code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : Optional[int] = logging.get_logger(__name__)
__snake_case : Tuple = {
'vocab_file': 'vocab.txt',
'merges_file': 'bpe.codes',
}
__snake_case : str = {
'vocab_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt',
},
'merges_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes',
},
}
__snake_case : List[Any] = {
'vinai/phobert-base': 256,
'vinai/phobert-large': 256,
}
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : str =char
A__ : List[Any] =set(__snake_case )
return pairs
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict:
'''simple docstring'''
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : int =vocab_file
A__ : Any =merges_file
A__ : Union[str, Any] ={}
A__ : Optional[int] =0
A__ : List[Any] =1
A__ : Tuple =2
A__ : Dict =3
self.add_from_file(lowerCAmelCase_ )
A__ : List[str] ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
A__ : str =merges_handle.read().split("""\n""" )[:-1]
A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges]
A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
A__ : Dict ={}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ : Dict =[self.cls_token_id]
A__ : Union[str, Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : int =tuple(lowerCAmelCase_ )
A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Tuple =get_pairs(lowerCAmelCase_ )
if not pairs:
return token
while True:
A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ : Tuple =bigram
A__ : Optional[int] =[]
A__ : Tuple =0
while i < len(lowerCAmelCase_ ):
try:
A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ : Union[str, Any] =j
if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Dict =tuple(lowerCAmelCase_ )
A__ : Dict =new_word
if len(lowerCAmelCase_ ) == 1:
break
else:
A__ : str =get_pairs(lowerCAmelCase_ )
A__ : Dict ="""@@ """.join(lowerCAmelCase_ )
A__ : Tuple =word[:-4]
A__ : Any =word
return word
def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
A__ : int =[]
A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip()
return out_string
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Optional[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Tuple =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.merges_file , lowerCAmelCase_ )
return out_vocab_file, out_merge_file
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
A__ : Union[str, Any] =f.readlines()
for lineTmp in lines:
A__ : List[Any] =lineTmp.strip()
A__ : Dict =line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
A__ : Tuple =line[:idx]
A__ : Tuple =len(self.encoder )
| 703 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : Dict = {
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'conditional_detr'
__snake_case = ['past_key_values']
__snake_case = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Tuple =backbone_config.get("""model_type""" )
A__ : List[str] =CONFIG_MAPPING[backbone_model_type]
A__ : Dict =config_class.from_dict(lowerCAmelCase_ )
A__ : int =use_timm_backbone
A__ : List[Any] =backbone_config
A__ : Optional[int] =num_channels
A__ : Optional[int] =num_queries
A__ : Union[str, Any] =d_model
A__ : Optional[int] =encoder_ffn_dim
A__ : Optional[Any] =encoder_layers
A__ : int =encoder_attention_heads
A__ : Optional[Any] =decoder_ffn_dim
A__ : Tuple =decoder_layers
A__ : Optional[Any] =decoder_attention_heads
A__ : Tuple =dropout
A__ : int =attention_dropout
A__ : Dict =activation_dropout
A__ : Union[str, Any] =activation_function
A__ : List[str] =init_std
A__ : str =init_xavier_std
A__ : int =encoder_layerdrop
A__ : List[Any] =decoder_layerdrop
A__ : Tuple =encoder_layers
A__ : Tuple =auxiliary_loss
A__ : List[Any] =position_embedding_type
A__ : int =backbone
A__ : Optional[int] =use_pretrained_backbone
A__ : str =dilation
# Hungarian matcher
A__ : Any =class_cost
A__ : str =bbox_cost
A__ : str =giou_cost
# Loss coefficients
A__ : Union[str, Any] =mask_loss_coefficient
A__ : int =dice_loss_coefficient
A__ : Union[str, Any] =cls_loss_coefficient
A__ : List[str] =bbox_loss_coefficient
A__ : str =giou_loss_coefficient
A__ : Optional[Any] =focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return self.d_model
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
A__ : int =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
A__ : str =self.backbone_config.to_dict()
A__ : int =self.__class__.model_type
return output
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.11' )
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return 12
| 687 | 0 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = ['image_processor', 'feature_extractor']
__snake_case = 'TvltImageProcessor'
__snake_case = 'TvltFeatureExtractor'
def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ) -> List[str]:
'''simple docstring'''
super().__init__(image_processor=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ )
A__ : List[Any] =image_processor
A__ : Any =feature_extractor
def __call__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : str=False , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : List[Any] , ) -> List[Any]:
'''simple docstring'''
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""" )
A__ : Dict =None
if images is not None:
A__ : Any =self.image_processor(lowerCAmelCase_ , mask_pixel=lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
if images_mixed is not None:
A__ : Any =self.image_processor(lowerCAmelCase_ , is_mixed=lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ )
if audio is not None:
A__ : Optional[int] =self.feature_extractor(
lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , mask_audio=lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : List[str] ={}
if audio is not None:
output_dict.update(lowerCAmelCase_ )
if images is not None:
output_dict.update(lowerCAmelCase_ )
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase_ )
return output_dict
@property
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
A__ : List[Any] =self.image_processor.model_input_names
A__ : Union[str, Any] =self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 704 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Union[str, Any] = logging.get_logger(__name__)
__snake_case : Optional[int] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
__snake_case = 'bit'
__snake_case = ['preactivation', 'bottleneck']
__snake_case = ['SAME', 'VALID']
def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A__ : List[Any] =global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
A__ : List[Any] =num_channels
A__ : Tuple =embedding_size
A__ : Union[str, Any] =hidden_sizes
A__ : List[str] =depths
A__ : Optional[Any] =layer_type
A__ : int =hidden_act
A__ : int =global_padding
A__ : int =num_groups
A__ : str =drop_path_rate
A__ : str =embedding_dynamic_padding
A__ : Dict =output_stride
A__ : Optional[int] =width_factor
A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
| 687 | 0 |
import warnings
warnings.warn(
'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: '
'`from accelerate import find_executable_batch_size` to avoid this warning.',
FutureWarning,
)
| 705 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__snake_case : List[str] = 5_0003
__snake_case : Dict = 5_0002
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = PLBartTokenizer
__snake_case = None
__snake_case = False
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )]
self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] )
A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ )
A__ : Dict =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Tuple =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )]
self.assertListEqual(
lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] )
A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'uclanlp/plbart-python-en_XX'
__snake_case = [
'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])',
'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])',
]
__snake_case = [
'Returns the maximum value of a b c.',
'Sums the values of a b c.',
]
__snake_case = [
134,
5452,
3_3460,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
988,
20,
3_3456,
19,
3_3456,
771,
39,
4258,
889,
3318,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : Optional[int] ) -> str:
'''simple docstring'''
A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" )
A__ : Optional[Any] =1
return cls
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
def lowercase__ ( self : int ) -> Optional[int]:
'''simple docstring'''
self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids )
A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase_ )
A__ : str =10
A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase_ )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
A__ : Tuple =tempfile.mkdtemp()
A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ )
@require_torch
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" )
A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
A__ : List[Any] =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" )
A__ : Optional[int] =self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" )
A__ : Optional[Any] =targets["""input_ids"""]
A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : Any =self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[1_50, 2_42, 2, 5_00_03]],
"""attention_mask""": [[1, 1, 1, 1]],
# java
"""forced_bos_token_id""": 5_00_01,
} , )
| 687 | 0 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple:
'''simple docstring'''
A__ : Tuple =parent
A__ : Any =batch_size
A__ : List[str] =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_lengths
A__ : int =use_token_type_ids
A__ : Union[str, Any] =use_labels
A__ : Optional[Any] =gelu_activation
A__ : List[Any] =sinusoidal_embeddings
A__ : List[Any] =causal
A__ : str =asm
A__ : Tuple =n_langs
A__ : Dict =vocab_size
A__ : Optional[Any] =n_special
A__ : Tuple =hidden_size
A__ : Dict =num_hidden_layers
A__ : int =num_attention_heads
A__ : Optional[Any] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Optional[int] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : Any =num_labels
A__ : str =num_choices
A__ : Optional[int] =summary_type
A__ : int =use_proj
A__ : Tuple =scope
A__ : Union[str, Any] =bos_token_id
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Tuple =None
if self.use_input_lengths:
A__ : Tuple =(
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ : Optional[Any] =None
if self.use_token_type_ids:
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ : Any =None
A__ : Tuple =None
A__ : Optional[Any] =None
if self.use_labels:
A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float()
A__ : str =ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Tuple =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
A__ : List[Any] =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Tuple =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
A__ : Optional[Any] =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
(A__ ) : List[Any] =result_with_labels.to_tuple()
A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
(A__ ) : Tuple =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : str =model(lowerCAmelCase_ )
A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
A__ : int =self.num_labels
A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =self.num_choices
A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.prepare_config_and_inputs()
(
A__
) : Optional[int] =config_and_inputs
A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int:
'''simple docstring'''
A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
A__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Dict =XLMModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
A__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
A__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : Tuple =min_length + idx + 1
A__ : Tuple =min_length + idx + 1
A__ : Dict =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : str =min_length + idx + 1
A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCAmelCase_ )
A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
A__ : Optional[Any] =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 706 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
__snake_case : str = False
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int ="""A painting of a squirrel eating a burger """
A__ : Tuple =torch.manual_seed(0 )
A__ : int =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase_ )
A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int =generator.manual_seed(0 )
A__ : Tuple =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict ="""A painting of a squirrel eating a burger """
A__ : Optional[int] =torch.manual_seed(0 )
A__ : List[str] =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : str = {
'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'layoutlmv3'
def __init__( self : str , lowerCAmelCase_ : Optional[Any]=5_02_65 , lowerCAmelCase_ : List[str]=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : Tuple=30_72 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : Union[str, Any]=1e-5 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : str=10_24 , lowerCAmelCase_ : List[Any]=1_28 , lowerCAmelCase_ : Optional[int]=1_28 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : Union[str, Any]=1_28 , lowerCAmelCase_ : Union[str, Any]=64 , lowerCAmelCase_ : Tuple=2_56 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Dict=2_24 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Tuple=16 , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[int] , ) -> List[Any]:
'''simple docstring'''
super().__init__(
vocab_size=lowerCAmelCase_ , hidden_size=lowerCAmelCase_ , num_hidden_layers=lowerCAmelCase_ , num_attention_heads=lowerCAmelCase_ , intermediate_size=lowerCAmelCase_ , hidden_act=lowerCAmelCase_ , hidden_dropout_prob=lowerCAmelCase_ , attention_probs_dropout_prob=lowerCAmelCase_ , max_position_embeddings=lowerCAmelCase_ , type_vocab_size=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , layer_norm_eps=lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : List[str] =max_ad_position_embeddings
A__ : Dict =coordinate_size
A__ : List[Any] =shape_size
A__ : Dict =has_relative_attention_bias
A__ : Tuple =rel_pos_bins
A__ : List[Any] =max_rel_pos
A__ : List[str] =has_spatial_attention_bias
A__ : Any =rel_ad_pos_bins
A__ : str =max_rel_ad_pos
A__ : str =text_embed
A__ : List[Any] =visual_embed
A__ : Any =input_size
A__ : Optional[int] =num_channels
A__ : Union[str, Any] =patch_size
A__ : int =classifier_dropout
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.12' )
@property
def lowercase__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
return 12
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : "ProcessorMixin" , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional["TensorType"] = None , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 40 , lowerCAmelCase_ : int = 40 , ) -> Mapping[str, Any]:
'''simple docstring'''
setattr(processor.image_processor , """apply_ocr""" , lowerCAmelCase_ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A__ : Optional[int] =compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
A__ : Optional[Any] =processor.tokenizer.num_special_tokens_to_add(lowerCAmelCase_ )
A__ : Optional[int] =compute_effective_axis_dimension(
lowerCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase_ )
# Generate dummy inputs according to compute batch and sequence
A__ : List[Any] =[[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
A__ : str =[[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
A__ : Optional[Any] =self._generate_dummy_images(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Any =dict(
processor(
lowerCAmelCase_ , text=lowerCAmelCase_ , boxes=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , ) )
return inputs
| 707 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 42
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
A__ : Optional[Any] =Encoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , )
A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ )
A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
# pass init params to Decoder
A__ : Optional[Any] =Decoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , )
@apply_forward_hook
def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput:
'''simple docstring'''
A__ : Dict =self.encoder(lowerCAmelCase_ )
A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowerCAmelCase_ )
@apply_forward_hook
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
# also go through quantization layer
if not force_not_quantize:
A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ )
else:
A__ : List[str] =h
A__ : Dict =self.post_quant_conv(lowerCAmelCase_ )
A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
A__ : Optional[int] =sample
A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents
A__ : Tuple =self.decode(lowerCAmelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
__snake_case : Optional[Any] = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n'
__snake_case : List[Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n'
__snake_case : Optional[Any] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
def lowercase__ ( self : List[Any] ) -> MetricInfo:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , )
def lowercase__ ( self : Any , lowerCAmelCase_ : List[List[List[str]]] , lowerCAmelCase_ : List[List[str]] , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 4 , ) -> Dict[str, float]:
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ )
}
| 708 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : Optional[int] = logging.get_logger(__name__)
__snake_case : Tuple = {
'vocab_file': 'vocab.txt',
'merges_file': 'bpe.codes',
}
__snake_case : str = {
'vocab_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt',
},
'merges_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes',
},
}
__snake_case : List[Any] = {
'vinai/phobert-base': 256,
'vinai/phobert-large': 256,
}
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : str =char
A__ : List[Any] =set(__snake_case )
return pairs
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict:
'''simple docstring'''
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : int =vocab_file
A__ : Any =merges_file
A__ : Union[str, Any] ={}
A__ : Optional[int] =0
A__ : List[Any] =1
A__ : Tuple =2
A__ : Dict =3
self.add_from_file(lowerCAmelCase_ )
A__ : List[str] ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
A__ : str =merges_handle.read().split("""\n""" )[:-1]
A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges]
A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
A__ : Dict ={}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ : Dict =[self.cls_token_id]
A__ : Union[str, Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : int =tuple(lowerCAmelCase_ )
A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Tuple =get_pairs(lowerCAmelCase_ )
if not pairs:
return token
while True:
A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ , A__ : Tuple =bigram
A__ : Optional[int] =[]
A__ : Tuple =0
while i < len(lowerCAmelCase_ ):
try:
A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ : Union[str, Any] =j
if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Dict =tuple(lowerCAmelCase_ )
A__ : Dict =new_word
if len(lowerCAmelCase_ ) == 1:
break
else:
A__ : str =get_pairs(lowerCAmelCase_ )
A__ : Dict ="""@@ """.join(lowerCAmelCase_ )
A__ : Tuple =word[:-4]
A__ : Any =word
return word
def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
A__ : int =[]
A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip()
return out_string
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Optional[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Tuple =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.merges_file , lowerCAmelCase_ )
return out_vocab_file, out_merge_file
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
A__ : Union[str, Any] =f.readlines()
for lineTmp in lines:
A__ : List[Any] =lineTmp.strip()
A__ : Dict =line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
A__ : Tuple =line[:idx]
A__ : Tuple =len(self.encoder )
| 687 | 0 |
'''simple docstring'''
def __lowerCamelCase ( __snake_case : int = 4_000_000 ) -> int:
"""simple docstring"""
A__ : Any =[0, 1]
A__ : Dict =0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
A__ : int =0
for j in range(len(__snake_case ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(F"""{solution() = }""")
| 709 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =nn.functional.normalize(__snake_case )
A__ : Optional[Any] =nn.functional.normalize(__snake_case )
return torch.mm(__snake_case, normalized_text_embeds.t() )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = CLIPConfig
__snake_case = ['CLIPEncoderLayer']
def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase_ )
A__ : str =CLIPVisionModel(config.vision_config )
A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ )
A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ )
A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any:
'''simple docstring'''
A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : Any =self.visual_projection(lowerCAmelCase_ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy()
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy()
A__ : List[str] =[]
A__ : Optional[int] =image_embeds.shape[0]
for i in range(lowerCAmelCase_ ):
A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : List[Any] =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A__ : Optional[Any] =special_cos_dist[i][concept_idx]
A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
A__ : Dict =0.01
for concept_idx in range(len(cos_dist[0] ) ):
A__ : Optional[int] =cos_dist[i][concept_idx]
A__ : List[str] =self.concept_embeds_weights[concept_idx].item()
A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(lowerCAmelCase_ )
result.append(lowerCAmelCase_ )
A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : List[Any] =self.visual_projection(lowerCAmelCase_ )
A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : Dict =0.0
A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 )
A__ : Tuple =special_care * 0.01
A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 687 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case : Optional[Any] = logging.get_logger(__name__)
__snake_case : Dict = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'roberta'
def __init__( self : List[str] , lowerCAmelCase_ : Optional[Any]=5_02_65 , lowerCAmelCase_ : Optional[int]=7_68 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Optional[Any]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Tuple="absolute" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : List[Any] , ) -> List[str]:
'''simple docstring'''
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : List[Any] =vocab_size
A__ : int =hidden_size
A__ : Tuple =num_hidden_layers
A__ : int =num_attention_heads
A__ : List[str] =hidden_act
A__ : int =intermediate_size
A__ : List[Any] =hidden_dropout_prob
A__ : Any =attention_probs_dropout_prob
A__ : List[Any] =max_position_embeddings
A__ : Any =type_vocab_size
A__ : Any =initializer_range
A__ : Optional[Any] =layer_norm_eps
A__ : List[str] =position_embedding_type
A__ : Tuple =use_cache
A__ : Optional[int] =classifier_dropout
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A__ : List[str] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 710 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =[]
for part_id in partition_order:
A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect()
for row_idx, row in enumerate(__snake_case ):
expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : str =spark.range(100 ).repartition(1 )
A__ : List[str] =Spark(__snake_case )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Tuple =spark.range(10 ).repartition(2 )
A__ : List[str] =[1, 0]
A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions.
