(self.vae , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' set_requires_grad(self.unet , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' set_requires_grad(self.unet , lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : List[Any] =min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) A__ : Union[str, Any] =max(num_inference_steps - init_timestep , 0 ) A__ : Any =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> Tuple: '''simple docstring''' if not isinstance(lowerCAmelCase_ , torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase_ )}" ) A__ : Optional[int] =image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Dict =[ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ ) ] A__ : Any =torch.cat(lowerCAmelCase_ , dim=0 ) else: A__ : List[Any] =self.vae.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ : Dict =0.18215 * init_latents A__ : Optional[Any] =init_latents.repeat_interleave(lowerCAmelCase_ , dim=0 ) A__ : Optional[Any] =randn_tensor(init_latents.shape , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents A__ : Union[str, Any] =self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[Any] =init_latents return latents def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' A__ : Optional[int] =self.coca_transform(lowerCAmelCase_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): A__ : Union[str, Any] =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) A__ : Dict =self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> str: '''simple docstring''' A__ : Union[str, Any] =self.feature_extractor.preprocess(lowerCAmelCase_ ) A__ : Union[str, Any] =torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() A__ : str =self.clip_model.get_image_features(lowerCAmelCase_ ) A__ : List[Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase_ ) A__ : List[Any] =image_embeddings_clip.repeat_interleave(lowerCAmelCase_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , ) -> str: '''simple docstring''' A__ : Dict =latents.detach().requires_grad_() A__ : List[str] =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual A__ : int =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): A__ : Union[str, Any] =self.scheduler.alphas_cumprod[timestep] A__ : Union[str, Any] =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf A__ : Any =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 A__ : str =torch.sqrt(lowerCAmelCase_ ) A__ : Optional[int] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowerCAmelCase_ ): A__ : Optional[int] =self.scheduler.sigmas[index] A__ : Optional[Any] =latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ : str =1 / 0.18215 * sample A__ : List[str] =self.vae.decode(lowerCAmelCase_ ).sample A__ : Any =(image / 2 + 0.5).clamp(0 , 1 ) A__ : Union[str, Any] =transforms.Resize(self.feature_extractor_size )(lowerCAmelCase_ ) A__ : int =self.normalize(lowerCAmelCase_ ).to(latents.dtype ) A__ : int =self.clip_model.get_image_features(lowerCAmelCase_ ) A__ : Optional[Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase_ ) A__ : Optional[int] =spherical_dist_loss(lowerCAmelCase_ , lowerCAmelCase_ ).mean() * clip_guidance_scale A__ : Union[str, Any] =-torch.autograd.grad(lowerCAmelCase_ , lowerCAmelCase_ )[0] if isinstance(self.scheduler , lowerCAmelCase_ ): A__ : List[Any] =latents.detach() + grads * (sigma**2) A__ : List[str] =noise_pred_original else: A__ : Optional[Any] =noise_pred_original - torch.sqrt(lowerCAmelCase_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[int] = 5_12 , lowerCAmelCase_ : Optional[int] = 5_12 , lowerCAmelCase_ : float = 0.6 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[float] = 7.5 , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[float] = 1_00 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : float = 0.8 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , ) -> Optional[int]: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(lowerCAmelCase_ )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(lowerCAmelCase_ , torch.Generator ) and batch_size > 1: A__ : List[str] =[generator] + [None] * (batch_size - 1) A__ : Any =[ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] A__ : str =[x[0] for x in coca_is_none if x[1]] A__ : Dict =""", """.join(lowerCAmelCase_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowerCAmelCase_ ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) A__ : Any =self.get_image_description(lowerCAmelCase_ ) if style_prompt is None: if len(lowerCAmelCase_ ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) A__ : Tuple =self.get_image_description(lowerCAmelCase_ ) # get prompt text embeddings for content and style A__ : List[str] =self.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""pt""" , ) A__ : List[Any] =self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] A__ : Any =self.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""pt""" , ) A__ : Dict =self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] A__ : Dict =slerp(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # duplicate text embeddings for each generation per prompt A__ : Optional[Any] =text_embeddings.repeat_interleave(lowerCAmelCase_ , dim=0 ) # set timesteps A__ : Union[str, Any] ="""offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) A__ : str ={} if accepts_offset: A__ : List[str] =1 self.scheduler.set_timesteps(lowerCAmelCase_ , **lowerCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) A__ : List[Any] =self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , self.device ) A__ : str =timesteps[:1].repeat(lowerCAmelCase_ ) # Preprocess image A__ : Optional[int] =preprocess(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Optional[int] =self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text_embeddings.dtype , self.device , lowerCAmelCase_ ) A__ : Optional[Any] =preprocess(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =self.prepare_latents( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text_embeddings.dtype , self.device , lowerCAmelCase_ ) A__ : List[Any] =slerp(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if clip_guidance_scale > 0: A__ : Optional[int] =self.get_clip_image_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =self.get_clip_image_embeddings(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Union[str, Any] =slerp( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ : Dict =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ : Dict =content_text_input.input_ids.shape[-1] A__ : Dict =self.tokenizer([""""""] , padding="""max_length""" , max_length=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : int =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt A__ : Tuple =uncond_embeddings.repeat_interleave(lowerCAmelCase_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ : int =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ : int =(batch_size, self.unet.config.in_channels, height // 8, width // 8) A__ : Dict =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps A__ : Any =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to( self.device ) else: A__ : List[str] =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A__ : Tuple =latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ : str =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : Optional[Any] ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : Any ={} if accepts_eta: A__ : Union[str, Any] =eta # check if the scheduler accepts generator A__ : str ="""generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: A__ : str =generator with self.progress_bar(total=lowerCAmelCase_ ): for i, t in enumerate(lowerCAmelCase_ ): # expand the latents if we are doing classifier free guidance A__ : Any =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Dict =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual A__ : Optional[int] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample # perform classifier free guidance if do_classifier_free_guidance: A__ : Dict =noise_pred.chunk(2 ) A__ : Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: A__ : Any =( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) A__ : List[str] =self.cond_fn( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # compute the previous noisy sample x_t -> x_t-1 A__ : Optional[int] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor A__ : int =1 / 0.18215 * latents A__ : Optional[int] =self.vae.decode(lowerCAmelCase_ ).sample A__ : Tuple =(image / 2 + 0.5).clamp(0 , 1 ) A__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ : Optional[Any] =self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def __lowerCamelCase ( __snake_case : Iterable[str], __snake_case : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" A__ : List[Any] =iter(__snake_case ) while True: A__ : str =tuple(itertools.islice(__snake_case, __snake_case ) ) if not chunk: return yield chunk def __lowerCamelCase ( __snake_case : str ) -> str: """simple docstring""" A__ : Optional[int] ="""""".join([c.upper() for c in dirty if c in string.ascii_letters] ) A__ : Union[str, Any] ="""""" if len(__snake_case ) < 2: return dirty for i in range(len(__snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__snake_case ) & 1: clean += "X" return clean def __lowerCamelCase ( __snake_case : str ) -> list[str]: """simple docstring""" A__ : List[str] ="""ABCDEFGHIKLMNOPQRSTUVWXYZ""" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler A__ : Optional[Any] =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__snake_case ) return table def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str: """simple docstring""" A__ : Optional[int] =generate_table(__snake_case ) A__ : str =prepare_input(__snake_case ) A__ : str ="""""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__snake_case, 2 ): A__ : Dict =divmod(table.index(__snake_case ), 5 ) A__ : Dict =divmod(table.index(__snake_case ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str: """simple docstring""" A__ : Optional[int] =generate_table(__snake_case ) A__ : Tuple ="""""" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__snake_case, 2 ): A__ : Optional[Any] =divmod(table.index(__snake_case ), 5 ) A__ : List[str] =divmod(table.index(__snake_case ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : str ) -> Optional[int]: """simple docstring""" A__ : Any =checkpoint A__ : Optional[int] ={} A__ : Union[str, Any] =vae_state_dict["""encoder.conv_in.weight"""] A__ : Optional[int] =vae_state_dict["""encoder.conv_in.bias"""] A__ : Union[str, Any] =vae_state_dict["""encoder.conv_out.weight"""] A__ : Optional[int] =vae_state_dict["""encoder.conv_out.bias"""] A__ : List[str] =vae_state_dict["""encoder.norm_out.weight"""] A__ : Dict =vae_state_dict["""encoder.norm_out.bias"""] A__ : int =vae_state_dict["""decoder.conv_in.weight"""] A__ : List[str] =vae_state_dict["""decoder.conv_in.bias"""] A__ : Tuple =vae_state_dict["""decoder.conv_out.weight"""] A__ : List[Any] =vae_state_dict["""decoder.conv_out.bias"""] A__ : Union[str, Any] =vae_state_dict["""decoder.norm_out.weight"""] A__ : int =vae_state_dict["""decoder.norm_out.bias"""] A__ : Dict =vae_state_dict["""quant_conv.weight"""] A__ : Dict =vae_state_dict["""quant_conv.bias"""] A__ : Dict =vae_state_dict["""post_quant_conv.weight"""] A__ : List[Any] =vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only A__ : Dict =len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) A__ : List[Any] ={ layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(__snake_case ) } # Retrieves the keys for the decoder up blocks only A__ : int =len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) A__ : Union[str, Any] ={ layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(__snake_case ) } for i in range(__snake_case ): A__ : Optional[int] =[key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: A__ : Optional[Any] =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.weight" ) A__ : Union[str, Any] =vae_state_dict.pop( f"encoder.down.{i}.downsample.conv.bias" ) A__ : Union[str, Any] =renew_vae_resnet_paths(__snake_case ) A__ : Dict ={"""old""": f"down.{i}.block", """new""": f"down_blocks.{i}.resnets"} assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case ) A__ : Union[str, Any] =[key for key in vae_state_dict if """encoder.mid.block""" in key] A__ : str =2 for i in range(1, num_mid_res_blocks + 1 ): A__ : List[Any] =[key for key in mid_resnets if f"encoder.mid.block_{i}" in key] A__ : Dict =renew_vae_resnet_paths(__snake_case ) A__ : List[Any] ={"""old""": f"mid.block_{i}", """new""": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case ) A__ : Optional[int] =[key for key in vae_state_dict if """encoder.mid.attn""" in key] A__ : Union[str, Any] =renew_vae_attention_paths(__snake_case ) A__ : Dict ={"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case ) conv_attn_to_linear(__snake_case ) for i in range(__snake_case ): A__ : Any =num_up_blocks - 1 - i A__ : Union[str, Any] =[ key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key ] if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: A__ : List[Any] =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.weight" ] A__ : Union[str, Any] =vae_state_dict[ f"decoder.up.{block_id}.upsample.conv.bias" ] A__ : Dict =renew_vae_resnet_paths(__snake_case ) A__ : Union[str, Any] ={"""old""": f"up.{block_id}.block", """new""": f"up_blocks.{i}.resnets"} assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case ) A__ : Optional[Any] =[key for key in vae_state_dict if """decoder.mid.block""" in key] A__ : int =2 for i in range(1, num_mid_res_blocks + 1 ): A__ : Union[str, Any] =[key for key in mid_resnets if f"decoder.mid.block_{i}" in key] A__ : Optional[Any] =renew_vae_resnet_paths(__snake_case ) A__ : Optional[int] ={"""old""": f"mid.block_{i}", """new""": f"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case ) A__ : Union[str, Any] =[key for key in vae_state_dict if """decoder.mid.attn""" in key] A__ : Union[str, Any] =renew_vae_attention_paths(__snake_case ) A__ : List[Any] ={"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case ) conv_attn_to_linear(__snake_case ) return new_checkpoint def __lowerCamelCase ( __snake_case : str, __snake_case : str, ) -> Dict: """simple docstring""" A__ : int =requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) A__ : Optional[int] =io.BytesIO(r.content ) A__ : Dict =OmegaConf.load(__snake_case ) A__ : int =512 A__ : Any ="""cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open A__ : Union[str, Any] ={} with safe_open(__snake_case, framework="""pt""", device="""cpu""" ) as f: for key in f.keys(): A__ : Optional[Any] =f.get_tensor(__snake_case ) else: A__ : Optional[Any] =torch.load(__snake_case, map_location=__snake_case )["""state_dict"""] # Convert the VAE model. A__ : Any =create_vae_diffusers_config(__snake_case, image_size=__snake_case ) A__ : Optional[int] =custom_convert_ldm_vae_checkpoint(__snake_case, __snake_case ) A__ : str =AutoencoderKL(**__snake_case ) vae.load_state_dict(__snake_case ) vae.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __snake_case : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' from typing import Any class lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Tuple: '''simple docstring''' A__ : int =data A__ : int =None class lowerCamelCase : '''simple docstring''' def __init__( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : str =None def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : str =self.head while temp is not None: print(temp.data , end=""" """ ) A__ : Dict =temp.next print() def lowercase__ ( self : Dict , lowerCAmelCase_ : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =Node(lowerCAmelCase_ ) A__ : Tuple =self.head A__ : int =new_node def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' if node_data_a == node_data_a: return else: A__ : Tuple =self.head while node_a is not None and node_a.data != node_data_a: A__ : Dict =node_a.next A__ : Optional[Any] =self.head while node_a is not None and node_a.data != node_data_a: A__ : Any =node_a.next if node_a is None or node_a is None: return A__ : str =node_a.data, node_a.data if __name__ == "__main__": __snake_case : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __snake_case = None class lowerCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __snake_case = PandasConfig def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) A__ : Optional[int] =dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase_ , (str, list, tuple) ): A__ : Any =data_files if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Any =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ : int =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : List[str] =[] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Optional[Any] =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive A__ : Optional[int] =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase_ , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example A__ : List[str] =table_cast(lowerCAmelCase_ , self.config.features.arrow_schema ) return pa_table def lowercase__ ( self : Tuple , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase_ ) ): with open(lowerCAmelCase_ , """rb""" ) as f: A__ : Optional[Any] =pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase_ ) ) yield i, self._cast_table(lowerCAmelCase_ )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> str: """simple docstring""" A__ : Union[str, Any] =10 A__ : Dict =datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) A__ : Dict =datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(__snake_case ) ), }, features=__snake_case, ) return dataset @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[int] ) -> int: """simple docstring""" A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__snake_case ) return filename # FILE_CONTENT + files __snake_case = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> int: """simple docstring""" A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt""" A__ : List[Any] =FILE_CONTENT with open(__snake_case, """w""" ) as f: f.write(__snake_case ) return filename @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> str: """simple docstring""" import bza A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" A__ : str =bytes(__snake_case, """utf-8""" ) with bza.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> int: """simple docstring""" import gzip A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) A__ : List[str] =bytes(__snake_case, """utf-8""" ) with gzip.