A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(10 ).repartition(1 )
A__ : List[str] =SparkExamplesIterable(__snake_case )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__snake_case ):
assert row_id == f"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
A__ : Tuple =lambda __snake_case : x.reverse()
A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] )
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Any =spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : List[str] =spark.range(100 ).repartition(1 )
A__ : List[Any] =Spark(__snake_case )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 687 | 0 |
'''simple docstring'''
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=13 , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : Any=32 , lowerCAmelCase_ : Tuple=5 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : List[Any]=64 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : List[Any]=16 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict=0.02 , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Union[str, Any]=1 , ) -> Tuple:
'''simple docstring'''
A__ : int =parent
A__ : Union[str, Any] =batch_size
A__ : Dict =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_mask
A__ : Tuple =use_token_type_ids
A__ : Tuple =use_labels
A__ : List[Any] =vocab_size
A__ : Any =hidden_size
A__ : str =num_hidden_layers
A__ : Tuple =num_attention_heads
A__ : List[str] =intermediate_size
A__ : Optional[Any] =hidden_act
A__ : Dict =hidden_dropout_prob
A__ : Tuple =attention_probs_dropout_prob
A__ : Optional[Any] =max_position_embeddings
A__ : Tuple =type_vocab_size
A__ : List[str] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : str =num_labels
A__ : Any =num_choices
A__ : Optional[int] =scope
A__ : Dict =q_groups
A__ : Any =k_groups
A__ : List[Any] =v_groups
A__ : List[str] =post_attention_groups
A__ : Dict =intermediate_groups
A__ : Dict =output_groups
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Tuple =None
if self.use_input_mask:
A__ : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Optional[int] =None
A__ : str =None
A__ : Tuple =None
if self.use_labels:
A__ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Any =ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[Any] =self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> Dict:
'''simple docstring'''
A__ : Optional[Any] =SqueezeBertModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ : List[Any] =SqueezeBertForMaskedLM(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ) -> Dict:
'''simple docstring'''
A__ : List[Any] =SqueezeBertForQuestionAnswering(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple ) -> List[str]:
'''simple docstring'''
A__ : List[str] =self.num_labels
A__ : List[str] =SqueezeBertForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[Any] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] ) -> Any:
'''simple docstring'''
A__ : Optional[Any] =self.num_labels
A__ : Optional[Any] =SqueezeBertForTokenClassification(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
A__ : int =self.num_choices
A__ : Optional[Any] =SqueezeBertForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Union[str, Any] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : int =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : str =self.prepare_config_and_inputs()
(A__) : Tuple =config_and_inputs
A__ : Optional[int] ={"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__snake_case = (
{
'feature-extraction': SqueezeBertModel,
'fill-mask': SqueezeBertForMaskedLM,
'question-answering': SqueezeBertForQuestionAnswering,
'text-classification': SqueezeBertForSequenceClassification,
'token-classification': SqueezeBertForTokenClassification,
'zero-shot': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__snake_case = False
__snake_case = True
__snake_case = False
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =SqueezeBertModelTester(self )
A__ : int =ConfigTester(self , config_class=lowerCAmelCase_ , dim=37 )
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> str:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ : List[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase_ )
@slow
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Dict =SqueezeBertModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : List[str] ) -> str:
'''simple docstring'''
A__ : List[str] =SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
A__ : Dict =torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] )
A__ : List[Any] =model(lowerCAmelCase_ )[0]
A__ : int =torch.Size((1, 3) )
self.assertEqual(output.shape , lowerCAmelCase_ )
A__ : int =torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-4 ) )
| 711 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
from typing import Union
import fire
import torch
from tqdm import tqdm
def __lowerCamelCase ( __snake_case : str, __snake_case : str = "cpu", __snake_case : Union[str, None] = None ) -> None:
"""simple docstring"""
A__ : Optional[int] =torch.load(__snake_case, map_location=__snake_case )
for k, v in tqdm(state_dict.items() ):
if not isinstance(__snake_case, torch.Tensor ):
raise TypeError("""FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin""" )
A__ : List[str] =v.half()
if save_path is None: # overwrite src_path
A__ : Union[str, Any] =src_path
torch.save(__snake_case, __snake_case )
if __name__ == "__main__":
fire.Fire(convert)
| 712 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __lowerCamelCase ( __snake_case : Dict ) -> List[str]:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str:
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] =module
A__ : Union[str, Any] =nn.Sequential(
nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , )
A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'bigscience/bloom-1b7'
# Constant values
__snake_case = 2.109659552692574
__snake_case = 'Hello my name is'
__snake_case = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
__snake_case = 10
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
# Models and tokenizer
A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Models and tokenizer
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
A__ : str =self.model_abit.config
self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) )
A__ : Union[str, Any] =config.to_dict()
A__ : Any =config.to_diff_dict()
A__ : Optional[Any] =config.to_json_string()
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
A__ : int =self.model_fpaa.get_memory_footprint()
A__ : Optional[Any] =self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
A__ : Tuple =get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCAmelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
A__ : Tuple =True
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" )
A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
with self.assertRaises(lowerCAmelCase_ ):
A__ : Dict =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =self.model_fpaa.to(torch.floataa )
A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.half()
# Check this does not throw an error
A__ : int =self.model_fpaa.float()
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowercase__ ( cls : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple ="""t5-small"""
A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name )
A__ : Optional[int] ="""Translate in German: Hello, my dog is cute"""
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
from transformers import TaForConditionalGeneration
A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules
A__ : Optional[Any] =None
# test with `t5-small`
A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Optional[Any] =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : List[str] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ )
A__ : Dict =modules
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Any =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Dict =model.generate(**lowerCAmelCase_ )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
super().setUp()
# model_name
A__ : Any ="""bigscience/bloom-560m"""
A__ : List[Any] ="""t5-small"""
# Different types of model
A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Sequence classification model
A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# CausalLM model
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Seq2seq model
A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
A__ : Dict =pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
A__ : Optional[int] =self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : int =AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] ="""facebook/opt-350m"""
super().setUp()
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
A__ : int =False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
A__ : Dict =param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCAmelCase_ ) ):
A__ : int =LoRALayer(module.q_proj , rank=16 )
A__ : Any =LoRALayer(module.k_proj , rank=16 )
A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
A__ : Any =model.forward(**lowerCAmelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowerCAmelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'gpt2-xl'
__snake_case = 3.3191854854152187
| 687 | 0 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__snake_case : Optional[int] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__snake_case : Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__snake_case : int = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__snake_case : Optional[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__snake_case : Dict = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 713 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__snake_case : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : Union[str, Any] = {
'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json',
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'levit'
def __init__( self : Any , lowerCAmelCase_ : Union[str, Any]=2_24 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : List[str]=16 , lowerCAmelCase_ : Dict=[1_28, 2_56, 3_84] , lowerCAmelCase_ : Tuple=[4, 8, 12] , lowerCAmelCase_ : List[str]=[4, 4, 4] , lowerCAmelCase_ : List[str]=[16, 16, 16] , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[Any]=[2, 2, 2] , lowerCAmelCase_ : List[Any]=[2, 2, 2] , lowerCAmelCase_ : Optional[Any]=0.02 , **lowerCAmelCase_ : Optional[int] , ) -> Dict:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
A__ : List[Any] =image_size
A__ : Any =num_channels
A__ : List[Any] =kernel_size
A__ : int =stride
A__ : Dict =padding
A__ : Union[str, Any] =hidden_sizes
A__ : Any =num_attention_heads
A__ : List[Any] =depths
A__ : List[Any] =key_dim
A__ : int =drop_path_rate
A__ : Dict =patch_size
A__ : Tuple =attention_ratio
A__ : Optional[int] =mlp_ratio
A__ : Optional[Any] =initializer_range
A__ : Dict =[
["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.11' )
@property
def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def lowercase__ ( self : int ) -> float:
'''simple docstring'''
return 1e-4
| 714 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple:
'''simple docstring'''
A__ : Tuple =parent
A__ : Any =batch_size
A__ : List[str] =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_lengths
A__ : int =use_token_type_ids
A__ : Union[str, Any] =use_labels
A__ : Optional[Any] =gelu_activation
A__ : List[Any] =sinusoidal_embeddings
A__ : List[Any] =causal
A__ : str =asm
A__ : Tuple =n_langs
A__ : Dict =vocab_size
A__ : Optional[Any] =n_special
A__ : Tuple =hidden_size
A__ : Dict =num_hidden_layers
A__ : int =num_attention_heads
A__ : Optional[Any] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Optional[int] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : Any =num_labels
A__ : str =num_choices
A__ : Optional[int] =summary_type
A__ : int =use_proj
A__ : Tuple =scope
A__ : Union[str, Any] =bos_token_id
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Tuple =None
if self.use_input_lengths:
A__ : Tuple =(
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ : Optional[Any] =None
if self.use_token_type_ids:
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ : Any =None
A__ : Tuple =None
A__ : Optional[Any] =None
if self.use_labels:
A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float()
A__ : str =ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Tuple =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
A__ : List[Any] =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Tuple =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
A__ : Optional[Any] =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
((A__) , ) : List[Any] =result_with_labels.to_tuple()
A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
((A__) , ) : Tuple =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : str =model(lowerCAmelCase_ )
A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
A__ : int =self.num_labels
A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =self.num_choices
A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Optional[int] =config_and_inputs
A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int:
'''simple docstring'''
A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
A__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Dict =XLMModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
A__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
A__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : Tuple =min_length + idx + 1
A__ : Tuple =min_length + idx + 1
A__ : Dict =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : str =min_length + idx + 1
A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCAmelCase_ )
A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
A__ : Optional[Any] =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __lowerCamelCase ( __snake_case : List[str] ) -> Tuple:
"""simple docstring"""
A__ : int =filter(lambda __snake_case : p.requires_grad, model.parameters() )
A__ : Dict =sum([np.prod(p.size() ) for p in model_parameters] )
return params
__snake_case : int = logging.getLogger(__name__)
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any] ) -> int:
"""simple docstring"""
if metric == "rouge2":
A__ : str ="""{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
A__ : Union[str, Any] ="""{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
A__ : Union[str, Any] ="""{val_avg_em:.4f}-{step_count}"""
elif metric == "loss":
A__ : Union[str, Any] ="""{val_avg_loss:.4f}-{step_count}"""
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
""" function.""" )
A__ : List[str] =ModelCheckpoint(
dirpath=__snake_case, filename=__snake_case, monitor=f"val_{metric}", mode="""max""", save_top_k=1, every_n_epochs=1, )
return checkpoint_callback
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : str ) -> int:
"""simple docstring"""
return EarlyStopping(
monitor=f"val_{metric}", mode="""min""" if """loss""" in metric else """max""", patience=__snake_case, verbose=__snake_case, )
class lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def lowercase__ ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[Any] ={f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(lowerCAmelCase_ )
@rank_zero_only
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=True ) -> None:
'''simple docstring'''
logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" )
A__ : Optional[Any] =trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
A__ : Any =Path(pl_module.hparams.output_dir )
if type_path == "test":
A__ : Union[str, Any] =od / """test_results.txt"""
A__ : str =od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
A__ : List[str] =od / f"{type_path}_results/{trainer.global_step:05d}.txt"
A__ : Any =od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=lowerCAmelCase_ )
generations_file.parent.mkdir(exist_ok=lowerCAmelCase_ )
with open(lowerCAmelCase_ , """a+""" ) as writer:
for key in sorted(lowerCAmelCase_ ):
if key in ["log", "progress_bar", "preds"]:
continue
A__ : str =metrics[key]
if isinstance(lowerCAmelCase_ , torch.Tensor ):
A__ : Optional[Any] =val.item()
A__ : List[str] =f"{key}: {val:.6f}\n"
writer.write(lowerCAmelCase_ )
if not save_generations:
return
if "preds" in metrics:
A__ : Optional[int] ="""\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(lowerCAmelCase_ )
@rank_zero_only
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
try:
A__ : List[str] =pl_module.model.model.num_parameters()
except AttributeError:
A__ : int =pl_module.model.num_parameters()
A__ : int =count_trainable_parameters(lowerCAmelCase_ )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : pl.LightningModule ) -> Optional[int]:
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(lowerCAmelCase_ , lowerCAmelCase_ , """test""" )
@rank_zero_only
def lowercase__ ( self : str , lowerCAmelCase_ : pl.Trainer , lowerCAmelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 715 |
'''simple docstring'''
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def __lowerCamelCase ( __snake_case : int ) -> Optional[int]:
"""simple docstring"""
random.seed(__snake_case )
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# ^^ safe to call this function even if cuda is not available
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Optional[Any] =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : List[str] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : int =True
if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None:
A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Union[str, Any] =kwargs["""max_value"""]
if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Optional[Any] =kwargs["""min_value"""]
A__ : Any =list(lowerCAmelCase_ )
A__ : int =[p.clone().detach() for p in parameters]
if kwargs.get("""device""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
self.to(device=kwargs["""device"""] )
A__ : Optional[int] =None
A__ : Any =decay
A__ : List[Any] =min_decay
A__ : Optional[int] =update_after_step
A__ : List[str] =use_ema_warmup
A__ : str =inv_gamma
A__ : Union[str, Any] =power
A__ : str =0
A__ : str =None # set in `step()`
A__ : List[str] =model_cls
A__ : Optional[int] =model_config
@classmethod
def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel":
'''simple docstring'''
A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ )
A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config )
ema_model.load_state_dict(lowerCAmelCase_ )
return ema_model
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : Optional[int] =self.model_cls.from_config(self.model_config )
A__ : Optional[Any] =self.state_dict()
state_dict.pop("""shadow_params""" , lowerCAmelCase_ )
model.register_to_config(**lowerCAmelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float:
'''simple docstring'''
A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Union[str, Any] =(1 + step) / (10 + step)
A__ : str =min(lowerCAmelCase_ , self.decay )
# make sure decay is not smaller than min_decay
A__ : int =max(lowerCAmelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Any =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : Optional[int] =parameters.parameters()
A__ : Dict =list(lowerCAmelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : Any =self.get_decay(self.optimization_step )
A__ : Optional[int] =decay
A__ : List[str] =1 - decay
A__ : str =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : Optional[Any] =list(lowerCAmelCase_ )
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None:
'''simple docstring'''
A__ : str =[
p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ )
for p in self.shadow_params
]
def lowercase__ ( self : Optional[Any] ) -> dict:
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : List[str] =[param.detach().cpu().clone() for param in parameters]
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : List[str] =None
def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None:
'''simple docstring'''
A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ )
A__ : List[Any] =state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , lowerCAmelCase_ ):
raise ValueError("""Invalid min_decay""" )
A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , lowerCAmelCase_ ):
raise ValueError("""Invalid optimization_step""" )
A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , lowerCAmelCase_ ):
raise ValueError("""Invalid update_after_step""" )
A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Tuple =state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ )
if shadow_params is not None:
A__ : List[str] =shadow_params
if not isinstance(self.shadow_params , lowerCAmelCase_ ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 687 | 0 |
'''simple docstring'''
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Tuple ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] ="""ylacombe/bark-small"""
A__ : Dict =tempfile.mkdtemp()
A__ : str ="""en_speaker_1"""
A__ : Any ="""This is a test string"""
A__ : List[Any] ="""speaker_embeddings_path.json"""
A__ : Union[str, Any] ="""speaker_embeddings"""
def lowercase__ ( self : int , **lowerCAmelCase_ : Any ) -> Union[str, Any]:
'''simple docstring'''
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowercase__ ( self : Dict ) -> List[str]:
'''simple docstring'''
A__ : Tuple =self.get_tokenizer()
A__ : Optional[Any] =BarkProcessor(tokenizer=lowerCAmelCase_ )
processor.save_pretrained(self.tmpdirname )
A__ : str =BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
A__ : Tuple =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
A__ : Tuple =BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : Union[str, Any] =BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
A__ : Dict =35
A__ : Union[str, Any] =2
A__ : Dict =8
A__ : Dict ={
"""semantic_prompt""": np.ones(lowerCAmelCase_ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
A__ : str =processor(text=self.input_string , voice_preset=lowerCAmelCase_ )
A__ : Optional[int] =inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
A__ : Optional[Any] =os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : str =processor(text=self.input_string , voice_preset=lowerCAmelCase_ )
A__ : int =inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase_ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
A__ : Union[str, Any] =processor(text=self.input_string , voice_preset=self.voice_preset )
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Any =self.get_tokenizer()
A__ : str =BarkProcessor(tokenizer=lowerCAmelCase_ )
A__ : List[Any] =processor(text=self.input_string )
A__ : List[Any] =tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 716 |
'''simple docstring'''
from __future__ import annotations
import requests
__snake_case : Union[str, Any] = set(
'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split()
)
def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict:
"""simple docstring"""
A__ : Union[str, Any] =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}"
raise ValueError(__snake_case )
A__ : Tuple =requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, )
if response.status_code == 429:
raise requests.HTTPError
A__ : Tuple =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
A__ : Tuple ={}
for id_ in range(__snake_case ):
A__ : List[Any] ={
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
| 687 | 0 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class lowerCamelCase :
'''simple docstring'''
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return None
class lowerCamelCase :
'''simple docstring'''
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return None
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(lowerCAmelCase_ , """tf""" , 12 , **lowerCAmelCase_ )
@require_torch
@slow
def lowercase__ ( self : str ) -> Tuple:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(lowerCAmelCase_ , """pt""" , 12 , **lowerCAmelCase_ )
@require_torch
@slow
def lowercase__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
from transformers import BertModel
A__ : List[str] =["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""]
with NamedTemporaryFile(mode="""w+t""" ) as vocab_file:
vocab_file.write("""\n""".join(lowerCAmelCase_ ) )
vocab_file.flush()
A__ : int =BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
A__ : Optional[int] =BertModel(BertConfig(vocab_size=len(lowerCAmelCase_ ) ) )
model.save_pretrained(lowerCAmelCase_ )
self._test_export(lowerCAmelCase_ , """pt""" , 12 , lowerCAmelCase_ )
@require_tf
@slow
def lowercase__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
A__ : Optional[int] =self._test_export(lowerCAmelCase_ , """tf""" , 12 , **lowerCAmelCase_ )
A__ : Optional[int] =quantize(Path(lowerCAmelCase_ ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(lowerCAmelCase_ ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
@require_torch
@slow
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
A__ : int =self._test_export(lowerCAmelCase_ , """pt""" , 12 , **lowerCAmelCase_ )
A__ : List[str] =quantize(lowerCAmelCase_ )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(lowerCAmelCase_ ).stat().st_size:
self.fail("""Quantized model is bigger than initial ONNX model""" )
def lowercase__ ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Optional[Any] ) -> List[str]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
A__ : List[str] =Path(lowerCAmelCase_ ).joinpath("""model.onnx""" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ )
return path
except Exception as e:
self.fail(lowerCAmelCase_ )
@require_torch
@require_tokenizers
@slow
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
from transformers import BertModel
A__ : Optional[int] =BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
A__ : Any =BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(lowerCAmelCase_ , lowerCAmelCase_ , """pt""" )
@require_tf
@require_tokenizers
@slow
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
from transformers import TFBertModel
A__ : Tuple =TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) )
A__ : str =BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" )
self._test_infer_dynamic_axis(lowerCAmelCase_ , lowerCAmelCase_ , """tf""" )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ) -> List[str]:
'''simple docstring'''
A__ : Tuple =FeatureExtractionPipeline(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Tuple =["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""]
A__ : Optional[Any] =infer_shapes(lowerCAmelCase_ , lowerCAmelCase_ )
# Assert all variables are present
self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , lowerCAmelCase_ )
self.assertSequenceEqual(variable_names[3:] , lowerCAmelCase_ )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} )
self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : Union[str, Any] =["""input_ids""", """attention_mask""", """token_type_ids"""]
A__ : List[str] ={"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]}
A__ : int =ensure_valid_input(FuncContiguousArgs() , lowerCAmelCase_ , lowerCAmelCase_ )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(lowerCAmelCase_ ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(lowerCAmelCase_ ) , set(lowerCAmelCase_ ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(lowerCAmelCase_ , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
A__ : Optional[int] =ensure_valid_input(FuncNonContiguousArgs() , lowerCAmelCase_ , lowerCAmelCase_ )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(lowerCAmelCase_ ) , 1 )
self.assertEqual(len(lowerCAmelCase_ ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["""input_ids"""] )
self.assertEqual(ordered_input_names[0] , """input_ids""" )
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
A__ : Dict =generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" )
self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
| 717 |
'''simple docstring'''
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__snake_case : Union[str, Any] = logging.getLogger(__name__)
__snake_case : int = tf.data.AUTOTUNE
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", )
parser.add_argument(
"""--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", )
parser.add_argument(
"""--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", )
parser.add_argument(
"""--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", )
parser.add_argument(
"""--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", )
parser.add_argument(
"""--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", )
parser.add_argument(
"""--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", )
parser.add_argument(
"""--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", )
parser.add_argument(
"""--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", )
parser.add_argument(
"""--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", )
parser.add_argument(
"""--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", )
parser.add_argument(
"""--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", )
parser.add_argument(
"""--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", )
parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" )
A__ : Optional[Any] =parser.parse_args()
return args
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
try:
if args.tpu_name:
A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(__snake_case )
tf.tpu.experimental.initialize_tpu_system(__snake_case )
return tpu
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : Any =0
for file in file_list:
A__ : Optional[int] =file.split("""/""" )[-1]
A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 )
A__ : str =int(__snake_case )
num_samples += sample_count
return num_samples
def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]:
"""simple docstring"""
A__ : List[str] =count_samples(__snake_case )
A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case )
if shuffle:
A__ : Optional[int] =dataset.shuffle(len(__snake_case ) )
A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) )
A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case )
if shuffle:
assert shuffle_buffer_size is not None
A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size )
A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case )
A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case )
A__ : Tuple =dataset.prefetch(__snake_case )
return dataset
def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
if not args.no_tpu:
A__ : Dict =initialize_tpu(__snake_case )
A__ : int =tf.distribute.TPUStrategy(__snake_case )
else:
A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer )
A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) )
if not training_records:
raise ValueError(f"No .tfrecord files found in {args.train_dataset}." )
A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." )
A__ : Optional[Any] =count_samples(__snake_case )
A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
A__ : str =steps_per_epoch * args.num_epochs
with strategy.scope():
A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
A__ , A__ : Optional[Any] =create_optimizer(
num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__snake_case, metrics=["""accuracy"""] )
def decode_fn(__snake_case : Tuple ):
A__ : Dict ={
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__snake_case, __snake_case )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
A__ : List[Any] =DataCollatorForLanguageModeling(
tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" )
def mask_with_collator(__snake_case : Optional[int] ):
# TF really needs an isin() function
A__ : Union[str, Any] =(
~tf.cast(batch["""attention_mask"""], tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
A__ , A__ : List[str] =data_collator.tf_mask_tokens(
batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, )
return batch
A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, )
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, )
A__ : Tuple =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) )
model.fit(
__snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__snake_case : str = parse_args()
main(args)
| 687 | 0 |
'''simple docstring'''
def __lowerCamelCase ( __snake_case : float ) -> float:
"""simple docstring"""
return 10 - x * x
def __lowerCamelCase ( __snake_case : float, __snake_case : float ) -> float:
"""simple docstring"""
if equation(__snake_case ) * equation(__snake_case ) >= 0:
raise ValueError("""Wrong space!""" )
A__ : int =a
while (b - a) >= 0.01:
# Find middle point
A__ : Optional[int] =(a + b) / 2
# Check if middle point is root
if equation(__snake_case ) == 0.0:
break
# Decide the side to repeat the steps
if equation(__snake_case ) * equation(__snake_case ) < 0:
A__ : List[Any] =c
else:
A__ : Optional[int] =c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 718 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = RoCBertTokenizer
__snake_case = None
__snake_case = False
__snake_case = True
__snake_case = filter_non_english
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
super().setUp()
A__ : Optional[Any] =["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""]
A__ : int ={}
A__ : Any ={}
for i, value in enumerate(lowerCAmelCase_ ):
A__ : Union[str, Any] =i
A__ : List[str] =i
A__ : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] )
A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ )
with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer:
json.dump(lowerCAmelCase_ , lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
A__ : int =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
A__ : str =tokenizer.tokenize("""你好[SEP]你是谁""" )
self.assertListEqual(lowerCAmelCase_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase_ ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase_ ) , [5, 6, 2, 5, 7, 8] )
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
A__ : Optional[Any] =RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def lowercase__ ( self : int ) -> Any:
'''simple docstring'''
A__ : int =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def lowercase__ ( self : Dict ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def lowercase__ ( self : str ) -> Any:
'''simple docstring'''
A__ : int =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : Union[str, Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
A__ : Dict =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
A__ : Any =RoCBertBasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def lowercase__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
A__ : int =["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
A__ : List[str] ={}
for i, token in enumerate(lowerCAmelCase_ ):
A__ : List[Any] =i
A__ : Union[str, Any] =RoCBertWordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
def lowercase__ ( self : Dict ) -> Any:
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def lowercase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ : Union[str, Any] =self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
if self.test_rust_tokenizer:
A__ : List[Any] =self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
A__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Dict =f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
A__ : Dict =tokenizer_r.encode_plus(
lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , )
A__ : Tuple =tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , """do_lower_case""" ) else False
A__ : Optional[int] =(
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
A__ : List[Any] =["""的""", """人""", """有"""]
A__ : Optional[int] ="""""".join(lowerCAmelCase_ )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
A__ : Any =True
A__ : int =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Union[str, Any] =tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
A__ : str =tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
A__ : Tuple =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ )
A__ : Tuple =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : List[Any] =False
A__ : List[str] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Dict =self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Optional[int] =tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
A__ : Tuple =tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
A__ : List[str] =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ )
A__ : Optional[Any] =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ )