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" A__ : List[Any] =bytes(__snake_case, """utf-8""" ) with lza.frame.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[Any] ) -> List[str]: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(__snake_case, """w""" ) as archive: archive.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[Any] ) -> int: """simple docstring""" import tarfile A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(__snake_case, """w""" ) as f: f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str] ) -> str: """simple docstring""" import lzma A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" A__ : str =bytes(__snake_case, """utf-8""" ) with lzma.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : str ) -> Union[str, Any]: """simple docstring""" import zipfile A__ : Any =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd A__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" A__ : Any =bytes(__snake_case, """utf-8""" ) with zstd.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """file.xml""" A__ : Optional[Any] =textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(__snake_case, """w""" ) as f: f.write(__snake_case ) return filename __snake_case = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __snake_case = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __snake_case = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __snake_case = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __snake_case = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Tuple: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> Tuple: """simple docstring""" A__ : Dict =datasets.Dataset.from_dict(__snake_case ) A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__snake_case ) ) as con: A__ : Any =con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__snake_case, """w""", newline="""""" ) as f: A__ : Tuple =csv.DictWriter(__snake_case, fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__snake_case, """w""", newline="""""" ) as f: A__ : str =csv.DictWriter(__snake_case, fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> Tuple: """simple docstring""" import bza A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(__snake_case, """rb""" ) as f: A__ : Optional[Any] =f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__snake_case, """wb""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[int], __snake_case : Dict ) -> List[str]: """simple docstring""" A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Any, __snake_case : List[Any], __snake_case : str ) -> Optional[int]: """simple docstring""" A__ : Tuple =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(csv_path.replace(""".csv""", """.CSV""" ) ) ) f.write(__snake_case, arcname=os.path.basename(csva_path.replace(""".csv""", """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Tuple, __snake_case : Any ) -> str: """simple docstring""" A__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" A__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) A__ : Optional[int] =pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__snake_case, """wb""" ) as f: A__ : List[str] =pq.ParquetWriter(__snake_case, schema=__snake_case ) A__ : Tuple =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]}, schema=__snake_case ) writer.write_table(__snake_case ) writer.close() return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple ) -> str: """simple docstring""" A__ : Union[str, Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) A__ : List[Any] ={"""data""": DATA} with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> Optional[int]: """simple docstring""" A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) A__ : Dict ={"""data""": DATA_DICT_OF_LISTS} with open(__snake_case, """w""" ) as f: json.dump(__snake_case, __snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> int: """simple docstring""" A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple ) -> str: """simple docstring""" A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str ) -> Dict: """simple docstring""" A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA_312: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict ) -> Dict: """simple docstring""" A__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__snake_case, """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__snake_case ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" import gzip A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__snake_case, """rb""" ) as orig_file: with gzip.open(__snake_case, """wb""" ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Any: """simple docstring""" import gzip A__ : int =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__snake_case, """rb""" ) as orig_file: with gzip.open(__snake_case, """wb""" ) as zipped_file: zipped_file.writelines(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str], __snake_case : str, __snake_case : Tuple ) -> Optional[int]: """simple docstring""" A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""nested""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : str, __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : str, __snake_case : Any ) -> List[str]: """simple docstring""" A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(__snake_case, """w""" ) as f: f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) f.add(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[str], __snake_case : List[str], __snake_case : Any ) -> Union[str, Any]: """simple docstring""" A__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(__snake_case, """w""" ) as f: f.add(__snake_case, arcname=os.path.join("""nested""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Any: """simple docstring""" A__ : int =["""0""", """1""", """2""", """3"""] A__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__snake_case, """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] =["""0""", """1""", """2""", """3"""] A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__snake_case, """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Tuple ) -> Optional[int]: """simple docstring""" A__ : Optional[int] =["""0""", """1""", """2""", """3"""] A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(__snake_case, """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Any, __snake_case : int ) -> str: """simple docstring""" A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any], __snake_case : Union[str, Any] ) -> List[str]: """simple docstring""" A__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : Tuple ) -> int: """simple docstring""" A__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__snake_case, arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : List[str] ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__snake_case, """w""", encoding="""utf-8""" ) as f: f.write(__snake_case ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> Dict: """simple docstring""" return os.path.join("""tests""", """features""", """data""", """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" return os.path.join("""tests""", """features""", """data""", """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : int, __snake_case : List[str] ) -> int: """simple docstring""" A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(__snake_case, """w""" ) as f: f.write(__snake_case, arcname=os.path.basename(__snake_case ) ) f.write(__snake_case, arcname=os.path.basename(__snake_case ).replace(""".jpg""", """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def __lowerCamelCase ( __snake_case : Optional[int] ) -> str: """simple docstring""" A__ : Dict =tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""", """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""", """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""", """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""", """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""", """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case : Tuple = None __snake_case : str = logging.get_logger(__name__) __snake_case : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __snake_case : Union[str, Any] = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } __snake_case : List[Any] = '▁' class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = BigBirdTokenizer __snake_case = ['input_ids', 'attention_mask'] __snake_case = [] def __init__( self : str , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Tuple="[SEP]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Optional[int]="[CLS]" , **lowerCAmelCase_ : Optional[int] , ) -> Any: '''simple docstring''' A__ : int =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token A__ : Optional[int] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token A__ : str =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token A__ : List[str] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token A__ : int =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token A__ : List[str] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ : Optional[int] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : Tuple =vocab_file A__ : Dict =False if not self.vocab_file else True def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : str =[self.sep_token_id] A__ : Optional[int] =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : List[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) return (out_vocab_file,)
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" A__ : list[list[int]] =[[0 for _ in range(__snake_case )] for _ in range(m + 1 )] for i in range(m + 1 ): A__ : List[Any] =1 for n in range(m + 1 ): for k in range(1, __snake_case ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __snake_case : List[Any] = int(input('Enter a number: ').strip()) print(partition(n)) except ValueError: print('Please enter a number.') else: try: __snake_case : str = int(sys.argv[1]) print(partition(n)) except ValueError: print('Please pass a number.')
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' from __future__ import annotations import math def __lowerCamelCase ( __snake_case : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(__snake_case ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __snake_case : Union[str, Any] = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def __lowerCamelCase ( __snake_case : int ) -> list[int]: """simple docstring""" if not isinstance(__snake_case, __snake_case ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A__ : str =[] for num in range(len(__snake_case ) ): A__ : List[Any] =0 while 2 * i * i <= odd_composites[num]: A__ : List[str] =odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def __lowerCamelCase ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : str = logging.get_logger(__name__) __snake_case : Tuple = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'time_series_transformer' __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : int = 64 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Dict=True , **lowerCAmelCase_ : str , ) -> Union[str, Any]: '''simple docstring''' A__ : Any =prediction_length A__ : Any =context_length or prediction_length A__ : Dict =distribution_output A__ : str =loss A__ : int =input_size A__ : Optional[int] =num_time_features A__ : Optional[int] =lags_sequence A__ : str =scaling A__ : Dict =num_dynamic_real_features A__ : Tuple =num_static_real_features A__ : List[Any] =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A__ : Any =cardinality else: A__ : Optional[int] =[0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase_ ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A__ : Optional[int] =embedding_dimension else: A__ : int =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ : List[str] =num_parallel_samples # Transformer architecture configuration A__ : int =input_size * len(lowerCAmelCase_ ) + self._number_of_features A__ : List[Any] =d_model A__ : int =encoder_attention_heads A__ : int =decoder_attention_heads A__ : Optional[int] =encoder_ffn_dim A__ : List[Any] =decoder_ffn_dim A__ : int =encoder_layers A__ : List[Any] =decoder_layers A__ : int =dropout A__ : Optional[Any] =attention_dropout A__ : int =activation_dropout A__ : List[Any] =encoder_layerdrop A__ : List[str] =decoder_layerdrop A__ : Optional[Any] =activation_function A__ : str =init_std A__ : Dict =use_cache super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance __snake_case : Dict = 6378137.0 __snake_case : Optional[int] = 6356752.314245 __snake_case : str = 637_8137 def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float, __snake_case : float ) -> float: """simple docstring""" A__ : Tuple =(AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude A__ : Union[str, Any] =atan((1 - flattening) * tan(radians(__snake_case ) ) ) A__ : str =atan((1 - flattening) * tan(radians(__snake_case ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius A__ : List[Any] =haversine_distance(__snake_case, __snake_case, __snake_case, __snake_case ) / EQUATORIAL_RADIUS # Intermediate P and Q values A__ : Optional[Any] =(b_lata + b_lata) / 2 A__ : Optional[int] =(b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) A__ : Tuple =(sin(__snake_case ) ** 2) * (cos(__snake_case ) ** 2) A__ : Union[str, Any] =cos(sigma / 2 ) ** 2 A__ : int =(sigma - sin(__snake_case )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) A__ : Optional[Any] =(cos(__snake_case ) ** 2) * (sin(__snake_case ) ** 2) A__ : Optional[Any] =sin(sigma / 2 ) ** 2 A__ : int =(sigma + sin(__snake_case )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase : '''simple docstring''' @staticmethod def lowercase__ ( *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Optional[Any]: '''simple docstring''' A__ : str =ObjectDetectionPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> Dict: '''simple docstring''' A__ : str =object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase_ , { """score""": ANY(lowerCAmelCase_ ), """label""": ANY(lowerCAmelCase_ ), """box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )}, } , ) import datasets A__ : Dict =datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) A__ : Any =[ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] A__ : Dict =object_detector(lowerCAmelCase_ , threshold=0.0 ) self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCAmelCase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase_ , { """score""": ANY(lowerCAmelCase_ ), """label""": ANY(lowerCAmelCase_ ), """box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def lowercase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' pass @require_torch def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : List[str] ="""hf-internal-testing/tiny-detr-mobilenetsv3""" A__ : Dict =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) A__ : int =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : List[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) A__ : Optional[int] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""facebook/detr-resnet-50""" A__ : Tuple =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ ) A__ : int =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ ) A__ : Optional[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ : Optional[Any] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' A__ : Optional[Any] ="""facebook/detr-resnet-50""" A__ : Optional[int] =pipeline("""object-detection""" , model=lowerCAmelCase_ ) A__ : int =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) A__ : Optional[Any] =object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =0.9985 A__ : Optional[Any] ="""facebook/detr-resnet-50""" A__ : Dict =pipeline("""object-detection""" , model=lowerCAmelCase_ ) A__ : Any =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=lowerCAmelCase_ ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : Optional[Any] ="""Narsil/layoutlmv3-finetuned-funsd""" A__ : Any =0.9993 A__ : List[Any] =pipeline("""object-detection""" , model=lowerCAmelCase_ , threshold=lowerCAmelCase_ ) A__ : Dict =object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __snake_case : int = logging.getLogger(__name__) def __lowerCamelCase ( __snake_case : torch.nn.Module, __snake_case : BnbQuantizationConfig, __snake_case : Union[str, os.PathLike] = None, __snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None, __snake_case : Optional[List[str]] = None, __snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None, __snake_case : Optional[Union[str, os.PathLike]] = None, __snake_case : bool = False, ) -> Any: """simple docstring""" A__ : str =bnb_quantization_config.load_in_abit A__ : str =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) A__ : Union[str, Any] =[] # custom device map if isinstance(__snake_case, __snake_case ) and len(device_map.keys() ) > 1: A__ : List[str] =[key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ : Any =get_keys_to_not_convert(__snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__snake_case ) A__ : Optional[int] =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ : Optional[Any] =[] A__ : List[str] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__snake_case ) # compatibility with peft A__ : Optional[int] =load_in_abit A__ : Union[str, Any] =load_in_abit A__ : Any =get_parameter_device(__snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) A__ : List[Any] =replace_with_bnb_layers(__snake_case, __snake_case, modules_to_not_convert=__snake_case ) # convert param to the right dtype A__ : int =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ : int =name.replace(""".weight""", """""" ).replace(""".bias""", """""" ) A__ : Any =getattr(__snake_case, __snake_case, __snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__snake_case ): param.to(__snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f"The model device type is {model_device.type}. However, cuda is needed for quantization." """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): A__ : Dict =replace_with_bnb_layers( __snake_case, __snake_case, modules_to_not_convert=__snake_case ) A__ : Tuple =get_quantized_model_device_map( __snake_case, __snake_case, __snake_case, max_memory=__snake_case, no_split_module_classes=__snake_case, ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ : Tuple =True A__ : Any =any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( __snake_case, __snake_case, __snake_case, dtype=bnb_quantization_config.torch_dtype, offload_folder=__snake_case, offload_state_dict=__snake_case, keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules, offload_abit_bnb=load_in_abit and offload, ) return