# it is expected that only the first Chinese character is not preceded by "##".
A__ : Optional[int] =[
f"##{token}" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ )
]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
A__ : List[Any] =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
A__ : str =tokenizer.encode("""你好""" , add_special_tokens=lowerCAmelCase_ )
A__ : str =tokenizer.encode("""你是谁""" , add_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ )
A__ : List[Any] =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def lowercase__ ( self : str ) -> str:
'''simple docstring'''
A__ : Optional[int] =self.get_tokenizers(do_lower_case=lowerCAmelCase_ )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
A__ : Optional[int] ="""你好,你是谁"""
A__ : List[Any] =tokenizer.tokenize(lowerCAmelCase_ )
A__ : Union[str, Any] =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
A__ : str =tokenizer.convert_tokens_to_shape_ids(lowerCAmelCase_ )
A__ : Any =tokenizer.convert_tokens_to_pronunciation_ids(lowerCAmelCase_ )
A__ : List[Any] =tokenizer.prepare_for_model(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =tokenizer.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
| 719 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__snake_case : Optional[int] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__snake_case : Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__snake_case : int = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__snake_case : Optional[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__snake_case : Dict = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 687 | 0 |
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__snake_case : List[str] = logging.get_logger(__name__)
__snake_case : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
__snake_case : Dict = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
__snake_case : int = {
'gpt-neox-20b': 2048,
}
class lowerCamelCase ( lowercase_ ):
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['input_ids', 'attention_mask']
def __init__( self : List[Any] , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : str="<|endoftext|>" , lowerCAmelCase_ : Tuple="<|endoftext|>" , lowerCAmelCase_ : Optional[Any]=False , **lowerCAmelCase_ : Optional[Any] , ) -> Any:
'''simple docstring'''
super().__init__(
lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : List[str] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase_ ) != add_prefix_space:
A__ : List[Any] =getattr(lowerCAmelCase_ , pre_tok_state.pop("""type""" ) )
A__ : str =add_prefix_space
A__ : str =pre_tok_class(**lowerCAmelCase_ )
A__ : Optional[int] =add_prefix_space
def lowercase__ ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
A__ : Union[str, Any] =self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : "Conversation" ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[]
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] )
if len(lowerCAmelCase_ ) > self.model_max_length:
A__ : Optional[int] =input_ids[-self.model_max_length :]
return input_ids
| 720 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str:
"""simple docstring"""
A__ : int =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any =""""""
else:
A__ : Optional[int] ="""vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : Optional[int] =in_proj_weight[
: config.hidden_size, :
]
A__ : str =in_proj_bias[: config.hidden_size]
A__ : Optional[Any] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : List[Any] =in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] =in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[Any] =["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : Dict =dct.pop(__snake_case )
A__ : Tuple =val
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str:
"""simple docstring"""
A__ : Tuple =ViTConfig()
# patch_size
if model_name[-1] == "8":
A__ : Optional[Any] =8
# set labels if required
if not base_model:
A__ : Optional[Any] =1_000
A__ : str ="""huggingface/label-files"""
A__ : Any ="""imagenet-1k-id2label.json"""
A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) )
A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : List[Any] =idalabel
A__ : List[Any] ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
A__ : str =384
A__ : Optional[Any] =1_536
A__ : Optional[Any] =12
A__ : Union[str, Any] =6
# load original model from torch hub
A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case )
original_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : List[str] =original_model.state_dict()
if base_model:
remove_classification_head_(__snake_case )
A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case )
for src, dest in rename_keys:
rename_key(__snake_case, __snake_case, __snake_case )
read_in_q_k_v(__snake_case, __snake_case, __snake_case )
# load HuggingFace model
if base_model:
A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval()
else:
A__ : List[str] =ViTForImageClassification(__snake_case ).eval()
model.load_state_dict(__snake_case )
# Check outputs on an image, prepared by ViTImageProcessor
A__ : Union[str, Any] =ViTImageProcessor()
A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Union[str, Any] =encoding["""pixel_values"""]
A__ : Union[str, Any] =model(__snake_case )
if base_model:
A__ : List[str] =original_model(__snake_case )
assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 )
else:
A__ : Optional[int] =original_model(__snake_case )
assert logits.shape == outputs.logits.shape
assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__snake_case : Tuple = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 687 | 0 |
'''simple docstring'''
from collections import defaultdict
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
A__ : int =[
[-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCAmelCase_ ) )
]
A__ : Dict =defaultdict(lowerCAmelCase_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
A__ : Union[str, Any] =(1 << len(lowerCAmelCase_ )) - 1
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
# if mask == self.finalmask all persons are distributed tasks, return 1
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
A__ : List[str] =self.count_ways_until(lowerCAmelCase_ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
A__ : Dict =total_ways_util
return self.dp[mask][task_no]
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Any:
'''simple docstring'''
# Store the list of persons for each task
for i in range(len(lowerCAmelCase_ ) ):
for j in task_performed[i]:
self.task[j].append(lowerCAmelCase_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
__snake_case : List[Any] = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
__snake_case : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 721 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'linear'
__snake_case = 'cosine'
__snake_case = 'cosine_with_restarts'
__snake_case = 'polynomial'
__snake_case = 'constant'
__snake_case = 'constant_with_warmup'
__snake_case = 'piecewise_constant'
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]:
"""simple docstring"""
return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1.0, __snake_case ) )
return 1.0
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]:
"""simple docstring"""
A__ : str ={}
A__ : Tuple =step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
A__ , A__ : int =rule_str.split(""":""" )
A__ : Optional[int] =int(__snake_case )
A__ : List[Any] =float(__snake_case )
A__ : Union[str, Any] =value
A__ : int =float(rule_list[-1] )
def create_rules_function(__snake_case : int, __snake_case : Dict ):
def rule_func(__snake_case : int ) -> float:
A__ : Any =sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__snake_case ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
A__ : Any =create_rules_function(__snake_case, __snake_case )
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : Dict ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]:
"""simple docstring"""
A__ : Optional[int] =optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
A__ : List[Any] =lr_init - lr_end
A__ : Any =num_training_steps - num_warmup_steps
A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps
A__ : List[str] =lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__snake_case, __snake_case, __snake_case )
__snake_case : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =SchedulerType(__snake_case )
A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__snake_case, last_epoch=__snake_case )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, )
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
| 687 | 0 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'linear'
__snake_case = 'cosine'
__snake_case = 'cosine_with_restarts'
__snake_case = 'polynomial'
__snake_case = 'constant'
__snake_case = 'constant_with_warmup'
__snake_case = 'piecewise_constant'
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]:
"""simple docstring"""
return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1.0, __snake_case ) )
return 1.0
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]:
"""simple docstring"""
A__ : str ={}
A__ : Tuple =step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
A__ : int =rule_str.split(""":""" )
A__ : Optional[int] =int(__snake_case )
A__ : List[Any] =float(__snake_case )
A__ : Union[str, Any] =value
A__ : int =float(rule_list[-1] )
def create_rules_function(__snake_case : int, __snake_case : Dict ):
def rule_func(__snake_case : int ) -> float:
A__ : Any =sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__snake_case ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
A__ : Any =create_rules_function(__snake_case, __snake_case )
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : Dict ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]:
"""simple docstring"""
A__ : Optional[int] =optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
A__ : List[Any] =lr_init - lr_end
A__ : Any =num_training_steps - num_warmup_steps
A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps
A__ : List[str] =lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__snake_case, __snake_case, __snake_case )
__snake_case : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =SchedulerType(__snake_case )
A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__snake_case, last_epoch=__snake_case )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, )
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
| 700 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case : List[str] = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
__snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : str = logging.get_logger()
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = 42
__snake_case = field(default_factory=lowercase_ )
__snake_case = field(default_factory=lowercase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tensor , lowerCAmelCase_ : Tensor ) -> str:
'''simple docstring'''
A__ : str =len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase_ , nn.Convad ) or isinstance(lowerCAmelCase_ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCAmelCase_ )
def __call__( self : List[str] , lowerCAmelCase_ : Tensor ) -> Optional[Any]:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCAmelCase_ )
[x.remove() for x in self.handles]
return self
@property
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
return list(filter(lambda lowerCAmelCase_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = 42
__snake_case = 42
__snake_case = 1
__snake_case = field(default_factory=lowercase_ )
__snake_case = field(default_factory=lowercase_ )
__snake_case = True
def __call__( self : int , lowerCAmelCase_ : Tensor ) -> Any:
'''simple docstring'''
A__ : Any =Tracker(self.dest )(lowerCAmelCase_ ).parametrized
A__ : Tuple =Tracker(self.src )(lowerCAmelCase_ ).parametrized
A__ : Any =list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.src_skip , lowerCAmelCase_ ) )
A__ : List[str] =list(filter(lambda lowerCAmelCase_ : type(lowerCAmelCase_ ) not in self.dest_skip , lowerCAmelCase_ ) )
if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ) and self.raise_if_mismatch:
raise Exception(
f"Numbers of operations are different. Source module has {len(lowerCAmelCase_ )} operations while"
f" destination module has {len(lowerCAmelCase_ )}." )
for dest_m, src_m in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"Transfered from={src_m} to={dest_m}" )
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module ) -> Dict:
'''simple docstring'''
super().__init__()
A__ : List[Tuple[str, nn.Module]] =[]
# - get the stem
feature_blocks.append(("""conv1""", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("""block""" ), f"Unexpected layer name {k}"
A__ : List[str] =len(lowerCAmelCase_ ) + 1
feature_blocks.append((f"res{block_index}", v) )
A__ : Optional[Any] =nn.ModuleDict(lowerCAmelCase_ )
def lowercase__ ( self : int , lowerCAmelCase_ : Tensor ) -> List[Any]:
'''simple docstring'''
return get_trunk_forward_outputs(
lowerCAmelCase_ , out_feat_keys=lowerCAmelCase_ , feature_blocks=self._feature_blocks , )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Any , lowerCAmelCase_ : str ) -> str:
'''simple docstring'''
A__ : Optional[Any] =x.split("""-""" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : str , lowerCAmelCase_ : str ) -> Callable[[], Tuple[nn.Module, Dict]]:
'''simple docstring'''
# default to timm!
if x not in self:
A__ : Any =self.convert_name_to_timm(lowerCAmelCase_ )
A__ : Dict =partial(lambda: (timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ).eval(), None) )
else:
A__ : Optional[int] =super().__getitem__(lowerCAmelCase_ )
return val
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __getitem__( self : Any , lowerCAmelCase_ : str ) -> Callable[[], nn.Module]:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
A__ : Union[str, Any] =RegNetModel
else:
A__ : Optional[int] =RegNetForImageClassification
return val
def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : List[Tuple[str, str]] ) -> List[Any]:
"""simple docstring"""
for from_key, to_key in keys:
A__ : Tuple =from_state_dict[from_key].clone()
print(f"Copied key={from_key} to={to_key}" )
return to_state_dict
def __lowerCamelCase ( __snake_case : str, __snake_case : Callable[[], nn.Module], __snake_case : Callable[[], nn.Module], __snake_case : RegNetConfig, __snake_case : Path, __snake_case : bool = True, ) -> Union[str, Any]:
"""simple docstring"""
print(f"Converting {name}..." )
with torch.no_grad():
A__ : Tuple =from_model_func()
A__ : Dict =our_model_func(__snake_case ).eval()
A__ : Dict =ModuleTransfer(src=__snake_case, dest=__snake_case, raise_if_mismatch=__snake_case )
A__ : str =torch.randn((1, 3, 224, 224) )
module_transfer(__snake_case )
if from_state_dict is not None:
A__ : List[str] =[]
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
A__ : Any =[("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")]
A__ : Optional[Any] =manually_copy_vissl_head(__snake_case, our_model.state_dict(), __snake_case )
our_model.load_state_dict(__snake_case )
A__ : List[Any] =our_model(__snake_case, output_hidden_states=__snake_case )
A__ : Any =(
our_outputs.logits if isinstance(__snake_case, __snake_case ) else our_outputs.last_hidden_state
)
A__ : str =from_model(__snake_case )
A__ : Union[str, Any] =from_output[-1] if type(__snake_case ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
A__ : Union[str, Any] =our_outputs.hidden_states[-1]
assert torch.allclose(__snake_case, __snake_case ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message="""Add model""", use_temp_dir=__snake_case, )
A__ : Any =224 if """seer""" not in name else 384
# we can use the convnext one
A__ : Optional[int] =AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""", size=__snake_case )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message="""Add image processor""", use_temp_dir=__snake_case, )
print(f"Pushed {name}" )
def __lowerCamelCase ( __snake_case : Path, __snake_case : str = None, __snake_case : bool = True ) -> List[Any]:
"""simple docstring"""
A__ : Tuple ="""imagenet-1k-id2label.json"""
A__ : List[Any] =1_000
A__ : Optional[int] =(1, num_labels)
A__ : Dict ="""huggingface/label-files"""
A__ : str =num_labels
A__ : Union[str, Any] =json.load(open(cached_download(hf_hub_url(__snake_case, __snake_case, repo_type="""dataset""" ) ), """r""" ) )
A__ : Any ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : Optional[Any] =idalabel
A__ : List[Any] ={v: k for k, v in idalabel.items()}
A__ : Tuple =partial(__snake_case, num_labels=__snake_case, idalabel=__snake_case, labelaid=__snake_case )
A__ : List[str] ={
"""regnet-x-002""": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="""x""" ),
"""regnet-x-004""": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="""x""" ),
"""regnet-x-006""": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="""x""" ),
"""regnet-x-008""": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="""x""" ),
"""regnet-x-016""": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="""x""" ),
"""regnet-x-032""": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1_008], groups_width=48, layer_type="""x""" ),
"""regnet-x-040""": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1_360], groups_width=40, layer_type="""x""" ),
"""regnet-x-064""": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1_624], groups_width=56, layer_type="""x""" ),
"""regnet-x-080""": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1_920], groups_width=120, layer_type="""x""" ),
"""regnet-x-120""": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112, layer_type="""x""" ),
"""regnet-x-160""": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2_048], groups_width=128, layer_type="""x""" ),
"""regnet-x-320""": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1_344, 2_520], groups_width=168, layer_type="""x""" ),
# y variant
"""regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
"""regnet-y-004""": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
"""regnet-y-006""": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
"""regnet-y-008""": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
"""regnet-y-016""": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
"""regnet-y-032""": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1_512], groups_width=24 ),
"""regnet-y-040""": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1_088], groups_width=64 ),
"""regnet-y-064""": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1_296], groups_width=72 ),
"""regnet-y-080""": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2_016], groups_width=56 ),
"""regnet-y-120""": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112 ),
"""regnet-y-160""": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1_232, 3_024], groups_width=112 ),
"""regnet-y-320""": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"""regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ),
"""regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ),
"""regnet-y-1280-seer""": RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ),
"""regnet-y-2560-seer""": RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ),
"""regnet-y-10b-seer""": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ),
# finetuned on imagenet
"""regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ),
"""regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ),
"""regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ),
"""regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ),
"""regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ),
}
A__ : Optional[int] =NameToOurModelFuncMap()
A__ : List[Any] =NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(__snake_case : str, __snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]:
A__ : str =torch.hub.load_state_dict_from_url(__snake_case, model_dir=str(__snake_case ), map_location="""cpu""" )
A__ : Dict =model_func()
# check if we have a head, if yes add it
A__ : Union[str, Any] =files["""classy_state_dict"""]["""base_model"""]["""model"""]
A__ : Dict =model_state_dict["""trunk"""]
model.load_state_dict(__snake_case )
return model.eval(), model_state_dict["heads"]
# pretrained
A__ : Dict =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
A__ : int =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
A__ : List[Any] =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
A__ : Tuple =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""", lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
A__ : int =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
A__ : str =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
A__ : int =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
A__ : int =partial(
__snake_case, """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""", lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
__snake_case, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], __snake_case, __snake_case, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
__snake_case, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], __snake_case, __snake_case, __snake_case, )
return config, expected_shape
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported regnet* architecture,'
' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
__snake_case : List[Any] = parser.parse_args()
__snake_case : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 701 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Optional[int] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Tuple = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
__snake_case : Optional[int] = None
__snake_case : List[str] = logging.get_logger(__name__)
__snake_case : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__snake_case : Optional[Any] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
},
'tokenizer_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json',
},
}
# TODO(PVP) - this should be removed in Transformers v5
__snake_case : Union[str, Any] = {
't5-small': 512,
't5-base': 512,
't5-large': 512,
't5-3b': 512,
't5-11b': 512,
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = ['input_ids', 'attention_mask']
__snake_case = TaTokenizer
__snake_case = []
def __init__( self : Dict , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : Dict="<unk>" , lowerCAmelCase_ : Optional[int]="<pad>" , lowerCAmelCase_ : Union[str, Any]=1_00 , lowerCAmelCase_ : Union[str, Any]=None , **lowerCAmelCase_ : Any , ) -> str:
'''simple docstring'''
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
A__ : List[str] =[f"<extra_id_{i}>" for i in range(lowerCAmelCase_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
A__ : Optional[Any] =len(set(filter(lambda lowerCAmelCase_ : bool("""extra_id_""" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
""" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"""
""" tokens""" )
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : Union[str, Any] =vocab_file
A__ : Any =False if not self.vocab_file else True
A__ : str =extra_ids
@staticmethod
def lowercase__ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict ) -> Optional[Any]:
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
A__ : Optional[Any] =TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"""This tokenizer was incorrectly instantiated with a model max length of"""
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
""" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"""
""" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"""
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
""" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"""
""" instantiate this tokenizer with `model_max_length` set to your preferred value.""" , lowerCAmelCase_ , )
return max_model_length
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Any =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
logger.info(f"Copy vocab file to {out_vocab_file}" )
return (out_vocab_file,)
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : int =token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
A__ : Optional[int] =token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Optional[int] =[self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
return list(
set(filter(lambda lowerCAmelCase_ : bool(re.search(R"""<extra_id_\d+>""" , lowerCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) )
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
return [self.convert_tokens_to_ids(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()]
| 702 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Any =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
A__ : Optional[Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting"""
A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench"""
A__ : Optional[Any] =jax.random.PRNGKey(0 )
A__ : List[str] =50
A__ : List[str] =jax.device_count()
A__ : List[str] =num_samples * [prompt]
A__ : List[str] =num_samples * [init_image]
A__ : Tuple =num_samples * [mask_image]
A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# shard inputs and rng
A__ : Dict =replicate(lowerCAmelCase_ )
A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() )
A__ : List[Any] =shard(lowerCAmelCase_ )
A__ : Union[str, Any] =shard(lowerCAmelCase_ )
A__ : str =shard(lowerCAmelCase_ )
A__ : List[str] =pipeline(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ )
A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 )
A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1]
A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ : Optional[int] =jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
def __lowerCamelCase ( __snake_case : int ) -> int:
"""simple docstring"""
assert isinstance(__snake_case, __snake_case ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
A__ : Any =f"The input value of [n={number}] has to be > 0"
raise ValueError(__snake_case )
else:
A__ : str =sylvester(number - 1 )
A__ : List[str] =num - 1
A__ : Optional[Any] =num
return lower * upper + 1
if __name__ == "__main__":
print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 703 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : Dict = {
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'conditional_detr'
__snake_case = ['past_key_values']
__snake_case = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Tuple =backbone_config.get("""model_type""" )
A__ : List[str] =CONFIG_MAPPING[backbone_model_type]
A__ : Dict =config_class.from_dict(lowerCAmelCase_ )
A__ : int =use_timm_backbone
A__ : List[Any] =backbone_config
A__ : Optional[int] =num_channels
A__ : Optional[int] =num_queries
A__ : Union[str, Any] =d_model
A__ : Optional[int] =encoder_ffn_dim
A__ : Optional[Any] =encoder_layers
A__ : int =encoder_attention_heads
A__ : Optional[Any] =decoder_ffn_dim
A__ : Tuple =decoder_layers
A__ : Optional[Any] =decoder_attention_heads
A__ : Tuple =dropout
A__ : int =attention_dropout
A__ : Dict =activation_dropout
A__ : Union[str, Any] =activation_function
A__ : List[str] =init_std
A__ : str =init_xavier_std
A__ : int =encoder_layerdrop
A__ : List[Any] =decoder_layerdrop
A__ : Tuple =encoder_layers
A__ : Tuple =auxiliary_loss
A__ : List[Any] =position_embedding_type
A__ : int =backbone
A__ : Optional[int] =use_pretrained_backbone
A__ : str =dilation
# Hungarian matcher
A__ : Any =class_cost
A__ : str =bbox_cost
A__ : str =giou_cost
# Loss coefficients
A__ : Union[str, Any] =mask_loss_coefficient
A__ : int =dice_loss_coefficient
A__ : Union[str, Any] =cls_loss_coefficient
A__ : List[str] =bbox_loss_coefficient
A__ : str =giou_loss_coefficient
A__ : Optional[Any] =focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return self.d_model
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
A__ : int =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
A__ : str =self.backbone_config.to_dict()
A__ : int =self.__class__.model_type
return output
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.11' )
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return 12
| 687 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case : Tuple = logging.get_logger(__name__)
__snake_case : int = {
'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json',
'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json',
'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json',
'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json',
'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json',
'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json',
'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json',
'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json',
'bert-large-uncased-whole-word-masking': (
'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking': (
'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json'
),
'bert-large-uncased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-large-cased-whole-word-masking-finetuned-squad': (
'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json'
),
'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json',
'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json',
'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json',
'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json',
'cl-tohoku/bert-base-japanese-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json'
),
'cl-tohoku/bert-base-japanese-char-whole-word-masking': (
'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-cased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json'
),
'TurkuNLP/bert-base-finnish-uncased-v1': (
'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json'
),
'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json',
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'bert'
def __init__( self : Optional[int] , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : List[Any]=7_68 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Any=30_72 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[str]=5_12 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Dict=0 , lowerCAmelCase_ : Optional[int]="absolute" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Dict , ) -> Optional[int]:
'''simple docstring'''
super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Any =vocab_size
A__ : Any =hidden_size
A__ : Dict =num_hidden_layers
A__ : Optional[int] =num_attention_heads
A__ : Union[str, Any] =hidden_act
A__ : Any =intermediate_size
A__ : Union[str, Any] =hidden_dropout_prob
A__ : str =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Union[str, Any] =type_vocab_size
A__ : List[Any] =initializer_range
A__ : Union[str, Any] =layer_norm_eps
A__ : Tuple =position_embedding_type
A__ : Tuple =use_cache
A__ : Any =classifier_dropout
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
@property
def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A__ : List[str] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 704 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Union[str, Any] = logging.get_logger(__name__)
__snake_case : Optional[int] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
__snake_case = 'bit'
__snake_case = ['preactivation', 'bottleneck']
__snake_case = ['SAME', 'VALID']
def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A__ : List[Any] =global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
A__ : List[Any] =num_channels
A__ : Tuple =embedding_size
A__ : Union[str, Any] =hidden_sizes
A__ : List[str] =depths
A__ : Optional[Any] =layer_type
A__ : int =hidden_act
A__ : int =global_padding
A__ : int =num_groups
A__ : str =drop_path_rate
A__ : str =embedding_dynamic_padding
A__ : Dict =output_stride
A__ : Optional[int] =width_factor
A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
| 687 | 0 |
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =nn.functional.normalize(__snake_case )
A__ : Optional[Any] =nn.functional.normalize(__snake_case )
return torch.mm(__snake_case, normalized_text_embeds.t() )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = CLIPConfig
__snake_case = ['CLIPEncoderLayer']
def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase_ )
A__ : str =CLIPVisionModel(config.vision_config )
A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ )
A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ )
A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any:
'''simple docstring'''
A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : Any =self.visual_projection(lowerCAmelCase_ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy()
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy()
A__ : List[str] =[]
A__ : Optional[int] =image_embeds.shape[0]
for i in range(lowerCAmelCase_ ):
A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : List[Any] =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A__ : Optional[Any] =special_cos_dist[i][concept_idx]
A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
A__ : Dict =0.01
for concept_idx in range(len(cos_dist[0] ) ):
A__ : Optional[int] =cos_dist[i][concept_idx]
A__ : List[str] =self.concept_embeds_weights[concept_idx].item()
A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(lowerCAmelCase_ )
result.append(lowerCAmelCase_ )
A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : List[Any] =self.visual_projection(lowerCAmelCase_ )
A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : Dict =0.0
A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 )
A__ : Tuple =special_care * 0.01
A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 705 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__snake_case : List[str] = 5_0003
__snake_case : Dict = 5_0002
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = PLBartTokenizer
__snake_case = None
__snake_case = False
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )]
self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] )
A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ )
A__ : Dict =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Tuple =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )]
self.assertListEqual(
lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] )
A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'uclanlp/plbart-python-en_XX'
__snake_case = [
'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])',
'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])',
]
__snake_case = [
'Returns the maximum value of a b c.',
'Sums the values of a b c.',
]
__snake_case = [
134,
5452,
3_3460,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
988,
20,
3_3456,
19,
3_3456,
771,
39,
4258,
889,
3318,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : Optional[int] ) -> str:
'''simple docstring'''
A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" )
A__ : Optional[Any] =1
return cls
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
def lowercase__ ( self : int ) -> Optional[int]:
'''simple docstring'''
self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids )
A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase_ )
A__ : str =10
A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase_ )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
A__ : Tuple =tempfile.mkdtemp()
A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ )
@require_torch
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" )
A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
A__ : List[Any] =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" )
A__ : Optional[int] =self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" )
A__ : Optional[Any] =targets["""input_ids"""]
A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : Any =self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[1_50, 2_42, 2, 5_00_03]],
"""attention_mask""": [[1, 1, 1, 1]],
# java
"""forced_bos_token_id""": 5_00_01,
} , )
| 687 | 0 |
'''simple docstring'''
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def __lowerCamelCase ( ) -> None:
"""simple docstring"""
print("""Making key files...""" )
make_key_files("""rsa""", 1_024 )
print("""Key files generation successful.""" )
def __lowerCamelCase ( __snake_case : int ) -> tuple[tuple[int, int], tuple[int, int]]:
"""simple docstring"""
print("""Generating prime p...""" )
A__ : Optional[Any] =rabinMiller.generate_large_prime(__snake_case )
print("""Generating prime q...""" )
A__ : Any =rabinMiller.generate_large_prime(__snake_case )
A__ : str =p * q
print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" )
while True:
A__ : List[Any] =random.randrange(2 ** (key_size - 1), 2 ** (key_size) )
if cryptoMath.gcd(__snake_case, (p - 1) * (q - 1) ) == 1:
break
print("""Calculating d that is mod inverse of e...""" )
A__ : Tuple =cryptoMath.find_mod_inverse(__snake_case, (p - 1) * (q - 1) )
A__ : int =(n, e)
A__ : Optional[Any] =(n, d)
return (public_key, private_key)
def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> None:
"""simple docstring"""
if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ):
print("""\nWARNING:""" )
print(
f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
A__ : Union[str, Any] =generate_key(__snake_case )
print(f"\nWriting public key to file {name}_pubkey.txt..." )
with open(f"{name}_pubkey.txt", """w""" ) as out_file:
out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" )
print(f"Writing private key to file {name}_privkey.txt..." )
with open(f"{name}_privkey.txt", """w""" ) as out_file:
out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" )
if __name__ == "__main__":
main()
| 706 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
__snake_case : str = False
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int ="""A painting of a squirrel eating a burger """
A__ : Tuple =torch.manual_seed(0 )
A__ : int =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase_ )
A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int =generator.manual_seed(0 )
A__ : Tuple =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict ="""A painting of a squirrel eating a burger """
A__ : Optional[int] =torch.manual_seed(0 )