dispatch_model(__snake_case, device_map=__snake_case, offload_dir=__snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str], __snake_case : Union[str, Any]=None, __snake_case : str=None, __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" if device_map is None: if torch.cuda.is_available(): A__ : List[str] ={"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(__snake_case, __snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) A__ : int ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ : Dict ={} A__ : Union[str, Any] =special_dtypes A__ : Optional[Any] =no_split_module_classes A__ : Any =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ : Union[str, Any] =get_balanced_memory( __snake_case, low_zero=(device_map == """balanced_low_0"""), max_memory=__snake_case, **__snake_case, ) A__ : List[Any] =max_memory A__ : List[Any] =infer_auto_device_map(__snake_case, **__snake_case ) if isinstance(__snake_case, __snake_case ): # check if don't have any quantized module on the cpu A__ : Tuple =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ : Optional[int] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[Any], __snake_case : List[Any]=None, __snake_case : Tuple=None ) -> List[Any]: """simple docstring""" if modules_to_not_convert is None: A__ : int =[] A__ : Optional[int] =_replace_with_bnb_layers( __snake_case, __snake_case, __snake_case, __snake_case ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowerCamelCase ( __snake_case : Dict, __snake_case : Tuple, __snake_case : Dict=None, __snake_case : Tuple=None, ) -> Tuple: """simple docstring""" A__ : Tuple =False for name, module in model.named_children(): if current_key_name is None: A__ : str =[] current_key_name.append(__snake_case ) if isinstance(__snake_case, nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ : Optional[int] =""".""".join(__snake_case ) A__ : Dict =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ : str =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ : Optional[int] =bnb.nn.LinearabitLt( module.in_features, module.out_features, module.bias is not None, has_fpaa_weights=__snake_case, threshold=bnb_quantization_config.llm_inta_threshold, ) elif bnb_quantization_config.load_in_abit: A__ : Union[str, Any] =bnb.nn.Linearabit( module.in_features, module.out_features, module.bias is not None, bnb_quantization_config.bnb_abit_compute_dtype, compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant, quant_type=bnb_quantization_config.bnb_abit_quant_type, ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) A__ : Optional[int] =module.weight.data if module.bias is not None: A__ : str =module.bias.data bnb_module.requires_grad_(__snake_case ) setattr(__snake_case, __snake_case, __snake_case ) A__ : List[str] =True if len(list(module.children() ) ) > 0: A__ : List[Any] =_replace_with_bnb_layers( __snake_case, __snake_case, __snake_case, __snake_case ) A__ : Dict =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCamelCase ( __snake_case : List[str] ) -> str: """simple docstring""" with init_empty_weights(): A__ : int =deepcopy(__snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ : Optional[Any] =find_tied_parameters(__snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(__snake_case, __snake_case ): A__ : List[str] =sum(list(tied_params.values() ), [] ) + list(tied_params.keys() ) else: A__ : Any =sum(__snake_case, [] ) A__ : List[str] =len(__snake_case ) > 0 # Check if it is a base model A__ : Dict =False if hasattr(__snake_case, """base_model_prefix""" ): A__ : Dict =not hasattr(__snake_case, model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ : List[Any] =list(model.named_children() ) A__ : List[str] =[list_modules[-1][0]] # add last module together with tied weights A__ : Dict =set(__snake_case ) - set(__snake_case ) A__ : Dict =list(set(__snake_case ) ) + list(__snake_case ) # remove ".weight" from the keys A__ : Optional[int] =[""".weight""", """.bias"""] A__ : str =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ : Union[str, Any] =name.replace(__snake_case, """""" ) filtered_module_names.append(__snake_case ) return filtered_module_names def __lowerCamelCase ( __snake_case : List[Any] ) -> str: """simple docstring""" for m in model.modules(): if isinstance(__snake_case, bnb.nn.Linearabit ): return True return False def __lowerCamelCase ( __snake_case : nn.Module ) -> List[str]: """simple docstring""" return next(parameter.parameters() ).device def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[Any], __snake_case : Tuple, __snake_case : int, __snake_case : str, __snake_case : List[str], __snake_case : Tuple ) -> int: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(__snake_case, __snake_case, 0, dtype=__snake_case, value=__snake_case ) A__ : List[Any] =param_name A__ : Tuple =model if "." in tensor_name: A__ : Optional[int] =tensor_name.split(""".""" ) for split in splits[:-1]: A__ : Optional[int] =getattr(__snake_case, __snake_case ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) A__ : Tuple =new_module A__ : List[str] =splits[-1] # offload weights A__ : Union[str, Any] =False offload_weight(module._parameters[tensor_name], __snake_case, __snake_case, index=__snake_case ) if hasattr(module._parameters[tensor_name], """SCB""" ): offload_weight( module._parameters[tensor_name].SCB, param_name.replace("""weight""", """SCB""" ), __snake_case, index=__snake_case, ) else: offload_weight(__snake_case, __snake_case, __snake_case, index=__snake_case ) offload_weight(__snake_case, param_name.replace("""weight""", """SCB""" ), __snake_case, index=__snake_case ) set_module_tensor_to_device(__snake_case, __snake_case, """meta""", dtype=__snake_case, value=torch.empty(*param.size() ) )
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : int ) -> List[str]: """simple docstring""" A__ : List[Any] =AlbertConfig.from_json_file(__snake_case ) print(f"Building PyTorch model from configuration: {config}" ) A__ : List[str] =AlbertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_albert(__snake_case, __snake_case, __snake_case ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict(), __snake_case ) if __name__ == "__main__": __snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : str = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' import gc import threading import time import psutil import torch class lowerCamelCase : '''simple docstring''' def __init__( self : List[str] ) -> Any: '''simple docstring''' A__ : Union[str, Any] =psutil.Process() A__ : Union[str, Any] =False def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Optional[Any] =-1 while True: A__ : Any =max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =True A__ : str =threading.Thread(target=self.peak_monitor ) A__ : Optional[Any] =True self.thread.start() def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' A__ : str =False self.thread.join() return self.cpu_memory_peak __snake_case : List[Any] = PeakCPUMemory() def __lowerCamelCase ( ) -> Dict: """simple docstring""" A__ : Optional[Any] ={"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem A__ : Dict =psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): A__ : int =torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def __lowerCamelCase ( __snake_case : int ) -> Dict: """simple docstring""" A__ : List[Any] ={"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem A__ : List[str] =(psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 A__ : List[Any] =(cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): A__ : Dict =(torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 A__ : Union[str, Any] =(torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 return measures def __lowerCamelCase ( __snake_case : int, __snake_case : Optional[Any] ) -> str: """simple docstring""" print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB" ) A__ : Optional[int] =measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva __snake_case : str = '' __snake_case : List[Any] = '' __snake_case : Optional[int] = '' __snake_case : Union[str, Any] = 1 # (0 is vertical, 1 is horizontal) def __lowerCamelCase ( ) -> None: """simple docstring""" A__ : List[Any] =get_dataset(__snake_case, __snake_case ) print("""Processing...""" ) A__ : List[Any] =update_image_and_anno(__snake_case, __snake_case, __snake_case ) for index, image in enumerate(__snake_case ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' A__ : Optional[int] =random_chars(32 ) A__ : str =paths[index].split(os.sep )[-1].rsplit(""".""", 1 )[0] A__ : Tuple =f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg", __snake_case, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Success {index+1}/{len(__snake_case )} with {file_name}" ) A__ : List[Any] =[] for anno in new_annos[index]: A__ : List[Any] =f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__snake_case ) with open(f"/{file_root}.txt", """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> tuple[list, list]: """simple docstring""" A__ : Optional[Any] =[] A__ : Optional[Any] =[] for label_file in glob.glob(os.path.join(__snake_case, """*.txt""" ) ): A__ : int =label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(__snake_case ) as in_file: A__ : List[Any] =in_file.readlines() A__ : Optional[int] =os.path.join(__snake_case, f"{label_name}.jpg" ) A__ : List[str] =[] for obj_list in obj_lists: A__ : int =obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__snake_case ) labels.append(__snake_case ) return img_paths, labels def __lowerCamelCase ( __snake_case : list, __snake_case : list, __snake_case : int = 1 ) -> tuple[list, list, list]: """simple docstring""" A__ : List[str] =[] A__ : Dict =[] A__ : List[Any] =[] for idx in range(len(__snake_case ) ): A__ : Dict =[] A__ : str =img_list[idx] path_list.append(__snake_case ) A__ : Dict =anno_list[idx] A__ : Any =cva.imread(__snake_case ) if flip_type == 1: A__ : str =cva.flip(__snake_case, __snake_case ) for bbox in img_annos: A__ : Union[str, Any] =1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: A__ : List[str] =cva.flip(__snake_case, __snake_case ) for bbox in img_annos: A__ : Tuple =1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__snake_case ) new_imgs_list.append(__snake_case ) return new_imgs_list, new_annos_lists, path_list def __lowerCamelCase ( __snake_case : int = 32 ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" A__ : List[str] =ascii_lowercase + digits return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) ) if __name__ == "__main__": main() print('DONE ✅')
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' from collections.abc import Generator from math import sin def __lowerCamelCase ( __snake_case : bytes ) -> bytes: """simple docstring""" if len(__snake_case ) != 32: raise ValueError("""Input must be of length 32""" ) A__ : Optional[Any] =b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __lowerCamelCase ( __snake_case : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) A__ : List[str] =format(__snake_case, """08x""" )[-8:] A__ : Any =b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def __lowerCamelCase ( __snake_case : bytes ) -> bytes: """simple docstring""" A__ : Optional[int] =b"""""" for char in message: bit_string += format(__snake_case, """08b""" ).encode("""utf-8""" ) A__ : Optional[int] =format(len(__snake_case ), """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__snake_case ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __lowerCamelCase ( __snake_case : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__snake_case ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0, len(__snake_case ), 512 ): A__ : Optional[int] =bit_string[pos : pos + 512] A__ : Union[str, Any] =[] for i in range(0, 512, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def __lowerCamelCase ( __snake_case : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) A__ : List[str] =format(__snake_case, """032b""" ) A__ : Optional[int] ="""""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__snake_case, 2 ) def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" return (a + b) % 2**32 def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __lowerCamelCase ( __snake_case : bytes ) -> bytes: """simple docstring""" A__ : Dict =preprocess(__snake_case ) A__ : int =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A__ : Union[str, Any] =0X67_45_23_01 A__ : int =0Xef_cd_ab_89 A__ : Dict =0X98_ba_dc_fe A__ : Optional[int] =0X10_32_54_76 A__ : Union[str, Any] =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__snake_case ): A__ : Optional[int] =aa A__ : Union[str, Any] =ba A__ : Tuple =ca A__ : Optional[int] =da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A__ : Any =d ^ (b & (c ^ d)) A__ : Union[str, Any] =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A__ : Any =c ^ (d & (b ^ c)) A__ : List[str] =(5 * i + 1) % 16 elif i <= 47: A__ : Any =b ^ c ^ d A__ : Union[str, Any] =(3 * i + 5) % 16 else: A__ : Optional[Any] =c ^ (b | not_aa(__snake_case )) A__ : str =(7 * i) % 16 A__ : Any =(f + a + added_consts[i] + block_words[g]) % 2**32 A__ : Optional[int] =d A__ : str =c A__ : Tuple =b A__ : int =sum_aa(__snake_case, left_rotate_aa(__snake_case, shift_amounts[i] ) ) # Add hashed chunk to running total A__ : List[Any] =sum_aa(__snake_case, __snake_case ) A__ : List[str] =sum_aa(__snake_case, __snake_case ) A__ : Union[str, Any] =sum_aa(__snake_case, __snake_case ) A__ : str =sum_aa(__snake_case, __snake_case ) A__ : int =reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) return digest if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int = 100 ) -> int: """simple docstring""" A__ : Tuple =n * (n + 1) * (2 * n + 1) / 6 A__ : Optional[Any] =(n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" A__ : Optional[Any] =torch.load(__snake_case, map_location="""cpu""" ) A__ : Optional[int] =chkpt["""model"""] # We have the base model one level deeper than the original XLM repository A__ : Any ={} for k, v in state_dict.items(): if "pred_layer" in k: A__ : str =v else: A__ : Dict =v A__ : Union[str, Any] =chkpt["""params"""] A__ : Dict ={n: v for n, v in config.items() if not isinstance(__snake_case, (torch.FloatTensor, numpy.ndarray) )} A__ : List[str] =chkpt["""dico_word2id"""] A__ : List[Any] ={s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""", """""" ): i for s, i in vocab.items()} # Save pytorch-model A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + WEIGHTS_NAME A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + CONFIG_NAME A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(__snake_case, __snake_case ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__snake_case, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(__snake_case, indent=2 ) + """\n""" ) print(f"Save vocab file to {pytorch_config_dump_path}" ) with open(__snake_case, """w""", encoding="""utf-8""" ) as f: f.write(json.dumps(__snake_case, indent=2 ) + """\n""" ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : Tuple = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __snake_case : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __snake_case : Optional[Any] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> int: '''simple docstring''' A__ : Dict =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) A__ : Optional[Any] =self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def lowercase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' A__ : List[Any] ="""src/diffusers""" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=None ) -> str: '''simple docstring''' A__ : Union[str, Any] =comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A__ : Optional[Any] =comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result A__ : int =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ : Tuple =black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) A__ : Tuple =os.path.join(self.diffusers_dir , """new_code.py""" ) with open(lowerCAmelCase_ , """w""" , newline="""\n""" ) as f: f.write(lowerCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ ) with open(lowerCAmelCase_ , """r""" ) as f: self.assertTrue(f.read() , lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' A__ : Union[str, Any] =check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCAmelCase_ ) , ) # Copy consistency with a really long name A__ : Optional[int] ="""TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub("""Bert""" , lowerCAmelCase_ , lowerCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCAmelCase_ , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCAmelCase_ ) , )