A__ : List[str] =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
import dataclasses
import re
import string
from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple
import numpy as np
from . import residue_constants
__snake_case : Dict = Mapping[str, np.ndarray]
__snake_case : Optional[Any] = Mapping[str, Any] # Is a nested dict.
__snake_case : Optional[Any] = 0.01
@dataclasses.dataclass(frozen=lowercase_ )
class lowerCamelCase :
'''simple docstring'''
__snake_case = 42 # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
__snake_case = 42 # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
__snake_case = 42 # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
__snake_case = 42 # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
__snake_case = 42 # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
__snake_case = None
# Optional remark about the protein. Included as a comment in output PDB
# files
__snake_case = None
# Templates used to generate this protein (prediction-only)
__snake_case = None
# Chain corresponding to each parent
__snake_case = None
def __lowerCamelCase ( __snake_case : str ) -> Protein:
"""simple docstring"""
A__ : str =r"""(\[[A-Z]+\]\n)"""
A__ : List[str] =[tag.strip() for tag in re.split(__snake_case, __snake_case ) if len(__snake_case ) > 0]
A__ : Iterator[Tuple[str, List[str]]] =zip(tags[0::2], [l.split("""\n""" ) for l in tags[1::2]] )
A__ : List[str] =["N", "CA", "C"]
A__ : Optional[int] =None
A__ : int =None
A__ : Dict =None
for g in groups:
if "[PRIMARY]" == g[0]:
A__ : Optional[int] =g[1][0].strip()
for i in range(len(__snake_case ) ):
if seq[i] not in residue_constants.restypes:
A__ : List[str] ="""X""" # FIXME: strings are immutable
A__ : Optional[Any] =np.array(
[residue_constants.restype_order.get(__snake_case, residue_constants.restype_num ) for res_symbol in seq] )
elif "[TERTIARY]" == g[0]:
A__ : List[List[float]] =[]
for axis in range(3 ):
tertiary.append(list(map(__snake_case, g[1][axis].split() ) ) )
A__ : Optional[int] =np.array(__snake_case )
A__ : Dict =np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa )
for i, atom in enumerate(__snake_case ):
A__ : Optional[int] =np.transpose(tertiary_np[:, i::3] )
atom_positions *= PICO_TO_ANGSTROM
elif "[MASK]" == g[0]:
A__ : Tuple =np.array(list(map({"""-""": 0, """+""": 1}.get, g[1][0].strip() ) ) )
A__ : Dict =np.zeros(
(
len(__snake_case ),
residue_constants.atom_type_num,
) ).astype(np.floataa )
for i, atom in enumerate(__snake_case ):
A__ : Optional[int] =1
atom_mask *= mask[..., None]
assert aatype is not None
return Protein(
atom_positions=__snake_case, atom_mask=__snake_case, aatype=__snake_case, residue_index=np.arange(len(__snake_case ) ), b_factors=__snake_case, )
def __lowerCamelCase ( __snake_case : Protein, __snake_case : int = 0 ) -> List[str]:
"""simple docstring"""
A__ : List[str] =[]
A__ : str =prot.remark
if remark is not None:
pdb_headers.append(f"REMARK {remark}" )
A__ : Optional[Any] =prot.parents
A__ : Any =prot.parents_chain_index
if parents is not None and parents_chain_index is not None:
A__ : Tuple =[p for i, p in zip(__snake_case, __snake_case ) if i == chain_id]
if parents is None or len(__snake_case ) == 0:
A__ : Optional[Any] =["""N/A"""]
pdb_headers.append(f"PARENT {' '.join(__snake_case )}" )
return pdb_headers
def __lowerCamelCase ( __snake_case : Protein, __snake_case : str ) -> str:
"""simple docstring"""
A__ : List[str] =[]
A__ : Union[str, Any] =pdb_str.split("""\n""" )
A__ : Dict =prot.remark
if remark is not None:
out_pdb_lines.append(f"REMARK {remark}" )
A__ : List[List[str]]
if prot.parents is not None and len(prot.parents ) > 0:
A__ : str =[]
if prot.parents_chain_index is not None:
A__ : Dict[str, List[str]] ={}
for p, i in zip(prot.parents, prot.parents_chain_index ):
parent_dict.setdefault(str(__snake_case ), [] )
parent_dict[str(__snake_case )].append(__snake_case )
A__ : Any =max([int(__snake_case ) for chain_idx in parent_dict] )
for i in range(max_idx + 1 ):
A__ : List[str] =parent_dict.get(str(__snake_case ), ["""N/A"""] )
parents_per_chain.append(__snake_case )
else:
parents_per_chain.append(list(prot.parents ) )
else:
A__ : Dict =[["""N/A"""]]
def make_parent_line(__snake_case : Sequence[str] ) -> str:
return f"PARENT {' '.join(__snake_case )}"
out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) )
A__ : Any =0
for i, l in enumerate(__snake_case ):
if "PARENT" not in l and "REMARK" not in l:
out_pdb_lines.append(__snake_case )
if "TER" in l and "END" not in lines[i + 1]:
chain_counter += 1
if not chain_counter >= len(__snake_case ):
A__ : Dict =parents_per_chain[chain_counter]
else:
A__ : List[str] =["""N/A"""]
out_pdb_lines.append(make_parent_line(__snake_case ) )
return "\n".join(__snake_case )
def __lowerCamelCase ( __snake_case : Protein ) -> str:
"""simple docstring"""
A__ : Any =residue_constants.restypes + ["""X"""]
def res_atoa(__snake_case : int ) -> str:
return residue_constants.restype_atoa.get(restypes[r], """UNK""" )
A__ : Any =residue_constants.atom_types
A__ : List[str] =[]
A__ : Union[str, Any] =prot.atom_mask
A__ : List[str] =prot.aatype
A__ : Union[str, Any] =prot.atom_positions
A__ : List[Any] =prot.residue_index.astype(np.intaa )
A__ : Union[str, Any] =prot.b_factors
A__ : int =prot.chain_index
if np.any(aatype > residue_constants.restype_num ):
raise ValueError("""Invalid aatypes.""" )
A__ : Dict =get_pdb_headers(__snake_case )
if len(__snake_case ) > 0:
pdb_lines.extend(__snake_case )
A__ : Tuple =aatype.shape[0]
A__ : Optional[Any] =1
A__ : List[str] =0
A__ : Union[str, Any] =string.ascii_uppercase
A__ : List[str] =None
# Add all atom sites.
for i in range(__snake_case ):
A__ : Tuple =res_atoa(aatype[i] )
for atom_name, pos, mask, b_factor in zip(__snake_case, atom_positions[i], atom_mask[i], b_factors[i] ):
if mask < 0.5:
continue
A__ : List[Any] ="""ATOM"""
A__ : Union[str, Any] =atom_name if len(__snake_case ) == 4 else f" {atom_name}"
A__ : List[str] =""""""
A__ : Any =""""""
A__ : Optional[Any] =1.00
A__ : str =atom_name[0] # Protein supports only C, N, O, S, this works.
A__ : Tuple =""""""
A__ : List[str] ="""A"""
if chain_index is not None:
A__ : int =chain_tags[chain_index[i]]
# PDB is a columnar format, every space matters here!
A__ : List[str] =(
f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}"
f"{res_name_a:>3} {chain_tag:>1}"
f"{residue_index[i]:>4}{insertion_code:>1} "
f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}"
f"{occupancy:>6.2f}{b_factor:>6.2f} "
f"{element:>2}{charge:>2}"
)
pdb_lines.append(__snake_case )
atom_index += 1
A__ : List[str] =i == n - 1
if chain_index is not None:
if i != n - 1 and chain_index[i + 1] != prev_chain_index:
A__ : Optional[Any] =True
A__ : int =chain_index[i + 1]
if should_terminate:
# Close the chain.
A__ : int ="""TER"""
A__ : Optional[int] =(
f"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}"
)
pdb_lines.append(__snake_case )
atom_index += 1
if i != n - 1:
# "prev" is a misnomer here. This happens at the beginning of
# each new chain.
pdb_lines.extend(get_pdb_headers(__snake_case, __snake_case ) )
pdb_lines.append("""END""" )
pdb_lines.append("""""" )
return "\n".join(__snake_case )
def __lowerCamelCase ( __snake_case : Protein ) -> np.ndarray:
"""simple docstring"""
return residue_constants.STANDARD_ATOM_MASK[prot.aatype]
def __lowerCamelCase ( __snake_case : FeatureDict, __snake_case : ModelOutput, __snake_case : Optional[np.ndarray] = None, __snake_case : Optional[np.ndarray] = None, __snake_case : Optional[str] = None, __snake_case : Optional[Sequence[str]] = None, __snake_case : Optional[Sequence[int]] = None, ) -> Protein:
"""simple docstring"""
return Protein(
aatype=features["""aatype"""], atom_positions=result["""final_atom_positions"""], atom_mask=result["""final_atom_mask"""], residue_index=features["""residue_index"""] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["""final_atom_mask"""] ), chain_index=__snake_case, remark=__snake_case, parents=__snake_case, parents_chain_index=__snake_case, )
| 707 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 42
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
A__ : Optional[Any] =Encoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , )
A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ )
A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
# pass init params to Decoder
A__ : Optional[Any] =Decoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , )
@apply_forward_hook
def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput:
'''simple docstring'''
A__ : Dict =self.encoder(lowerCAmelCase_ )
A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowerCAmelCase_ )
@apply_forward_hook
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
# also go through quantization layer
if not force_not_quantize:
A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ )
else:
A__ : List[str] =h
A__ : Dict =self.post_quant_conv(lowerCAmelCase_ )
A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
A__ : Optional[int] =sample
A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents
A__ : Tuple =self.decode(lowerCAmelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
__snake_case = AutoencoderKL
__snake_case = 'sample'
__snake_case = 1E-2
@property
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Any =4
A__ : str =3
A__ : List[str] =(32, 32)
A__ : str =floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase_ )
return {"sample": image}
@property
def lowercase__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
return (3, 32, 32)
@property
def lowercase__ ( self : str ) -> Any:
'''simple docstring'''
return (3, 32, 32)
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
A__ : List[str] ={
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
A__ : str =self.dummy_input
return init_dict, inputs_dict
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
pass
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" )
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
A__ : Any =self.prepare_init_args_and_inputs_for_common()
A__ : Tuple =self.model_class(**lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
assert not model.is_gradient_checkpointing and model.training
A__ : Tuple =model(**lowerCAmelCase_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
A__ : Union[str, Any] =torch.randn_like(lowerCAmelCase_ )
A__ : Dict =(out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
A__ : List[str] =self.model_class(**lowerCAmelCase_ )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(lowerCAmelCase_ )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
A__ : Optional[Any] =model_a(**lowerCAmelCase_ ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
A__ : int =(out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
A__ : Optional[int] =dict(model.named_parameters() )
A__ : Optional[Any] =dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def lowercase__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
A__ : int =AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(lowerCAmelCase_ )
A__ : List[Any] =model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def lowercase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
A__ : List[Any] =AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" )
A__ : Any =model.to(lowerCAmelCase_ )
model.eval()
if torch_device == "mps":
A__ : Union[str, Any] =torch.manual_seed(0 )
else:
A__ : List[Any] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 )
A__ : List[str] =torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
A__ : Tuple =image.to(lowerCAmelCase_ )
with torch.no_grad():
A__ : Optional[Any] =model(lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ , generator=lowerCAmelCase_ ).sample
A__ : Optional[int] =output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
A__ : Union[str, Any] =torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
] )
elif torch_device == "cpu":
A__ : str =torch.tensor(
[-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] )
else:
A__ : Union[str, Any] =torch.tensor(
[-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] )
self.assertTrue(torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-2 ) )
@slow
class lowerCamelCase ( unittest.TestCase ):
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return f"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy"
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : int , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : List[Any]=(4, 3, 5_12, 5_12) , lowerCAmelCase_ : List[str]=False ) -> Optional[Any]:
'''simple docstring'''
A__ : str =torch.floataa if fpaa else torch.floataa
A__ : int =torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) ).to(lowerCAmelCase_ ).to(lowerCAmelCase_ )
return image
def lowercase__ ( self : int , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" , lowerCAmelCase_ : Optional[int]=False ) -> List[Any]:
'''simple docstring'''
A__ : Union[str, Any] ="""fp16""" if fpaa else None
A__ : str =torch.floataa if fpaa else torch.floataa
A__ : str =AutoencoderKL.from_pretrained(
lowerCAmelCase_ , subfolder="""vae""" , torch_dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ , )
model.to(lowerCAmelCase_ ).eval()
return model
def lowercase__ ( self : str , lowerCAmelCase_ : Dict=0 ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return torch.manual_seed(lowerCAmelCase_ )
return torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
@parameterized.expand(
[
# fmt: off
[33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> List[str]:
'''simple docstring'''
A__ : str =self.get_sd_vae_model()
A__ : Dict =self.get_sd_image(lowerCAmelCase_ )
A__ : str =self.get_generator(lowerCAmelCase_ )
with torch.no_grad():
A__ : Dict =model(lowerCAmelCase_ , generator=lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ ).sample
assert sample.shape == image.shape
A__ : List[Any] =sample[-1, -2:, -2:, :2].flatten().float().cpu()
A__ : Dict =torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
[47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
# fmt: on
] )
@require_torch_gpu
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
A__ : Dict =self.get_sd_vae_model(fpaa=lowerCAmelCase_ )
A__ : Optional[int] =self.get_sd_image(lowerCAmelCase_ , fpaa=lowerCAmelCase_ )
A__ : Tuple =self.get_generator(lowerCAmelCase_ )
with torch.no_grad():
A__ : Tuple =model(lowerCAmelCase_ , generator=lowerCAmelCase_ , sample_posterior=lowerCAmelCase_ ).sample
assert sample.shape == image.shape
A__ : Optional[int] =sample[-1, -2:, :2, -2:].flatten().float().cpu()
A__ : Union[str, Any] =torch.tensor(lowerCAmelCase_ )
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]],
[47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]],
# fmt: on
] )
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> int:
'''simple docstring'''
A__ : List[str] =self.get_sd_vae_model()
A__ : Dict =self.get_sd_image(lowerCAmelCase_ )
with torch.no_grad():
A__ : Optional[Any] =model(lowerCAmelCase_ ).sample
assert sample.shape == image.shape
A__ : Optional[Any] =sample[-1, -2:, -2:, :2].flatten().float().cpu()
A__ : Union[str, Any] =torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
[37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
# fmt: on
] )
@require_torch_gpu
def lowercase__ ( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ) -> Any:
'''simple docstring'''
A__ : Tuple =self.get_sd_vae_model()
A__ : List[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
A__ : str =model.decode(lowerCAmelCase_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
A__ : Optional[int] =sample[-1, -2:, :2, -2:].flatten().cpu()
A__ : Optional[int] =torch.tensor(lowerCAmelCase_ )
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
[16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
# fmt: on
] )
@require_torch_gpu
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ) -> int:
'''simple docstring'''
A__ : List[str] =self.get_sd_vae_model(fpaa=lowerCAmelCase_ )
A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase_ )
with torch.no_grad():
A__ : List[Any] =model.decode(lowerCAmelCase_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
A__ : int =sample[-1, -2:, :2, -2:].flatten().float().cpu()
A__ : str =torch.tensor(lowerCAmelCase_ )
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" )
def lowercase__ ( self : Dict , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
A__ : List[Any] =self.get_sd_vae_model(fpaa=lowerCAmelCase_ )
A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCAmelCase_ )
with torch.no_grad():
A__ : Optional[int] =model.decode(lowerCAmelCase_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
A__ : Tuple =model.decode(lowerCAmelCase_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" )
def lowercase__ ( self : int , lowerCAmelCase_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A__ : int =self.get_sd_vae_model()
A__ : Optional[Any] =self.get_sd_image(lowerCAmelCase_ , shape=(3, 4, 64, 64) )
with torch.no_grad():
A__ : List[str] =model.decode(lowerCAmelCase_ ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
A__ : Optional[int] =model.decode(lowerCAmelCase_ ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
[47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
# fmt: on
] )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any ) -> str:
'''simple docstring'''
A__ : int =self.get_sd_vae_model()
A__ : int =self.get_sd_image(lowerCAmelCase_ )
A__ : List[str] =self.get_generator(lowerCAmelCase_ )
with torch.no_grad():
A__ : Tuple =model.encode(lowerCAmelCase_ ).latent_dist
A__ : Optional[int] =dist.sample(generator=lowerCAmelCase_ )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
A__ : Any =sample[0, -1, -3:, -3:].flatten().cpu()
A__ : Tuple =torch.tensor(lowerCAmelCase_ )
A__ : Union[str, Any] =3e-3 if torch_device != """mps""" else 1e-2
assert torch_all_close(lowerCAmelCase_ , lowerCAmelCase_ , atol=lowerCAmelCase_ )
| 708 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : Optional[int] = logging.get_logger(__name__)
__snake_case : Tuple = {
'vocab_file': 'vocab.txt',
'merges_file': 'bpe.codes',
}
__snake_case : str = {
'vocab_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt',
},
'merges_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes',
},
}
__snake_case : List[Any] = {
'vinai/phobert-base': 256,
'vinai/phobert-large': 256,
}
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : str =char
A__ : List[Any] =set(__snake_case )
return pairs
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict:
'''simple docstring'''
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : int =vocab_file
A__ : Any =merges_file
A__ : Union[str, Any] ={}
A__ : Optional[int] =0
A__ : List[Any] =1
A__ : Tuple =2
A__ : Dict =3
self.add_from_file(lowerCAmelCase_ )
A__ : List[str] ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
A__ : str =merges_handle.read().split("""\n""" )[:-1]
A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges]
A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
A__ : Dict ={}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ : Dict =[self.cls_token_id]
A__ : Union[str, Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : int =tuple(lowerCAmelCase_ )
A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Tuple =get_pairs(lowerCAmelCase_ )
if not pairs:
return token
while True:
A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ , A__ : Tuple =bigram
A__ : Optional[int] =[]
A__ : Tuple =0
while i < len(lowerCAmelCase_ ):
try:
A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ : Union[str, Any] =j
if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Dict =tuple(lowerCAmelCase_ )
A__ : Dict =new_word
if len(lowerCAmelCase_ ) == 1:
break
else:
A__ : str =get_pairs(lowerCAmelCase_ )
A__ : Dict ="""@@ """.join(lowerCAmelCase_ )
A__ : Tuple =word[:-4]
A__ : Any =word
return word
def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
A__ : int =[]
A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip()
return out_string
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Optional[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Tuple =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.merges_file , lowerCAmelCase_ )
return out_vocab_file, out_merge_file
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
A__ : Union[str, Any] =f.readlines()
for lineTmp in lines:
A__ : List[Any] =lineTmp.strip()
A__ : Dict =line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
A__ : Tuple =line[:idx]
A__ : Tuple =len(self.encoder )
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def __lowerCamelCase ( __snake_case : str, __snake_case : float | Decimal, __snake_case : float = 10**-10 ) -> float:
"""simple docstring"""
A__ : str =a
while True:
A__ : List[Any] =Decimal(__snake_case ) - (
Decimal(eval(__snake_case ) ) / Decimal(eval(str(diff(__snake_case ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(__snake_case ) ) < precision: # noqa: S307
return float(__snake_case )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""")
# Find root of polynomial
print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""")
# Find Square Root of 5
print(F"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""")
# Exponential Roots
print(F"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
| 709 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =nn.functional.normalize(__snake_case )
A__ : Optional[Any] =nn.functional.normalize(__snake_case )
return torch.mm(__snake_case, normalized_text_embeds.t() )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = CLIPConfig
__snake_case = ['CLIPEncoderLayer']
def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase_ )
A__ : str =CLIPVisionModel(config.vision_config )
A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ )
A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ )
A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any:
'''simple docstring'''
A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : Any =self.visual_projection(lowerCAmelCase_ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy()
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy()
A__ : List[str] =[]
A__ : Optional[int] =image_embeds.shape[0]
for i in range(lowerCAmelCase_ ):
A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : List[Any] =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A__ : Optional[Any] =special_cos_dist[i][concept_idx]
A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
A__ : Dict =0.01
for concept_idx in range(len(cos_dist[0] ) ):
A__ : Optional[int] =cos_dist[i][concept_idx]
A__ : List[str] =self.concept_embeds_weights[concept_idx].item()
A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(lowerCAmelCase_ )
result.append(lowerCAmelCase_ )
A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : List[Any] =self.visual_projection(lowerCAmelCase_ )
A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : Dict =0.0
A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 )
A__ : Tuple =special_care * 0.01
A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 687 | 0 |
'''simple docstring'''
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__snake_case : Union[str, Any] = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
__snake_case : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS)
__snake_case : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
__snake_case : str = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)')
__snake_case : Optional[int] = {
'DecisionTransformerConfig',
'EncoderDecoderConfig',
'MusicgenConfig',
'RagConfig',
'SpeechEncoderDecoderConfig',
'TimmBackboneConfig',
'VisionEncoderDecoderConfig',
'VisionTextDualEncoderConfig',
'LlamaConfig',
}
def __lowerCamelCase ( __snake_case : Any ) -> Dict:
"""simple docstring"""
A__ : Tuple =None
# source code of `config_class`
A__ : List[Any] =inspect.getsource(__snake_case )
A__ : int =_re_checkpoint.findall(__snake_case )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("""/""" ):
A__ : str =ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
A__ : Tuple =f"https://huggingface.co/{ckpt_name}"
if ckpt_link == ckpt_link_from_name:
A__ : Optional[int] =ckpt_name
break
return checkpoint
def __lowerCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
A__ : Any =[]
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
A__ : int =get_checkpoint_from_config_class(__snake_case )
A__ : Any =config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(__snake_case )
if len(__snake_case ) > 0:
A__ : Tuple ="""\n""".join(sorted(__snake_case ) )
raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 710 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =[]
for part_id in partition_order:
A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect()
for row_idx, row in enumerate(__snake_case ):
expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : str =spark.range(100 ).repartition(1 )
A__ : List[str] =Spark(__snake_case )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Tuple =spark.range(10 ).repartition(2 )
A__ : List[str] =[1, 0]
A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions.