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=18 , lowerCAmelCase_ : List[str]=30 , lowerCAmelCase_ : Dict=4_00 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=True , ) -> int: '''simple docstring''' A__ : List[Any] =size if size is not None else {"""shortest_edge""": 20} A__ : Dict =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A__ : Any =parent A__ : List[Any] =batch_size A__ : Dict =num_channels A__ : Optional[int] =image_size A__ : Union[str, Any] =min_resolution A__ : Any =max_resolution A__ : List[Any] =do_resize A__ : Union[str, Any] =size A__ : str =do_center_crop A__ : Dict =crop_size A__ : int =do_flip_channel_order def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = MobileViTImageProcessor if is_vision_available() else None def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =MobileViTImageProcessingTester(self ) @property def lowercase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """center_crop""" ) ) self.assertTrue(hasattr(lowerCAmelCase_ , """do_flip_channel_order""" ) ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : Any =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) A__ : List[str] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' A__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image ) # Test not batched input A__ : Dict =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Union[str, Any] =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : int =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray ) # Test not batched input A__ : List[str] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : int =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Dict =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor ) # Test not batched input A__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : int =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __snake_case : Optional[Any] = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> Tuple: """simple docstring""" warnings.warn(__snake_case, __snake_case ) requires_backends(__snake_case, """sklearn""" ) return (preds == labels).mean() def __lowerCamelCase ( __snake_case : str, __snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" warnings.warn(__snake_case, __snake_case ) requires_backends(__snake_case, """sklearn""" ) A__ : int =simple_accuracy(__snake_case, __snake_case ) A__ : Dict =fa_score(y_true=__snake_case, y_pred=__snake_case ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Dict ) -> Union[str, Any]: """simple docstring""" warnings.warn(__snake_case, __snake_case ) requires_backends(__snake_case, """sklearn""" ) A__ : Union[str, Any] =pearsonr(__snake_case, __snake_case )[0] A__ : Any =spearmanr(__snake_case, __snake_case )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict, __snake_case : List[Any] ) -> Any: """simple docstring""" warnings.warn(__snake_case, __snake_case ) requires_backends(__snake_case, """sklearn""" ) assert len(__snake_case ) == len(__snake_case ), f"Predictions and labels have mismatched lengths {len(__snake_case )} and {len(__snake_case )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__snake_case, __snake_case )} elif task_name == "sst-2": return {"acc": simple_accuracy(__snake_case, __snake_case )} elif task_name == "mrpc": return acc_and_fa(__snake_case, __snake_case ) elif task_name == "sts-b": return pearson_and_spearman(__snake_case, __snake_case ) elif task_name == "qqp": return acc_and_fa(__snake_case, __snake_case ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__snake_case, __snake_case )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__snake_case, __snake_case )} elif task_name == "qnli": return {"acc": simple_accuracy(__snake_case, __snake_case )} elif task_name == "rte": return {"acc": simple_accuracy(__snake_case, __snake_case )} elif task_name == "wnli": return {"acc": simple_accuracy(__snake_case, __snake_case )} elif task_name == "hans": return {"acc": simple_accuracy(__snake_case, __snake_case )} else: raise KeyError(__snake_case ) def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" warnings.warn(__snake_case, __snake_case ) requires_backends(__snake_case, """sklearn""" ) if len(__snake_case ) != len(__snake_case ): raise ValueError(f"Predictions and labels have mismatched lengths {len(__snake_case )} and {len(__snake_case )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__snake_case, __snake_case )} else: raise KeyError(__snake_case )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Dict , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: A__ : Any =self.unet.config.sample_size / self.unet.config.sample_rate A__ : Tuple =audio_length_in_s * self.unet.config.sample_rate A__ : Dict =2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}." ) A__ : Any =int(lowerCAmelCase_ ) if sample_size % down_scale_factor != 0: A__ : Optional[Any] =( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" """ process.""" ) A__ : int =int(lowerCAmelCase_ ) A__ : Tuple =next(iter(self.unet.parameters() ) ).dtype A__ : List[Any] =(batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) A__ : List[Any] =randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) # set step values self.scheduler.set_timesteps(lowerCAmelCase_ , device=audio.device ) A__ : List[Any] =self.scheduler.timesteps.to(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A__ : Optional[Any] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 A__ : Optional[int] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample A__ : List[str] =audio.clamp(-1 , 1 ).float().cpu().numpy() A__ : Optional[Any] =audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCAmelCase_ )
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case : Tuple = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' __snake_case : str = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' __snake_case : Union[str, Any] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : str ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Optional[int]=False ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =compute_bleu( reference_corpus=lowerCAmelCase_ , translation_corpus=lowerCAmelCase_ , max_order=lowerCAmelCase_ , smooth=lowerCAmelCase_ ) (A__) : str =score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase ( lowercase_ , unittest.TestCase ): __snake_case = ShapEImgaImgPipeline __snake_case = ['image'] __snake_case = ['image'] __snake_case = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __snake_case = False @property def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return 32 @property def lowercase__ ( self : Any ) -> List[Any]: '''simple docstring''' return 32 @property def lowercase__ ( self : int ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' return 8 @property def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) A__ : int =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) A__ : List[Any] =CLIPVisionModel(lowerCAmelCase_ ) return model @property def lowercase__ ( self : Dict ) -> str: '''simple docstring''' A__ : List[Any] =CLIPImageProcessor( crop_size=2_24 , do_center_crop=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] ={ """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } A__ : Union[str, Any] =PriorTransformer(**lowerCAmelCase_ ) return model @property def lowercase__ ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[int] ={ """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } A__ : str =ShapERenderer(**lowerCAmelCase_ ) return model def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : str =self.dummy_prior A__ : Union[str, Any] =self.dummy_image_encoder A__ : Tuple =self.dummy_image_processor A__ : List[Any] =self.dummy_renderer A__ : Tuple =HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=lowerCAmelCase_ , clip_sample=lowerCAmelCase_ , clip_sample_range=1.0 , ) A__ : Optional[int] ={ """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowercase__ ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=0 ) -> List[str]: '''simple docstring''' A__ : List[str] =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : Dict =torch.manual_seed(lowerCAmelCase_ ) else: A__ : List[Any] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Tuple ={ """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] ="""cpu""" A__ : Dict =self.get_dummy_components() A__ : Tuple =self.pipeline_class(**lowerCAmelCase_ ) A__ : List[Any] =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) A__ : int =output.images[0] A__ : Optional[Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) A__ : Tuple =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : int ) -> int: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self : int ) -> int: '''simple docstring''' A__ : Optional[int] =torch_device == """cpu""" A__ : List[str] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , ) def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : List[str] =self.get_dummy_components() A__ : Any =self.pipeline_class(**lowerCAmelCase_ ) A__ : Optional[int] =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict =1 A__ : str =2 A__ : str =self.get_dummy_inputs(lowerCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: A__ : Tuple =batch_size * [inputs[key]] A__ : List[str] =pipe(**lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def lowercase__ ( self : List[str] ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : str =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) A__ : List[Any] =load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) A__ : Dict =ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) A__ : int =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Tuple =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) A__ : Optional[Any] =pipe( lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : str ) -> Union[str, Any]: """simple docstring""" A__ : Optional[int] =SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["""stage2""", """stage3""", """stage4"""], ) A__ : Union[str, Any] =DetaConfig( backbone_config=__snake_case, num_queries=900, encoder_ffn_dim=2_048, decoder_ffn_dim=2_048, num_feature_levels=5, assign_first_stage=__snake_case, with_box_refine=__snake_case, two_stage=__snake_case, ) # set labels A__ : Optional[int] ="""huggingface/label-files""" if "o365" in model_name: A__ : Tuple =366 A__ : Union[str, Any] ="""object365-id2label.json""" else: A__ : Any =91 A__ : Optional[Any] ="""coco-detection-id2label.json""" A__ : Optional[int] =num_labels A__ : Any =json.load(open(cached_download(hf_hub_url(__snake_case, __snake_case, repo_type="""dataset""" ) ), """r""" ) ) A__ : str ={int(__snake_case ): v for k, v in idalabel.items()} A__ : Union[str, Any] =idalabel A__ : Tuple ={v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( __snake_case : Any ) -> List[str]: """simple docstring""" A__ : int =[] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : Tuple ) -> Any: """simple docstring""" A__ : List[str] =dct.pop(__snake_case ) A__ : int =val def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[int] ) -> str: """simple docstring""" A__ : Tuple =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A__ : Tuple =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A__ : Optional[int] =state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) A__ : Union[str, Any] =state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Any =in_proj_weight[:dim, :] A__ : Any =in_proj_bias[: dim] A__ : List[Any] =in_proj_weight[ dim : dim * 2, : ] A__ : List[Any] =in_proj_bias[ dim : dim * 2 ] A__ : str =in_proj_weight[ -dim :, : ] A__ : int =in_proj_bias[-dim :] # fmt: on def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[Any] ) -> Tuple: """simple docstring""" A__ : Union[str, Any] =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention A__ : Optional[Any] =state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) A__ : str =state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict A__ : str =in_proj_weight[:hidden_size, :] A__ : Dict =in_proj_bias[:hidden_size] A__ : List[Any] =in_proj_weight[ hidden_size : hidden_size * 2, : ] A__ : str =in_proj_bias[hidden_size : hidden_size * 2] A__ : Optional[int] =in_proj_weight[-hidden_size:, :] A__ : List[Any] =in_proj_bias[-hidden_size:] def __lowerCamelCase ( ) -> List[str]: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Union[str, Any] =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : int ) -> List[str]: """simple docstring""" A__ : str =get_deta_config(__snake_case ) # load original state dict if model_name == "deta-swin-large": A__ : Optional[Any] =hf_hub_download(repo_id="""nielsr/deta-checkpoints""", filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": A__ : Optional[Any] =hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""", filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f"Model name {model_name} not supported" ) A__ : Tuple =torch.load(__snake_case, map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(__snake_case, param.shape ) # rename keys A__ : Tuple =create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_swin_q_k_v(__snake_case, config.backbone_config ) read_in_decoder_q_k_v(__snake_case, __snake_case ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: A__ : Union[str, Any] =state_dict.pop(__snake_case ) A__ : Tuple =val if "input_proj" in key: A__ : Optional[Any] =state_dict.pop(__snake_case ) A__ : int =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: A__ : int =state_dict.pop(__snake_case ) A__ : List[str] =val # finally, create HuggingFace model and load state dict A__ : Any =DetaForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() A__ : str ="""cuda""" if torch.cuda.is_available() else """cpu""" model.to(__snake_case ) # load image processor A__ : int =DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image A__ : Tuple =prepare_img() A__ : Any =processor(images=__snake_case, return_tensors="""pt""" ) A__ : Optional[Any] =encoding["""pixel_values"""] A__ : Optional[int] =model(pixel_values.to(__snake_case ) ) # verify logits print("""Logits:""", outputs.logits[0, :3, :3] ) print("""Boxes:""", outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": A__ : Dict =torch.tensor( [[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] ) A__ : Optional[int] =torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] ) elif model_name == "deta-swin-large-o365": A__ : Union[str, Any] =torch.tensor( [[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] ) A__ : Dict =torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] ) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(__snake_case ), atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(__snake_case ), atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f"jozhang97/{model_name}" ) processor.push_to_hub(f"jozhang97/{model_name}" ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import operator as op def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Dict: """simple docstring""" A__ : List[str] =[] A__ : str =lambda __snake_case, __snake_case : int(x / y ) # noqa: E731 integer division operation A__ : Optional[int] ={ """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ), """Action""".center(12 ), """Stack""", sep=""" | """ ) print("""-""" * (30 + len(__snake_case )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__snake_case ) # append x to stack # output in tabular format print(x.rjust(8 ), ("""push(""" + x + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """ ) else: A__ : int =stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ), ("""pop(""" + b + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """ ) A__ : Tuple =stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ), ("""pop(""" + a + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """ ) stack.append( str(opr[x](int(__snake_case ), int(__snake_case ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("""push(""" + a + x + b + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """, ) return int(stack[0] ) if __name__ == "__main__": __snake_case : Any = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case : Tuple = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys __snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float ) -> tuple: """simple docstring""" A__ : Optional[int] =namedtuple("""result""", """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""", power / current ) elif current == 0: return result("""current""", power / voltage ) elif power == 0: return result("""power""", float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowerCamelCase ( __snake_case : str = "laptop" ) -> DataFrame: """simple docstring""" A__ : str =f"https://www.amazon.in/laptop/s?k={product}" A__ : Dict ={ """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } A__ : List[str] =BeautifulSoup(requests.get(__snake_case, headers=__snake_case ).text ) # Initialize a Pandas dataframe with the column titles A__ : Union[str, Any] =DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""", attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""}, ), soup.find_all("""div""", attrs={"""class""": """a-row a-size-base a-color-base"""} ), ): try: A__ : Tuple =item.ha.text A__ : Optional[Any] ="""https://www.amazon.in/""" + item.ha.a["""href"""] A__ : Any =item.find("""span""", attrs={"""class""": """a-offscreen"""} ).text try: A__ : Tuple =item.find("""span""", attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: A__ : Optional[Any] ="""Not available""" try: A__ : Tuple =( """₹""" + item.find( """span""", attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: A__ : Union[str, Any] ="""""" try: A__ : Optional[int] =float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""", """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""", """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""", """""" ) ) ) * 100 ) except ValueError: A__ : Optional[int] =float("""nan""" ) except AttributeError: pass A__ : List[str] =[ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A__ : Any =""" """ A__ : Optional[int] =""" """ data_frame.index += 1 return data_frame if __name__ == "__main__": __snake_case : Tuple = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
import doctest from collections import deque import numpy as np class lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] ) -> None: '''simple docstring''' A__ : Optional[int] =[2, 1, 2, -1] A__ : Dict =[1, 2, 3, 4] def lowercase__ ( self : List[str] ) -> list[float]: '''simple docstring''' A__ : Dict =len(self.first_signal ) A__ : Optional[int] =len(self.second_signal ) A__ : int =max(lowerCAmelCase_ , lowerCAmelCase_ ) # create a zero matrix of max_length x max_length A__ : List[Any] =[[0] * max_length for i in range(lowerCAmelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase_ ): A__ : Dict =deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase_ ) for j, item in enumerate(lowerCAmelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal A__ : int =np.matmul(np.transpose(lowerCAmelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata __snake_case : int = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class lowerCamelCase ( tr.AbstractTransform ): '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase_ : str = " " ) -> int: '''simple docstring''' A__ : Dict =sentence_delimiter def lowercase__ ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' return list(lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Dict =[] for sent_idx, sentence in enumerate(lowerCAmelCase_ ): chars.extend(self.process_string(lowerCAmelCase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase_ ) - 1: chars.append(self.sentence_delimiter ) return chars __snake_case : List[Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __snake_case : Optional[int] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __snake_case : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __snake_case : Union[str, Any] = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' __snake_case : str = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Optional[Any]: '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase_ , lowerCAmelCase_ , truth_transform=lowerCAmelCase_ , hypothesis_transform=lowerCAmelCase_ , )["wer"] A__ : List[Any] =0 A__ : Any =0 for prediction, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Optional[Any] =jiwer.compute_measures( lowerCAmelCase_ , lowerCAmelCase_ , truth_transform=lowerCAmelCase_ , hypothesis_transform=lowerCAmelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class lowerCamelCase : def __init__( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None: '''simple docstring''' if len(lowerCAmelCase_ ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) A__ : list[float] =list(lowerCAmelCase_ ) A__ : Any =degree def __add__( self : List[str] , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' if self.degree > polynomial_a.degree: A__ : Optional[Any] =self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCAmelCase_ ) else: A__ : str =polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCAmelCase_ ) def __sub__( self : List[Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[Any] ) -> Polynomial: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : Dict , lowerCAmelCase_ : Polynomial ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : int | float ) -> int | float: '''simple docstring''' A__ : int | float =0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Any ) -> str: '''simple docstring''' A__ : Dict ="""""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ ) return polynomial def __repr__( self : Optional[Any] ) -> str: '''simple docstring''' return self.__str__() def lowercase__ ( self : List[str] ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * self.degree for i in range(self.degree ): A__ : str =self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : int | float = 0 ) -> Polynomial: '''simple docstring''' A__ : list[float] =[0] * (self.degree + 2) A__ : Any =constant for i in range(self.degree + 1 ): A__ : List[str] =self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCAmelCase_ ) def __eq__( self : Union[str, Any] , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : str , lowerCAmelCase_ : object ) -> bool: '''simple docstring''' return not self.__eq__(lowerCAmelCase_ )
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str | Literal[False]: """simple docstring""" A__ : Any =list(__snake_case ) A__ : Dict =list(__snake_case ) A__ : List[str] =0 for i in range(len(__snake_case ) ): if lista[i] != lista[i]: count += 1 A__ : List[str] ="""_""" if count > 1: return False else: return "".join(__snake_case ) def __lowerCamelCase ( __snake_case : list[str] ) -> list[str]: """simple docstring""" A__ : str =[] while True: A__ : Dict =["""$"""] * len(__snake_case ) A__ : List[str] =[] for i in range(len(__snake_case ) ): for j in range(i + 1, len(__snake_case ) ): A__ : List[str] =compare_string(binary[i], binary[j] ) if k is False: A__ : str ="""*""" A__ : Union[str, Any] ="""*""" temp.append("""X""" ) for i in range(len(__snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__snake_case ) == 0: return pi A__ : Union[str, Any] =list(set(__snake_case ) ) def __lowerCamelCase ( __snake_case : int, __snake_case : Sequence[float] ) -> list[str]: """simple docstring""" A__ : List[Any] =[] for minterm in minterms: A__ : Optional[Any] ="""""" for _ in range(__snake_case ): A__ : str =str(minterm % 2 ) + string minterm //= 2 temp.append(__snake_case ) return temp def __lowerCamelCase ( __snake_case : str, __snake_case : str, __snake_case : int ) -> bool: """simple docstring""" A__ : Optional[int] =list(__snake_case ) A__ : Union[str, Any] =list(__snake_case ) A__ : Optional[int] =0 for i in range(len(__snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( __snake_case : list[list[int]], __snake_case : list[str] ) -> list[str]: """simple docstring""" A__ : List[Any] =[] A__ : Any =[0] * len(__snake_case ) for i in range(len(chart[0] ) ): A__ : Union[str, Any] =0 A__ : str =-1 for j in range(len(__snake_case ) ): if chart[j][i] == 1: count += 1 A__ : int =j if count == 1: A__ : Tuple =1 for i in range(len(__snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__snake_case ) ): A__ : Union[str, Any] =0 temp.append(prime_implicants[i] ) while True: A__ : Optional[int] =0 A__ : List[Any] =-1 A__ : Dict =0 for i in range(len(__snake_case ) ): A__ : Optional[int] =chart[i].count(1 ) if count_n > max_n: A__ : Tuple =count_n A__ : Dict =i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__snake_case ) ): A__ : List[str] =0 def __lowerCamelCase ( __snake_case : list[str], __snake_case : list[str] ) -> list[list[int]]: """simple docstring""" A__ : Any =[[0 for x in range(len(__snake_case ) )] for x in range(len(__snake_case ) )] for i in range(len(__snake_case ) ): A__ : Optional[int] =prime_implicants[i].count("""_""" ) for j in range(len(__snake_case ) ): if is_for_table(prime_implicants[i], binary[j], __snake_case ): A__ : List[Any] =1 return chart def __lowerCamelCase ( ) -> None: """simple docstring""" A__ : Optional[Any] =int(input("""Enter the no. of variables\n""" ) ) A__ : Optional[int] =[ float(__snake_case ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] A__ : Dict =decimal_to_binary(__snake_case, __snake_case ) A__ : Optional[int] =check(__snake_case ) print("""Prime Implicants are:""" ) print(__snake_case ) A__ : Dict =prime_implicant_chart(__snake_case, __snake_case ) A__ : Union[str, Any] =selection(__snake_case, __snake_case ) print("""Essential Prime Implicants are:""" ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case = True __snake_case = 'ml.p3.2xlarge' __snake_case = 'accelerate_sagemaker_execution_role' __snake_case = 'hf-sm' __snake_case = 'us-east-1' __snake_case = 1 __snake_case = 'accelerate-sagemaker-1' __snake_case = '1.6' __snake_case = '4.4' __snake_case = 'train.py' __snake_case = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] __snake_case = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =_convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , lowerCAmelCase_ ) assert isinstance(converted_args["""do_train"""] , lowerCAmelCase_ ) assert isinstance(converted_args["""epochs"""] , lowerCAmelCase_ ) assert isinstance(converted_args["""learning_rate"""] , lowerCAmelCase_ ) assert isinstance(converted_args["""max_steps"""] , lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase : '''simple docstring''' __snake_case = LEDConfig __snake_case = {} __snake_case = 'gelu' def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Union[str, Any]=99 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Dict=37 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=20 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[int]=4 , ) -> Tuple: '''simple docstring''' A__ : Optional[int] =parent A__ : int =batch_size A__ : Any =seq_length A__ : Tuple =is_training A__ : List[Any] =use_labels A__ : List[str] =vocab_size A__ : List[Any] =hidden_size A__ : List[Any] =num_hidden_layers A__ : List[Any] =num_attention_heads A__ : Dict =intermediate_size A__ : List[str] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Union[str, Any] =max_position_embeddings A__ : str =eos_token_id A__ : Optional[int] =pad_token_id A__ : List[str] =bos_token_id A__ : List[str] =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after A__ : Dict =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests A__ : Any =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ : Dict =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ : Optional[int] =tf.concat([input_ids, eos_tensor] , axis=1 ) A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : str =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) A__ : str =prepare_led_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Union[str, Any] =tf.concat( [tf.zeros_like(lowerCAmelCase_ )[:, :-1], tf.ones_like(lowerCAmelCase_ )[:, -1:]] , axis=-1 , ) A__ : Dict =global_attention_mask return config, inputs_dict def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =TFLEDModel(config=lowerCAmelCase_ ).get_decoder() A__ : List[str] =inputs_dict["""input_ids"""] A__ : List[str] =input_ids[:1, :] A__ : int =inputs_dict["""attention_mask"""][:1, :] A__ : Tuple =1 # first forward pass A__ : Dict =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) A__ : Union[str, Any] =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ : List[str] =tf.concat([input_ids, next_tokens] , axis=-1 ) A__ : Optional[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ : str =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ : Any =output_from_no_past[:, -3:, random_slice_idx] A__ : Union[str, Any] =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : int=None, __snake_case : Optional[Any]=None, __snake_case : List[Any]=None, __snake_case : Dict=None, ) -> int: """simple docstring""" if attention_mask is None: A__ : Optional[int] =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: A__ : str =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: A__ : Optional[Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __snake_case = (TFLEDForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False __snake_case = False def lowercase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' A__ : Any =TFLEDModelTester(self ) A__ : Any =ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' A__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] =tf.zeros_like(inputs_dict["""attention_mask"""] ) A__ : int =2 A__ : str =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) A__ : str =True A__ : Union[str, Any] =self.model_tester.seq_length A__ : Any =self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase_ : Any ): A__ : List[str] =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase_ : List[Any] ): A__ : int =[t.numpy() for t in outputs.encoder_attentions] A__ : List[str] =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: A__ : Optional[int] =True A__ : Union[str, Any] =False A__ : Any =False A__ : Union[str, Any] =model_class(lowerCAmelCase_ ) A__ : Tuple =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) A__ : str =len(lowerCAmelCase_ ) self.assertEqual(config.output_hidden_states , lowerCAmelCase_ ) check_encoder_attentions_output(lowerCAmelCase_ ) if self.is_encoder_decoder: A__ : Any =model_class(lowerCAmelCase_ ) A__ : Optional[int] =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase_ ) check_decoder_attentions_output(lowerCAmelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A__ : Optional[Any] =True A__ : int =model_class(lowerCAmelCase_ ) A__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase_ ) check_encoder_attentions_output(lowerCAmelCase_ ) # Check attention is always last and order is fine A__ : Optional[int] =True A__ : List[Any] =True A__ : Optional[Any] =model_class(lowerCAmelCase_ ) A__ : str =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase_ ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase_ ) check_encoder_attentions_output(lowerCAmelCase_ ) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" ) def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' pass def __lowerCamelCase ( __snake_case : List[str] ) -> str: """simple docstring""" return tf.constant(__snake_case, dtype=tf.intaa ) __snake_case : Optional[int] = 1E-4 @slow @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : int =TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led # change to intended input here A__ : Optional[int] =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ : int =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ : str =prepare_led_inputs_dict(model.config , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : str =model(**lowerCAmelCase_ )[0] A__ : Tuple =(1, 10_24, 7_68) self.assertEqual(output.shape , lowerCAmelCase_ ) # change to expected output here A__ : List[Any] =tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-3 ) def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Dict =TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ) # change to intended input here A__ : str =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ : Optional[int] =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] ) A__ : Optional[Any] =prepare_led_inputs_dict(model.config , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =model(**lowerCAmelCase_ )[0] A__ : List[Any] =(1, 10_24, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase_ ) # change to expected output here A__ : Optional[Any] =tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-3 , rtol=1e-3 )
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =start A__ : Optional[Any] =end A__ : Optional[Any] =val A__ : List[str] =(start + end) // 2 A__ : Tuple =left A__ : Union[str, Any] =right def __repr__( self : Dict ) -> int: '''simple docstring''' return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class lowerCamelCase : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : Sequence , lowerCAmelCase_ : Tuple ) -> Any: '''simple docstring''' A__ : List[str] =collection A__ : Tuple =function if self.collection: A__ : Union[str, Any] =self._build_tree(0 , len(lowerCAmelCase_ ) - 1 ) def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' self._update_tree(self.root , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ) -> Optional[int]: '''simple docstring''' return self._query_range(self.root , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' if start == end: return SegmentTreeNode(lowerCAmelCase_ , lowerCAmelCase_ , self.collection[start] ) A__ : Optional[int] =(start + end) // 2 A__ : Dict =self._build_tree(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Tuple =self._build_tree(mid + 1 , lowerCAmelCase_ ) return SegmentTreeNode(lowerCAmelCase_ , lowerCAmelCase_ , self.fn(left.val , right.val ) , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if node.start == i and node.end == i: A__ : Any =val return if i <= node.mid: self._update_tree(node.left , lowerCAmelCase_ , lowerCAmelCase_ ) else: self._update_tree(node.right , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =self.fn(node.left.val , node.right.val ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowerCAmelCase_ , lowerCAmelCase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowerCAmelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , lowerCAmelCase_ ) , ) else: # range in right child tree return self._query_range(node.right , lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> Any: '''simple docstring''' if self.root is not None: A__ : int =Queue() queue.put(self.root ) while not queue.empty(): A__ : str =queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) __snake_case : Optional[int] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : Tuple = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Tuple ) -> Any: """simple docstring""" A__ : int =DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: A__ : Optional[int] =1_024 A__ : Union[str, Any] =4_096 A__ : int =24 A__ : Dict =16 A__ : List[Any] =[5, 11, 17, 23] A__ : List[str] =[256, 512, 1_024, 1_024] A__ : Optional[Any] =(1, 384, 384) if "nyu" or "midas" in checkpoint_url: A__ : List[str] =768 A__ : Optional[Any] =[1, 1, 1, 0.5] A__ : Optional[int] =[256, 512, 768, 768] A__ : Dict =150 A__ : Union[str, Any] =16 A__ : Any =(1, 384, 384) A__ : Optional[int] =False A__ : Optional[Any] ="""project""" if "ade" in checkpoint_url: A__ : Union[str, Any] =True A__ : Optional[Any] =768 A__ : Any =[1, 1, 1, 0.5] A__ : int =150 A__ : Any =16 A__ : Optional[Any] ="""huggingface/label-files""" A__ : Optional[int] ="""ade20k-id2label.json""" A__ : Any =json.load(open(cached_download(hf_hub_url(__snake_case, __snake_case, repo_type="""dataset""" ) ), """r""" ) ) A__ : int ={int(__snake_case ): v for k, v in idalabel.items()} A__ : Any =idalabel A__ : Union[str, Any] ={v: k for k, v in idalabel.items()} A__ : List[Any] =[1, 150, 480, 480] return config, expected_shape def __lowerCamelCase ( __snake_case : List[str] ) -> Any: """simple docstring""" A__ : Any =["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Any ) -> List[str]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : Union[str, Any] =name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Union[str, Any] =name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : Any =name.replace("""patch_embed""", """""" ) if "pos_embed" in name: A__ : Union[str, Any] =name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Optional[Any] =name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : Union[str, Any] =name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] =name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : Tuple =name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : Optional[Any] =name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name and "backbone" not in name: A__ : Any =name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name and "backbone" not in name: A__ : Dict =name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : List[str] =name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : Dict =name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] =name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[Any] =name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Dict =name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : int =name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Any =int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str =name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: A__ : Optional[int] =name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : Optional[Any] =name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : str =name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : int =name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : Optional[Any] =name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : int =name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Union[str, Any] =name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : str =name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : List[Any] =name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : List[Any] =name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : str =name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Optional[Any] =name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] =name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : List[Any] =name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Tuple =name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : str =name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : str =name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : List[Any] =name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Union[str, Any] =name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Any =name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : Any =name.replace("""auxlayer""", """auxiliary_head.head""" ) if "backbone" in name: A__ : Union[str, Any] =name.replace("""backbone""", """backbone.bit.encoder""" ) if ".." in name: A__ : str =name.replace("""..""", """.""" ) if "stem.conv" in name: A__ : str =name.replace("""stem.conv""", """bit.embedder.convolution""" ) if "blocks" in name: A__ : Optional[Any] =name.replace("""blocks""", """layers""" ) if "convolution" in name and "backbone" in name: A__ : Union[str, Any] =name.replace("""convolution""", """conv""" ) if "layer" in name and "backbone" in name: A__ : List[str] =name.replace("""layer""", """layers""" ) if "backbone.bit.encoder.bit" in name: A__ : Optional[int] =name.replace("""backbone.bit.encoder.bit""", """backbone.bit""" ) if "embedder.conv" in name: A__ : List[Any] =name.replace("""embedder.conv""", """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: A__ : str =name.replace("""backbone.bit.encoder.stem.norm""", """backbone.bit.embedder.norm""" ) return name def __lowerCamelCase ( __snake_case : Any, __snake_case : List[str] ) -> Any: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : List[Any] =state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) A__ : Any =state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : str =in_proj_weight[: config.hidden_size, :] A__ : List[str] =in_proj_bias[: config.hidden_size] A__ : List[str] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str =in_proj_weight[ -config.hidden_size :, : ] A__ : List[str] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : Optional[int] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Dict =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[Any], __snake_case : str, __snake_case : str, __snake_case : Any ) -> List[str]: """simple docstring""" A__ : Any =get_dpt_config(__snake_case ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A__ : Optional[Any] =torch.load(__snake_case, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(__snake_case ) # rename keys for key in state_dict.copy().keys(): A__ : Optional[Any] =state_dict.pop(__snake_case ) A__ : List[str] =val # read in qkv matrices read_in_q_k_v(__snake_case, __snake_case ) # load HuggingFace model A__ : Optional[int] =DPTForSemanticSegmentation(__snake_case ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Check outputs on an image A__ : Optional[Any] =480 if """ade""" in checkpoint_url else 384 A__ : Dict =DPTImageProcessor(size=__snake_case ) A__ : Union[str, Any] =prepare_img() A__ : Union[str, Any] =image_processor(__snake_case, return_tensors="""pt""" ) # forward pass A__ : Union[str, Any] =model(**__snake_case ).logits if """ade""" in checkpoint_url else model(**__snake_case ).predicted_depth if show_prediction: A__ : Tuple =( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="""bicubic""", align_corners=__snake_case, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) __snake_case : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __snake_case : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> Dict: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: A__ : Dict =XLMProphetNetForConditionalGenerationOld.from_pretrained(__snake_case ) A__ : Tuple =XLMProphetNetForConditionalGeneration.from_pretrained( __snake_case, output_loading_info=__snake_case ) else: A__ : str =ProphetNetForConditionalGenerationOld.from_pretrained(__snake_case ) A__ : Dict =ProphetNetForConditionalGeneration.from_pretrained( __snake_case, output_loading_info=__snake_case ) A__ : Dict =["""key_proj""", """value_proj""", """query_proj"""] A__ : int ={ """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: A__ : List[str] =key.split(""".""" ) if attributes[0] == "lm_head": A__ : int =prophet A__ : Optional[Any] =prophet_old else: A__ : str =prophet.prophetnet A__ : List[Any] =prophet_old.model A__ : Any =False for attribute in attributes: if attribute in mapping: A__ : int =mapping[attribute] if not hasattr(__snake_case, __snake_case ) and len(__snake_case ) > 0: A__ : str =attribute elif hasattr(__snake_case, __snake_case ): A__ : Optional[Any] =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" A__ : Optional[int] =old_model.weight logger.info(f"{attribute} is initialized." ) A__ : Dict =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" A__ : Union[str, Any] =old_model.bias logger.info(f"{attribute} is initialized" ) A__ : Tuple =True break elif attribute in special_keys and hasattr(__snake_case, """in_proj_weight""" ): A__ : Optional[Any] =old_model.in_proj_weight.shape[0] // 3 A__ : Dict =getattr(__snake_case, __snake_case ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": A__ : List[str] =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) A__ : List[str] =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": A__ : Tuple =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) A__ : Optional[Any] =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": A__ : Optional[Any] =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) A__ : Tuple =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) A__ : Dict =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." A__ : Optional[Any] =nn.Parameter(old_model.embed_positions.weight[:512, :] ) A__ : int =True break if attribute.isdigit(): A__ : Any =model[int(__snake_case )] A__ : Optional[int] =old_model[int(__snake_case )] else: A__ : int =getattr(__snake_case, __snake_case ) if old_attribute == "": A__ : Tuple =old_model else: if not hasattr(__snake_case, __snake_case ): raise ValueError(f"{old_model} does not have {old_attribute}" ) A__ : Dict =getattr(__snake_case, __snake_case ) if not is_key_init: raise ValueError(f"{key} was not correctly initialized!" ) print(f"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : Optional[int] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCamelCase : '''simple docstring''' __snake_case = BlenderbotConfig __snake_case = {} __snake_case = 'gelu' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str=13 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Optional[Any]=37 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Tuple=20 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : int=0 , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =parent A__ : Optional[Any] =batch_size A__ : str =seq_length A__ : int =is_training A__ : int =use_labels A__ : str =vocab_size A__ : List[Any] =hidden_size A__ : str =num_hidden_layers A__ : Any =num_attention_heads A__ : Any =intermediate_size A__ : Optional[int] =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Tuple =max_position_embeddings A__ : Tuple =eos_token_id A__ : Optional[Any] =pad_token_id A__ : List[Any] =bos_token_id def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ : Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : str =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ : Any =prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> List[Any]: '''simple docstring''' A__ : Dict =TFBlenderbotModel(config=lowerCAmelCase_ ).get_decoder() A__ : str =inputs_dict["""input_ids"""] A__ : str =input_ids[:1, :] A__ : Optional[Any] =inputs_dict["""attention_mask"""][:1, :] A__ : Optional[Any] =inputs_dict["""head_mask"""] A__ : Union[str, Any] =1 # first forward pass A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) A__ : Dict =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int =ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ : str =tf.concat([input_ids, next_tokens] , axis=-1 ) A__ : Optional[int] =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ : int =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ : Tuple =output_from_no_past[:, -3:, random_slice_idx] A__ : List[str] =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 ) def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : str, __snake_case : Optional[Any]=None, __snake_case : Dict=None, __snake_case : Optional[Any]=None, __snake_case : List[str]=None, __snake_case : Dict=None, ) -> str: """simple docstring""" if attention_mask is None: A__ : Tuple =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: A__ : Dict =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: A__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =TFBlenderbotModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_tokenizers @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = ['My friends are cool but they eat too many carbs.'] __snake_case = 'facebook/blenderbot-400M-distill' @cached_property def lowercase__ ( self : Any ) -> Any: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowercase__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ : str =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.tokenizer(self.src_text , return_tensors="""tf""" ) A__ : Optional[int] =self.model.generate( model_inputs.input_ids , ) A__ : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __snake_case : Optional[List[str]] = None __snake_case : Optional[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __snake_case : Any = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = True __snake_case = None # Automatically constructed __snake_case = 'PIL.Image.Image' __snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __snake_case = field(default='Image' , init=lowercase_ , repr=lowercase_ ) def __call__( self : List[str] ) -> List[str]: '''simple docstring''' return self.pa_type def lowercase__ ( self : Dict , lowerCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Optional[Any] =np.array(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowercase__ ( self : str , lowerCAmelCase_ : dict , lowerCAmelCase_ : List[Any]=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: A__ : Tuple ={} A__ : int =value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(lowerCAmelCase_ ): A__ : List[str] =PIL.Image.open(lowerCAmelCase_ ) else: A__ : Any =path.split("""::""" )[-1] try: A__ : Optional[Any] =string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["""repo_id"""] A__ : Optional[Any] =token_per_repo_id.get(lowerCAmelCase_ ) except ValueError: A__ : Optional[Any] =None with xopen(lowerCAmelCase_ , """rb""" , use_auth_token=lowerCAmelCase_ ) as f: A__ : Tuple =BytesIO(f.read() ) A__ : List[str] =PIL.Image.open(bytes_ ) else: A__ : Optional[int] =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase__ ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): A__ : str =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) A__ : Optional[Any] =pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): A__ : Dict =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) A__ : Any =pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: A__ : Tuple =storage.field("""bytes""" ) else: A__ : Optional[int] =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: A__ : Dict =storage.field("""path""" ) else: A__ : List[str] =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) A__ : Tuple =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): A__ : Optional[Any] =pa.array( [encode_np_array(np.array(lowerCAmelCase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A__ : Tuple =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) A__ : List[Any] =pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : Dict ): with xopen(lowerCAmelCase_ , """rb""" ) as f: A__ : Union[str, Any] =f.read() return bytes_ A__ : List[Any] =pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A__ : Dict =pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) A__ : Dict =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def __lowerCamelCase ( ) -> List[str]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A__ : Any =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( __snake_case : "PIL.Image.Image" ) -> bytes: """simple docstring""" A__ : Dict =BytesIO() if image.format in list_image_compression_formats(): A__ : Tuple =image.format else: A__ : Optional[int] ="""PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(__snake_case, format=__snake_case ) return buffer.getvalue() def __lowerCamelCase ( __snake_case : "PIL.Image.Image" ) -> dict: """simple docstring""" if hasattr(__snake_case, """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__snake_case )} def __lowerCamelCase ( __snake_case : np.ndarray ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) A__ : Dict =array.dtype A__ : Dict =dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER A__ : Optional[int] =dtype.kind A__ : List[Any] =dtype.itemsize A__ : Any =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A__ : str =np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A__ : Union[str, Any] =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A__ : int =dtype_byteorder + dtype_kind + str(__snake_case ) A__ : Dict =np.dtype(__snake_case ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) A__ : int =PIL.Image.fromarray(array.astype(__snake_case ) ) return {"path": None, "bytes": image_to_bytes(__snake_case )} def __lowerCamelCase ( __snake_case : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: A__ : List[Any] =first_non_null_value(__snake_case ) if isinstance(__snake_case, __snake_case ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__snake_case, np.ndarray ): A__ : int =no_op_if_value_is_null(__snake_case ) return [obj_to_image_dict_func(__snake_case ) for obj in objs] elif isinstance(__snake_case, PIL.Image.Image ): A__ : Any =no_op_if_value_is_null(__snake_case ) return [obj_to_image_dict_func(__snake_case ) for obj in objs] else: return objs else: return objs
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
def __lowerCamelCase ( __snake_case : int = 100 ) -> int: """simple docstring""" A__ : Optional[int] =set() A__ : List[Any] =0 A__ : Any =n + 1 # maximum limit for a in range(2, __snake_case ): for b in range(2, __snake_case ): A__ : Dict =a**b # calculates the current power collect_powers.add(__snake_case ) # adds the result to the set return len(__snake_case ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'vivit' def __init__( self : str , lowerCAmelCase_ : List[str]=2_24 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : int=[2, 16, 16] , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu_fast" , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Any=1e-06 , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : List[str] , ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =hidden_size A__ : Optional[int] =num_hidden_layers A__ : List[Any] =num_attention_heads A__ : int =intermediate_size A__ : Optional[int] =hidden_act A__ : Optional[int] =hidden_dropout_prob A__ : Dict =attention_probs_dropout_prob A__ : Optional[int] =initializer_range A__ : List[str] =layer_norm_eps A__ : str =image_size A__ : Dict =num_frames A__ : str =tubelet_size A__ : Union[str, Any] =num_channels A__ : List[Any] =qkv_bias super().__init__(**lowerCAmelCase_ )
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def __lowerCamelCase ( __snake_case : float, __snake_case : float ): """simple docstring""" if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase : __snake_case = None __snake_case = False __snake_case = False __snake_case = False __snake_case = None __snake_case = None __snake_case = False __snake_case = False __snake_case = False __snake_case = True __snake_case = None __snake_case = 1 __snake_case = None __snake_case = False __snake_case = None __snake_case = None def lowercase__ ( self : List[str] ) -> "DownloadConfig": '''simple docstring''' return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_ ) for k, v in self.__dict__.items()} )
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Tuple = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') __snake_case : Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __snake_case : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __snake_case = field( default=lowercase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __snake_case = field( default=lowercase_ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __snake_case = field(default=lowercase_ , metadata={'help': 'A folder containing the training data.'} ) __snake_case = field(default=lowercase_ , metadata={'help': 'A folder containing the validation data.'} ) __snake_case = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __snake_case = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __snake_case = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' A__ : Dict ={} if self.train_dir is not None: A__ : Dict =self.train_dir if self.validation_dir is not None: A__ : str =self.validation_dir A__ : Any =data_files if data_files else None @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __snake_case = field( default=lowercase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowercase_ )} , ) __snake_case = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __snake_case = field( default=lowercase_ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __snake_case = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __snake_case = field(default=lowercase_ , metadata={'help': 'Name or path of preprocessor config.'} ) __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __snake_case = field( default=lowercase_ , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __snake_case = field( default=lowercase_ , metadata={'help': 'Stride to use for the encoder.'} , ) class lowerCamelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase_ : List[str]=1_92 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : List[Any]=0.6 ) -> str: '''simple docstring''' A__ : List[Any] =input_size A__ : Union[str, Any] =mask_patch_size A__ : List[Any] =model_patch_size A__ : str =mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""" ) A__ : List[str] =self.input_size // self.mask_patch_size A__ : Optional[Any] =self.mask_patch_size // self.model_patch_size A__ : Optional[Any] =self.rand_size**2 A__ : Tuple =int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Union[str, Any] =np.random.permutation(self.token_count )[: self.mask_count] A__ : Any =np.zeros(self.token_count , dtype=lowerCAmelCase_ ) A__ : Tuple =1 A__ : Dict =mask.reshape((self.rand_size, self.rand_size) ) A__ : str =mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =torch.stack([example["""pixel_values"""] for example in examples] ) A__ : int =torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def __lowerCamelCase ( ) -> Optional[int]: """simple docstring""" A__ : List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ : Any =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ : List[str] =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""", __snake_case, __snake_case ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ : List[Any] =training_args.get_process_log_level() logger.setLevel(__snake_case ) transformers.utils.logging.set_verbosity(__snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. A__ : Optional[int] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ : int =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. A__ : Dict =load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. A__ : Any =None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, __snake_case ) and data_args.train_val_split > 0.0: A__ : Tuple =ds["""train"""].train_test_split(data_args.train_val_split ) A__ : Union[str, Any] =split["""train"""] A__ : Optional[int] =split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ : Union[str, Any] ={ """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: A__ : Union[str, Any] =AutoConfig.from_pretrained(model_args.config_name_or_path, **__snake_case ) elif model_args.model_name_or_path: A__ : List[Any] =AutoConfig.from_pretrained(model_args.model_name_or_path, **__snake_case ) else: A__ : str =CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}" ) config.update_from_string(model_args.config_overrides ) logger.info(f"New config: {config}" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__snake_case, """decoder_type""" ): A__ : Tuple ="""simmim""" # adapt config A__ : Tuple =model_args.image_size if model_args.image_size is not None else config.image_size A__ : int =model_args.patch_size if model_args.patch_size is not None else config.patch_size A__ : List[str] =( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: A__ : str =AutoImageProcessor.from_pretrained(model_args.image_processor_name, **__snake_case ) elif model_args.model_name_or_path: A__ : Tuple =AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **__snake_case ) else: A__ : List[Any] ={ conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } A__ : List[str] =IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: A__ : List[str] =AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=__snake_case, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("""Training new model from scratch""" ) A__ : Dict =AutoModelForMaskedImageModeling.from_config(__snake_case ) if training_args.do_train: A__ : Any =ds["""train"""].column_names else: A__ : Dict =ds["""validation"""].column_names if data_args.image_column_name is not None: A__ : Tuple =data_args.image_column_name elif "image" in column_names: A__ : List[Any] ="""image""" elif "img" in column_names: A__ : Dict ="""img""" else: A__ : str =column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py A__ : str =Compose( [ Lambda(lambda __snake_case : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) # create mask generator A__ : Union[str, Any] =MaskGenerator( input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, ) def preprocess_images(__snake_case : Union[str, Any] ): A__ : List[str] =[transforms(__snake_case ) for image in examples[image_column_name]] A__ : List[str] =[mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: A__ : int =ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: A__ : Union[str, Any] =( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__snake_case ) # Initialize our trainer A__ : List[str] =Trainer( model=__snake_case, args=__snake_case, train_dataset=ds["""train"""] if training_args.do_train else None, eval_dataset=ds["""validation"""] if training_args.do_eval else None, tokenizer=__snake_case, data_collator=__snake_case, ) # Training if training_args.do_train: A__ : Tuple =None if training_args.resume_from_checkpoint is not None: A__ : Optional[int] =training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ : Tuple =last_checkpoint A__ : List[Any] =trainer.train(resume_from_checkpoint=__snake_case ) trainer.save_model() trainer.log_metrics("""train""", train_result.metrics ) trainer.save_metrics("""train""", train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ : List[str] =trainer.evaluate() trainer.log_metrics("""eval""", __snake_case ) trainer.save_metrics("""eval""", __snake_case ) # Write model card and (optionally) push to hub A__ : List[Any] ={ """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**__snake_case ) else: trainer.create_model_card(**__snake_case ) if __name__ == "__main__": main()
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : List[str] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'timm_backbone' def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) A__ : Tuple =backbone A__ : Optional[Any] =num_channels A__ : Union[str, Any] =features_only A__ : str =use_pretrained_backbone A__ : Tuple =True A__ : Union[str, Any] =out_indices if out_indices is not None else (-1,)
701
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
702
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Any =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting""" A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench""" A__ : Optional[Any] =jax.random.PRNGKey(0 ) A__ : List[str] =50 A__ : List[str] =jax.device_count() A__ : List[str] =num_samples * [prompt] A__ : List[str] =num_samples * [init_image] A__ : Tuple =num_samples * [mask_image] A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # shard inputs and rng A__ : Dict =replicate(lowerCAmelCase_ ) A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() ) A__ : List[Any] =shard(lowerCAmelCase_ ) A__ : Union[str, Any] =shard(lowerCAmelCase_ ) A__ : str =shard(lowerCAmelCase_ ) A__ : List[str] =pipeline( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ ) A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 ) A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1] A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) ) A__ : Optional[int] =jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets __snake_case : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' __snake_case : Optional[int] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' __snake_case : Optional[Any] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Any ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def lowercase__ ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]="uniform_average" , lowerCAmelCase_ : Optional[int]=True ) -> List[str]: '''simple docstring''' A__ : Optional[int] =mean_squared_error( lowerCAmelCase_ , lowerCAmelCase_ , sample_weight=lowerCAmelCase_ , multioutput=lowerCAmelCase_ , squared=lowerCAmelCase_ ) return {"mse": mse}
703
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Dict = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'conditional_detr' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =backbone_config.get("""model_type""" ) A__ : List[str] =CONFIG_MAPPING[backbone_model_type] A__ : Dict =config_class.from_dict(lowerCAmelCase_ ) A__ : int =use_timm_backbone A__ : List[Any] =backbone_config A__ : Optional[int] =num_channels A__ : Optional[int] =num_queries A__ : Union[str, Any] =d_model A__ : Optional[int] =encoder_ffn_dim A__ : Optional[Any] =encoder_layers A__ : int =encoder_attention_heads A__ : Optional[Any] =decoder_ffn_dim A__ : Tuple =decoder_layers A__ : Optional[Any] =decoder_attention_heads A__ : Tuple =dropout A__ : int =attention_dropout A__ : Dict =activation_dropout A__ : Union[str, Any] =activation_function A__ : List[str] =init_std A__ : str =init_xavier_std A__ : int =encoder_layerdrop A__ : List[Any] =decoder_layerdrop A__ : Tuple =encoder_layers A__ : Tuple =auxiliary_loss A__ : List[Any] =position_embedding_type A__ : int =backbone A__ : Optional[int] =use_pretrained_backbone A__ : str =dilation # Hungarian matcher A__ : Any =class_cost A__ : str =bbox_cost A__ : str =giou_cost # Loss coefficients A__ : Union[str, Any] =mask_loss_coefficient A__ : int =dice_loss_coefficient A__ : Union[str, Any] =cls_loss_coefficient A__ : List[str] =bbox_loss_coefficient A__ : str =giou_loss_coefficient A__ : Optional[Any] =focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowercase__ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return self.d_model def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : int =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A__ : str =self.backbone_config.to_dict() A__ : int =self.__class__.model_type return output class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = version.parse('1.11' ) @property def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowercase__ ( self : Any ) -> float: '''simple docstring''' return 1e-5 @property def lowercase__ ( self : Any ) -> int: '''simple docstring''' return 12
687
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'encoder-decoder' __snake_case = True def __init__( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" A__ : Tuple =kwargs.pop("""encoder""" ) A__ : Dict =encoder_config.pop("""model_type""" ) A__ : int =kwargs.pop("""decoder""" ) A__ : Optional[int] =decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig A__ : Optional[int] =AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : List[Any] =True @classmethod def lowercase__ ( cls : List[str] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Any ) -> PretrainedConfig: '''simple docstring''' logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) A__ : str =True A__ : Union[str, Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase_ ) def lowercase__ ( self : int ) -> str: '''simple docstring''' A__ : List[str] =copy.deepcopy(self.__dict__ ) A__ : Optional[Any] =self.encoder.to_dict() A__ : Union[str, Any] =self.decoder.to_dict() A__ : str =self.__class__.model_type return output
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 'bit' __snake_case = ['preactivation', 'bottleneck'] __snake_case = ['SAME', 'VALID'] def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A__ : List[Any] =global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) A__ : List[Any] =num_channels A__ : Tuple =embedding_size A__ : Union[str, Any] =hidden_sizes A__ : List[str] =depths A__ : Optional[Any] =layer_type A__ : int =hidden_act A__ : int =global_padding A__ : int =num_groups A__ : str =drop_path_rate A__ : str =embedding_dynamic_padding A__ : Dict =output_stride A__ : Optional[int] =width_factor A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )] A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices( out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
687
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = 42 __snake_case = None # Automatically constructed __snake_case = 'dict' __snake_case = None __snake_case = field(default='Translation' , init=lowercase_ , repr=lowercase_ ) def __call__( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class lowerCamelCase : '''simple docstring''' __snake_case = None __snake_case = None __snake_case = None # Automatically constructed __snake_case = 'dict' __snake_case = None __snake_case = field(default='TranslationVariableLanguages' , init=lowercase_ , repr=lowercase_ ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' A__ : Tuple =sorted(set(self.languages ) ) if self.languages else None A__ : str =len(self.languages ) if self.languages else None def __call__( self : List[str] ) -> List[str]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any ) -> Optional[int]: '''simple docstring''' A__ : List[Any] =set(self.languages ) if self.languages and set(lowerCAmelCase_ ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(lowerCAmelCase_ ) - lang_set ) )}) are not in valid set ({', '.join(lowerCAmelCase_ )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. A__ : str =[] for lang, text in translation_dict.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. A__ : Union[str, Any] =zip(*sorted(lowerCAmelCase_ ) ) return {"language": languages, "translation": translations} def lowercase__ ( self : Dict ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
705
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = None __snake_case = BloomTokenizerFast __snake_case = BloomTokenizerFast __snake_case = True __snake_case = False __snake_case = 'tokenizer_file' __snake_case = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowercase__ ( self : str ) -> Dict: '''simple docstring''' super().setUp() A__ : Union[str, Any] =BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Tuple , **lowerCAmelCase_ : str ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : Any =self.get_rust_tokenizer() A__ : List[str] =["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] A__ : int =[[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] A__ : Optional[int] =tokenizer.batch_encode_plus(lowerCAmelCase_ )["""input_ids"""] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Any =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : int=6 ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Optional[int] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input A__ : Tuple ="""This is a simple input""" A__ : Union[str, Any] =["""This is a simple input 1""", """This is a simple input 2"""] A__ : List[str] =("""This is a simple input""", """This is a pair""") A__ : Any =[ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.batch_encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.encode(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) tokenizer_r.batch_encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) A__ : int =None # Hotfixing padding = None self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' A__ : str =self.get_rust_tokenizer() A__ : Tuple =load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=lowerCAmelCase_ ) A__ : int =next(iter(lowerCAmelCase_ ) )["""premise"""] # pick up one data A__ : Optional[int] =list(sample_data.values() ) A__ : Tuple =list(map(tokenizer.encode , lowerCAmelCase_ ) ) A__ : Optional[Any] =[tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) for x in output_tokens] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> Dict: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
706
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __snake_case : str = False class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int ="""A painting of a squirrel eating a burger """ A__ : Tuple =torch.manual_seed(0 ) A__ : int =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase_ ) A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : int =generator.manual_seed(0 ) A__ : Tuple =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Dict ="""A painting of a squirrel eating a burger """ A__ : Optional[int] =torch.manual_seed(0 ) A__ : List[str] =pipe( prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
687
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __snake_case : str = "AAPL" ) -> str: """simple docstring""" A__ : Optional[int] =f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" A__ : Dict =BeautifulSoup(requests.get(__snake_case ).text, """html.parser""" ) A__ : Union[str, Any] ="""My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""", class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
707
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 42 class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]: '''simple docstring''' super().__init__() # pass init params to Encoder A__ : Optional[Any] =Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder A__ : Optional[Any] =Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' A__ : Dict =self.encoder(lowerCAmelCase_ ) A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ ) else: A__ : List[str] =h A__ : Dict =self.post_quant_conv(lowerCAmelCase_ ) A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' A__ : Optional[int] =sample A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents A__ : Tuple =self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __snake_case : Union[str, Any] = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : Tuple = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } __snake_case : str = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } __snake_case : List[Any] = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str: """simple docstring""" A__ : Optional[int] =set() A__ : Optional[int] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A__ : str =char A__ : List[Any] =set(__snake_case ) return pairs class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict: '''simple docstring''' super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : int =vocab_file A__ : Any =merges_file A__ : Union[str, Any] ={} A__ : Optional[int] =0 A__ : List[Any] =1 A__ : Tuple =2 A__ : Dict =3 self.add_from_file(lowerCAmelCase_ ) A__ : List[str] ={v: k for k, v in self.encoder.items()} with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle: A__ : str =merges_handle.read().split("""\n""" )[:-1] A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges] A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Dict ={} def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A__ : Dict =[self.cls_token_id] A__ : Union[str, Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ : Tuple =[self.sep_token_id] A__ : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] A__ : int =tuple(lowerCAmelCase_ ) A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) A__ : Tuple =get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break A__ , A__ : Tuple =bigram A__ : Optional[int] =[] A__ : Tuple =0 while i < len(lowerCAmelCase_ ): try: A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A__ : Union[str, Any] =j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A__ : Dict =tuple(lowerCAmelCase_ ) A__ : Dict =new_word if len(lowerCAmelCase_ ) == 1: break else: A__ : str =get_pairs(lowerCAmelCase_ ) A__ : Dict ="""@@ """.join(lowerCAmelCase_ ) A__ : Tuple =word[:-4] A__ : Any =word return word def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any: '''simple docstring''' A__ : int =[] A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) ) return split_tokens def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(lowerCAmelCase_ , self.unk_token ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip() return out_string def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return A__ : Optional[Any] =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : Tuple =os.path.join( lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.vocab_file , lowerCAmelCase_ ) if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ): copyfile(self.merges_file , lowerCAmelCase_ ) return out_vocab_file, out_merge_file def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCAmelCase_ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return A__ : Union[str, Any] =f.readlines() for lineTmp in lines: A__ : List[Any] =lineTmp.strip() A__ : Dict =line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) A__ : Tuple =line[:idx] A__ : Tuple =len(self.encoder )
687
0
'''simple docstring''' from collections import deque def __lowerCamelCase ( __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : List[str] =len(__snake_case ) A__ : Optional[Any] =deque() A__ : Tuple =[False for _ in range(__snake_case )] A__ : Any =[-1 for _ in range(__snake_case )] A__ : List[str] =index_of[:] def strong_connect(__snake_case : Any, __snake_case : Optional[int], __snake_case : Union[str, Any] ): A__ : Dict =index # the number when this node is seen A__ : Optional[Any] =index # lowest rank node reachable from here index += 1 stack.append(__snake_case ) A__ : Dict =True for w in g[v]: if index_of[w] == -1: A__ : List[str] =strong_connect(__snake_case, __snake_case, __snake_case ) A__ : str =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ : List[str] =( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ : Any =[] A__ : Tuple =stack.pop() A__ : List[str] =False component.append(__snake_case ) while w != v: A__ : Union[str, Any] =stack.pop() A__ : List[Any] =False component.append(__snake_case ) components.append(__snake_case ) return index A__ : Any =[] for v in range(__snake_case ): if index_of[v] == -1: strong_connect(__snake_case, 0, __snake_case ) return components def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any ) -> List[str]: """simple docstring""" A__ : Dict =[[] for _ in range(__snake_case )] for u, v in edges: g[u].append(__snake_case ) return g if __name__ == "__main__": # Test __snake_case : Optional[int] = 7 __snake_case : Union[str, Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] __snake_case : List[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5] __snake_case : str = [(u, v) for u, v in zip(source, target)] __snake_case : Optional[int] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
709
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int: """simple docstring""" A__ : Union[str, Any] =nn.functional.normalize(__snake_case ) A__ : Optional[Any] =nn.functional.normalize(__snake_case ) return torch.mm(__snake_case, normalized_text_embeds.t() ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = CLIPConfig __snake_case = ['CLIPEncoderLayer'] def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase_ ) A__ : str =CLIPVisionModel(config.vision_config ) A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ ) A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ ) A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ ) A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any: '''simple docstring''' A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : Any =self.visual_projection(lowerCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy() A__ : List[str] =[] A__ : Optional[int] =image_embeds.shape[0] for i in range(lowerCAmelCase_ ): A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images A__ : List[Any] =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): A__ : Optional[Any] =special_cos_dist[i][concept_idx] A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item() A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) A__ : Dict =0.01 for concept_idx in range(len(cos_dist[0] ) ): A__ : Optional[int] =cos_dist[i][concept_idx] A__ : List[str] =self.concept_embeds_weights[concept_idx].item() A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]: '''simple docstring''' A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output A__ : List[Any] =self.visual_projection(lowerCAmelCase_ ) A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images A__ : Dict =0.0 A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 ) A__ : Tuple =special_care * 0.01 A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
687
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str: """simple docstring""" A__ : Optional[int] =[] for part_id in partition_order: A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__snake_case ): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : str =spark.range(100 ).repartition(1 ) A__ : List[str] =Spark(__snake_case ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Tuple =spark.range(10 ).repartition(2 ) A__ : List[str] =[1, 0] A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions. A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(10 ).repartition(1 ) A__ : List[str] =SparkExamplesIterable(__snake_case ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__snake_case ): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Union[str, Any] =spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: A__ : Tuple =lambda __snake_case : x.reverse() A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] ) A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : Any =spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 ) assert shard_it_a.n_shards == 2 A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] ) for i, (row_id, row_dict) in enumerate(__snake_case ): A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowerCamelCase ( ) -> Any: """simple docstring""" A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() A__ : List[str] =spark.range(100 ).repartition(1 ) A__ : List[Any] =Spark(__snake_case ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
687
0
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : int = 6 ) -> None: '''simple docstring''' A__ : Node | None =None A__ : Node | None =None self.create_linked_list(lowerCAmelCase_ ) def lowercase__ ( self : Any , lowerCAmelCase_ : int ) -> None: '''simple docstring''' A__ : Dict =Node() A__ : str =current_node A__ : Tuple =current_node A__ : Dict =current_node for _ in range(1 , lowerCAmelCase_ ): A__ : Union[str, Any] =Node() A__ : Optional[int] =current_node A__ : Tuple =previous_node A__ : Optional[int] =current_node A__ : Any =self.front A__ : Union[str, Any] =previous_node def lowercase__ ( self : Union[str, Any] ) -> bool: '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowercase__ ( self : List[str] ) -> Any | None: '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def lowercase__ ( self : Any , lowerCAmelCase_ : Any ) -> None: '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): A__ : List[Any] =self.rear.next if self.rear: A__ : Optional[Any] =data def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: A__ : int =self.front.data A__ : Any =None return data A__ : Tuple =self.front A__ : str =old_front.next A__ : str =old_front.data A__ : List[Any] =None return data def lowercase__ ( self : List[Any] ) -> None: '''simple docstring''' if self.is_empty(): raise Exception("""Empty Queue""" ) def lowercase__ ( self : Tuple ) -> None: '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] ) -> None: '''simple docstring''' A__ : Any | None =None A__ : Node | None =None A__ : Node | None =None if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __snake_case : Union[str, Any] = HfApi() __snake_case : int = {} # fmt: off __snake_case : List[Any] = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) __snake_case : Dict = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) __snake_case : str = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) __snake_case : Union[str, Any] = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) __snake_case : Union[str, Any] = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) __snake_case : Dict = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) __snake_case : str = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) __snake_case : List[str] = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) __snake_case : str = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) __snake_case : Optional[Any] = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) __snake_case : Optional[Any] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) __snake_case : Dict = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) __snake_case : Dict = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) __snake_case : Tuple = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) __snake_case : Optional[Any] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on __snake_case : Optional[Any] = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __snake_case : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): __snake_case : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: __snake_case : int = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __snake_case : Union[str, Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __snake_case : Tuple = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __snake_case : List[str] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
712
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __lowerCamelCase ( __snake_case : Dict ) -> List[str]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str: '''simple docstring''' super().__init__() A__ : Union[str, Any] =module A__ : Union[str, Any] =nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict: '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'bigscience/bloom-1b7' # Constant values __snake_case = 2.109659552692574 __snake_case = 'Hello my name is' __snake_case = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __snake_case = 10 def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' # Models and tokenizer A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # Models and tokenizer A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A__ : str =self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) A__ : Union[str, Any] =config.to_dict() A__ : Any =config.to_diff_dict() A__ : Optional[Any] =config.to_json_string() def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' from bitsandbytes.nn import Paramsabit A__ : int =self.model_fpaa.get_memory_footprint() A__ : Optional[Any] =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A__ : Tuple =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() A__ : Tuple =True A__ : Optional[int] =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Any: '''simple docstring''' A__ : Tuple =BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): A__ : Dict =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ) A__ : Optional[Any] =self.model_fpaa.to(torch.floataa ) A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.to("""cpu""" ) # Check this does not throw an error A__ : List[str] =self.model_fpaa.half() # Check this does not throw an error A__ : int =self.model_fpaa.float() def lowercase__ ( self : int ) -> Dict: '''simple docstring''' A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowercase__ ( cls : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple ="""t5-small""" A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name ) A__ : Optional[int] ="""Translate in German: Hello, my dog is cute""" def lowercase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' from transformers import TaForConditionalGeneration A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules A__ : Optional[Any] =None # test with `t5-small` A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Optional[Any] =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : List[str] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ ) A__ : Dict =modules def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Any =model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) A__ : Dict =model.generate(**lowerCAmelCase_ ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().setUp() # model_name A__ : Any ="""bigscience/bloom-560m""" A__ : List[Any] ="""t5-small""" # Different types of model A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def lowercase__ ( self : Dict ) -> int: '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' A__ : Dict =pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A__ : Optional[int] =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : str ) -> int: '''simple docstring''' super().setUp() def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' A__ : int =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] ="""facebook/opt-350m""" super().setUp() def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A__ : int =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A__ : Dict =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): A__ : int =LoRALayer(module.q_proj , rank=16 ) A__ : Any =LoRALayer(module.k_proj , rank=16 ) A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A__ : Any =model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt2-xl' __snake_case = 3.3191854854152187
687
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : Dict = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'openai-gpt' __snake_case = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any , lowerCAmelCase_ : Optional[int]=4_04_78 , lowerCAmelCase_ : int=5_12 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=1e-5 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[str]="cls_index" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=0.1 , **lowerCAmelCase_ : Tuple , ) -> int: '''simple docstring''' A__ : Optional[Any] =vocab_size A__ : Dict =n_positions A__ : List[Any] =n_embd A__ : Dict =n_layer A__ : Union[str, Any] =n_head A__ : Dict =afn A__ : List[str] =resid_pdrop A__ : Optional[Any] =embd_pdrop A__ : Optional[Any] =attn_pdrop A__ : Tuple =layer_norm_epsilon A__ : Optional[Any] =initializer_range A__ : Union[str, Any] =summary_type A__ : Tuple =summary_use_proj A__ : Tuple =summary_activation A__ : Optional[int] =summary_first_dropout A__ : Optional[Any] =summary_proj_to_labels super().__init__(**lowerCAmelCase_ )
713
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
687
0
'''simple docstring''' def __lowerCamelCase ( __snake_case : int | float | str ) -> tuple[int, int]: """simple docstring""" try: A__ : Union[str, Any] =float(__snake_case ) except ValueError: raise ValueError("""Please enter a valid number""" ) A__ : List[str] =decimal - int(__snake_case ) if fractional_part == 0: return int(__snake_case ), 1 else: A__ : Tuple =len(str(__snake_case ).split(""".""" )[1] ) A__ : Any =int(decimal * (10**number_of_frac_digits) ) A__ : Any =10**number_of_frac_digits A__ : List[Any] =denominator, numerator while True: A__ : Tuple =dividend % divisor if remainder == 0: break A__ : List[Any] =divisor, remainder A__ : Optional[int] =numerator / divisor, denominator / divisor return int(__snake_case ), int(__snake_case ) if __name__ == "__main__": print(F"""{decimal_to_fraction(2) = }""") print(F"""{decimal_to_fraction(89.0) = }""") print(F"""{decimal_to_fraction('67') = }""") print(F"""{decimal_to_fraction('45.0') = }""") print(F"""{decimal_to_fraction(1.5) = }""") print(F"""{decimal_to_fraction('6.25') = }""") print(F"""{decimal_to_fraction('78td') = }""")
714
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : '''simple docstring''' def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple: '''simple docstring''' A__ : Tuple =parent A__ : Any =batch_size A__ : List[str] =seq_length A__ : Optional[Any] =is_training A__ : Dict =use_input_lengths A__ : int =use_token_type_ids A__ : Union[str, Any] =use_labels A__ : Optional[Any] =gelu_activation A__ : List[Any] =sinusoidal_embeddings A__ : List[Any] =causal A__ : str =asm A__ : Tuple =n_langs A__ : Dict =vocab_size A__ : Optional[Any] =n_special A__ : Tuple =hidden_size A__ : Dict =num_hidden_layers A__ : int =num_attention_heads A__ : Optional[Any] =hidden_dropout_prob A__ : Optional[Any] =attention_probs_dropout_prob A__ : Optional[int] =max_position_embeddings A__ : Optional[int] =type_sequence_label_size A__ : Tuple =initializer_range A__ : Any =num_labels A__ : str =num_choices A__ : Optional[int] =summary_type A__ : int =use_proj A__ : Tuple =scope A__ : Union[str, Any] =bos_token_id def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) A__ : Tuple =None if self.use_input_lengths: A__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A__ : Optional[Any] =None if self.use_token_type_ids: A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A__ : Any =None A__ : Tuple =None A__ : Optional[Any] =None if self.use_labels: A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float() A__ : str =ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' A__ : List[str] =XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) A__ : Tuple =model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str: '''simple docstring''' A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) A__ : List[Any] =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : List[str] =model(lowerCAmelCase_ ) A__ : Tuple =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) A__ : Optional[Any] =model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((A__) , ) : List[Any] =result_with_labels.to_tuple() A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((A__) , ) : Tuple =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any: '''simple docstring''' A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : str =model(lowerCAmelCase_ ) A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' A__ : int =self.num_labels A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]: '''simple docstring''' A__ : Optional[Any] =self.num_choices A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Union[str, Any] =model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : Dict =self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Optional[int] =config_and_inputs A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __snake_case = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __snake_case = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int: '''simple docstring''' A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": A__ : List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A__ : Any =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' A__ : Dict =XLMModelTester(self ) A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def lowercase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' A__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def lowercase__ ( self : List[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' A__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : Tuple =min_length + idx + 1 A__ : Tuple =min_length + idx + 1 A__ : Dict =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any: '''simple docstring''' self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token A__ : str =min_length + idx + 1 A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowercase__ ( self : Optional[Any] ) -> int: '''simple docstring''' A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCAmelCase_ ) A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president A__ : Optional[Any] =[ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
687
0