A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(10 ).repartition(1 )
A__ : List[str] =SparkExamplesIterable(__snake_case )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__snake_case ):
assert row_id == f"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
A__ : Tuple =lambda __snake_case : x.reverse()
A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] )
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Any =spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : List[str] =spark.range(100 ).repartition(1 )
A__ : List[Any] =Spark(__snake_case )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 687 | 0 |
'''simple docstring'''
import os
from math import logaa
def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int:
"""simple docstring"""
A__ : float =0
A__ : List[Any] =0
for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ):
A__ : str =list(map(__snake_case, line.split(""",""" ) ) )
if x * logaa(__snake_case ) > largest:
A__ : Optional[int] =x * logaa(__snake_case )
A__ : Optional[Any] =i + 1
return result
if __name__ == "__main__":
print(solution())
| 711 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
__snake_case : Tuple = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> None:
'''simple docstring'''
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 712 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __lowerCamelCase ( __snake_case : Dict ) -> List[str]:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str:
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] =module
A__ : Union[str, Any] =nn.Sequential(
nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , )
A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'bigscience/bloom-1b7'
# Constant values
__snake_case = 2.109659552692574
__snake_case = 'Hello my name is'
__snake_case = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
__snake_case = 10
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
# Models and tokenizer
A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Models and tokenizer
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
A__ : str =self.model_abit.config
self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) )
A__ : Union[str, Any] =config.to_dict()
A__ : Any =config.to_diff_dict()
A__ : Optional[Any] =config.to_json_string()
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
A__ : int =self.model_fpaa.get_memory_footprint()
A__ : Optional[Any] =self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
A__ : Tuple =get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCAmelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
A__ : Tuple =True
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" )
A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
with self.assertRaises(lowerCAmelCase_ ):
A__ : Dict =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =self.model_fpaa.to(torch.floataa )
A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.half()
# Check this does not throw an error
A__ : int =self.model_fpaa.float()
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowercase__ ( cls : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple ="""t5-small"""
A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name )
A__ : Optional[int] ="""Translate in German: Hello, my dog is cute"""
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
from transformers import TaForConditionalGeneration
A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules
A__ : Optional[Any] =None
# test with `t5-small`
A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Optional[Any] =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : List[str] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ )
A__ : Dict =modules
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Any =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Dict =model.generate(**lowerCAmelCase_ )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
super().setUp()
# model_name
A__ : Any ="""bigscience/bloom-560m"""
A__ : List[Any] ="""t5-small"""
# Different types of model
A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Sequence classification model
A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# CausalLM model
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Seq2seq model
A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
A__ : Dict =pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
A__ : Optional[int] =self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : int =AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] ="""facebook/opt-350m"""
super().setUp()
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
A__ : int =False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
A__ : Dict =param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCAmelCase_ ) ):
A__ : int =LoRALayer(module.q_proj , rank=16 )
A__ : Any =LoRALayer(module.k_proj , rank=16 )
A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
A__ : Any =model.forward(**lowerCAmelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowerCAmelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'gpt2-xl'
__snake_case = 3.3191854854152187
| 687 | 0 |
'''simple docstring'''
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if isinstance(__snake_case, torch.Tensor ):
return image
elif isinstance(__snake_case, PIL.Image.Image ):
A__ : Optional[Any] =[image]
if isinstance(image[0], PIL.Image.Image ):
A__ : Optional[int] =[np.array(i.resize((w, h), resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
A__ : List[str] =np.concatenate(__snake_case, axis=0 )
A__ : List[Any] =np.array(__snake_case ).astype(np.floataa ) / 255.0
A__ : Tuple =image.transpose(0, 3, 1, 2 )
A__ : Any =2.0 * image - 1.0
A__ : Any =torch.from_numpy(__snake_case )
elif isinstance(image[0], torch.Tensor ):
A__ : List[str] =torch.cat(__snake_case, dim=0 )
return image
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : List[Any]=0.99_95 ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(__snake_case, np.ndarray ):
A__ : List[Any] =True
A__ : Tuple =va.device
A__ : str =va.cpu().numpy()
A__ : List[str] =va.cpu().numpy()
A__ : List[str] =np.sum(va * va / (np.linalg.norm(__snake_case ) * np.linalg.norm(__snake_case )) )
if np.abs(__snake_case ) > DOT_THRESHOLD:
A__ : str =(1 - t) * va + t * va
else:
A__ : Optional[int] =np.arccos(__snake_case )
A__ : Optional[int] =np.sin(__snake_case )
A__ : Union[str, Any] =theta_a * t
A__ : Union[str, Any] =np.sin(__snake_case )
A__ : Optional[Any] =np.sin(theta_a - theta_t ) / sin_theta_a
A__ : Any =sin_theta_t / sin_theta_a
A__ : Optional[int] =sa * va + sa * va
if inputs_are_torch:
A__ : Dict =torch.from_numpy(__snake_case ).to(__snake_case )
return va
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : Any =F.normalize(__snake_case, dim=-1 )
A__ : List[str] =F.normalize(__snake_case, dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Any ) -> Tuple:
"""simple docstring"""
for param in model.parameters():
A__ : Any =value
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowerCAmelCase_ : CLIPFeatureExtractor , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : List[str]=None , ) -> Any:
'''simple docstring'''
super().__init__()
self.register_modules(
vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , clip_model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , coca_model=lowerCAmelCase_ , coca_tokenizer=lowerCAmelCase_ , coca_transform=lowerCAmelCase_ , )
A__ : Union[str, Any] =(
feature_extractor.size
if isinstance(feature_extractor.size , lowerCAmelCase_ )
else feature_extractor.size["""shortest_edge"""]
)
A__ : List[str] =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , lowerCAmelCase_ )
set_requires_grad(self.clip_model , lowerCAmelCase_ )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> int:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
A__ : Union[str, Any] =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.enable_attention_slicing(lowerCAmelCase_ )
def lowercase__ ( self : int ) -> Any:
'''simple docstring'''
set_requires_grad(self.vae , lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
set_requires_grad(self.vae , lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
set_requires_grad(self.unet , lowerCAmelCase_ )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
set_requires_grad(self.unet , lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ) -> Tuple:
'''simple docstring'''
A__ : List[Any] =min(int(num_inference_steps * strength ) , lowerCAmelCase_ )
A__ : Union[str, Any] =max(num_inference_steps - init_timestep , 0 )
A__ : Any =self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def lowercase__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]=None ) -> Tuple:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , torch.Tensor ):
raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(lowerCAmelCase_ )}" )
A__ : Optional[int] =image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ )
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Dict =[
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase_ )
]
A__ : Any =torch.cat(lowerCAmelCase_ , dim=0 )
else:
A__ : List[Any] =self.vae.encode(lowerCAmelCase_ ).latent_dist.sample(lowerCAmelCase_ )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
A__ : Dict =0.18215 * init_latents
A__ : Optional[Any] =init_latents.repeat_interleave(lowerCAmelCase_ , dim=0 )
A__ : Optional[Any] =randn_tensor(init_latents.shape , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ )
# get latents
A__ : Union[str, Any] =self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Optional[Any] =init_latents
return latents
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[int] =self.coca_transform(lowerCAmelCase_ ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
A__ : Union[str, Any] =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
A__ : Dict =self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =self.feature_extractor.preprocess(lowerCAmelCase_ )
A__ : Union[str, Any] =torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half()
A__ : str =self.clip_model.get_image_features(lowerCAmelCase_ )
A__ : List[Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase_ )
A__ : List[Any] =image_embeddings_clip.repeat_interleave(lowerCAmelCase_ , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , ) -> str:
'''simple docstring'''
A__ : Dict =latents.detach().requires_grad_()
A__ : List[str] =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ )
# predict the noise residual
A__ : int =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
A__ : Union[str, Any] =self.scheduler.alphas_cumprod[timestep]
A__ : Union[str, Any] =1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
A__ : Any =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
A__ : str =torch.sqrt(lowerCAmelCase_ )
A__ : Optional[int] =pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , lowerCAmelCase_ ):
A__ : Optional[int] =self.scheduler.sigmas[index]
A__ : Optional[Any] =latents - sigma * noise_pred
else:
raise ValueError(f"scheduler type {type(self.scheduler )} not supported" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
A__ : str =1 / 0.18215 * sample
A__ : List[str] =self.vae.decode(lowerCAmelCase_ ).sample
A__ : Any =(image / 2 + 0.5).clamp(0 , 1 )
A__ : Union[str, Any] =transforms.Resize(self.feature_extractor_size )(lowerCAmelCase_ )
A__ : int =self.normalize(lowerCAmelCase_ ).to(latents.dtype )
A__ : int =self.clip_model.get_image_features(lowerCAmelCase_ )
A__ : Optional[Any] =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowerCAmelCase_ )
A__ : Optional[int] =spherical_dist_loss(lowerCAmelCase_ , lowerCAmelCase_ ).mean() * clip_guidance_scale
A__ : Union[str, Any] =-torch.autograd.grad(lowerCAmelCase_ , lowerCAmelCase_ )[0]
if isinstance(self.scheduler , lowerCAmelCase_ ):
A__ : List[Any] =latents.detach() + grads * (sigma**2)
A__ : List[str] =noise_pred_original
else:
A__ : Optional[Any] =noise_pred_original - torch.sqrt(lowerCAmelCase_ ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self : List[Any] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[int] = 5_12 , lowerCAmelCase_ : Optional[int] = 5_12 , lowerCAmelCase_ : float = 0.6 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[float] = 7.5 , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[float] = 1_00 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : float = 0.8 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , ) -> Optional[int]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size:
raise ValueError(f"You have passed {batch_size} batch_size, but only {len(lowerCAmelCase_ )} generators." )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if isinstance(lowerCAmelCase_ , torch.Generator ) and batch_size > 1:
A__ : List[str] =[generator] + [None] * (batch_size - 1)
A__ : Any =[
("""model""", self.coca_model is None),
("""tokenizer""", self.coca_tokenizer is None),
("""transform""", self.coca_transform is None),
]
A__ : str =[x[0] for x in coca_is_none if x[1]]
A__ : Dict =""", """.join(lowerCAmelCase_ )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(lowerCAmelCase_ ):
raise ValueError(
f"Content prompt is None and CoCa [{coca_is_none_str}] is None."
f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
A__ : Any =self.get_image_description(lowerCAmelCase_ )
if style_prompt is None:
if len(lowerCAmelCase_ ):
raise ValueError(
f"Style prompt is None and CoCa [{coca_is_none_str}] is None."
f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." )
A__ : Tuple =self.get_image_description(lowerCAmelCase_ )
# get prompt text embeddings for content and style
A__ : List[str] =self.tokenizer(
lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""pt""" , )
A__ : List[Any] =self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
A__ : Any =self.tokenizer(
lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowerCAmelCase_ , return_tensors="""pt""" , )
A__ : Dict =self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
A__ : Dict =slerp(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# duplicate text embeddings for each generation per prompt
A__ : Optional[Any] =text_embeddings.repeat_interleave(lowerCAmelCase_ , dim=0 )
# set timesteps
A__ : Union[str, Any] ="""offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
A__ : str ={}
if accepts_offset:
A__ : List[str] =1
self.scheduler.set_timesteps(lowerCAmelCase_ , **lowerCAmelCase_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
A__ : List[Any] =self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , self.device )
A__ : str =timesteps[:1].repeat(lowerCAmelCase_ )
# Preprocess image
A__ : Optional[int] =preprocess(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Optional[int] =self.prepare_latents(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text_embeddings.dtype , self.device , lowerCAmelCase_ )
A__ : Optional[Any] =preprocess(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Any =self.prepare_latents(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , text_embeddings.dtype , self.device , lowerCAmelCase_ )
A__ : List[Any] =slerp(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
if clip_guidance_scale > 0:
A__ : Optional[int] =self.get_clip_image_embeddings(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Dict =self.get_clip_image_embeddings(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Union[str, Any] =slerp(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
A__ : Dict =guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
A__ : Dict =content_text_input.input_ids.shape[-1]
A__ : Dict =self.tokenizer([""""""] , padding="""max_length""" , max_length=lowerCAmelCase_ , return_tensors="""pt""" )
A__ : int =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
A__ : Tuple =uncond_embeddings.repeat_interleave(lowerCAmelCase_ , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
A__ : int =torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
A__ : int =(batch_size, self.unet.config.in_channels, height // 8, width // 8)
A__ : Dict =text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
A__ : Any =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to(
self.device )
else:
A__ : List[str] =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ )
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
A__ : Tuple =latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
A__ : str =latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
A__ : Optional[Any] ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
A__ : Any ={}
if accepts_eta:
A__ : Union[str, Any] =eta
# check if the scheduler accepts generator
A__ : str ="""generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
A__ : str =generator
with self.progress_bar(total=lowerCAmelCase_ ):
for i, t in enumerate(lowerCAmelCase_ ):
# expand the latents if we are doing classifier free guidance
A__ : Any =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
A__ : Dict =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ )
# predict the noise residual
A__ : Optional[int] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
A__ : Dict =noise_pred.chunk(2 )
A__ : Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
A__ : Any =(
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
A__ : List[str] =self.cond_fn(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )
# compute the previous noisy sample x_t -> x_t-1
A__ : Optional[int] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
A__ : int =1 / 0.18215 * latents
A__ : Optional[int] =self.vae.decode(lowerCAmelCase_ ).sample
A__ : Tuple =(image / 2 + 0.5).clamp(0 , 1 )
A__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A__ : Optional[Any] =self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
| 713 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__snake_case : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def __lowerCamelCase ( __snake_case : Iterable[str], __snake_case : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
A__ : List[Any] =iter(__snake_case )
while True:
A__ : str =tuple(itertools.islice(__snake_case, __snake_case ) )
if not chunk:
return
yield chunk
def __lowerCamelCase ( __snake_case : str ) -> str:
"""simple docstring"""
A__ : Optional[int] ="""""".join([c.upper() for c in dirty if c in string.ascii_letters] )
A__ : Union[str, Any] =""""""
if len(__snake_case ) < 2:
return dirty
for i in range(len(__snake_case ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(__snake_case ) & 1:
clean += "X"
return clean
def __lowerCamelCase ( __snake_case : str ) -> list[str]:
"""simple docstring"""
A__ : List[str] ="""ABCDEFGHIKLMNOPQRSTUVWXYZ"""
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
A__ : Optional[Any] =[]
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(__snake_case )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(__snake_case )
return table
def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str:
"""simple docstring"""
A__ : Optional[int] =generate_table(__snake_case )
A__ : str =prepare_input(__snake_case )
A__ : str =""""""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__snake_case, 2 ):
A__ : Dict =divmod(table.index(__snake_case ), 5 )
A__ : Dict =divmod(table.index(__snake_case ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str:
"""simple docstring"""
A__ : Optional[int] =generate_table(__snake_case )
A__ : Tuple =""""""
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__snake_case, 2 ):
A__ : Optional[Any] =divmod(table.index(__snake_case ), 5 )
A__ : List[str] =divmod(table.index(__snake_case ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 714 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple:
'''simple docstring'''
A__ : Tuple =parent
A__ : Any =batch_size
A__ : List[str] =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_lengths
A__ : int =use_token_type_ids
A__ : Union[str, Any] =use_labels
A__ : Optional[Any] =gelu_activation
A__ : List[Any] =sinusoidal_embeddings
A__ : List[Any] =causal
A__ : str =asm
A__ : Tuple =n_langs
A__ : Dict =vocab_size
A__ : Optional[Any] =n_special
A__ : Tuple =hidden_size
A__ : Dict =num_hidden_layers
A__ : int =num_attention_heads
A__ : Optional[Any] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Optional[int] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : Any =num_labels
A__ : str =num_choices
A__ : Optional[int] =summary_type
A__ : int =use_proj
A__ : Tuple =scope
A__ : Union[str, Any] =bos_token_id
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Tuple =None
if self.use_input_lengths:
A__ : Tuple =(
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ : Optional[Any] =None
if self.use_token_type_ids:
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ : Any =None
A__ : Tuple =None
A__ : Optional[Any] =None
if self.use_labels:
A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float()
A__ : str =ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Tuple =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
A__ : List[Any] =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Tuple =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
A__ : Optional[Any] =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
((A__) , ) : List[Any] =result_with_labels.to_tuple()
A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
((A__) , ) : Tuple =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : str =model(lowerCAmelCase_ )
A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
A__ : int =self.num_labels
A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =self.num_choices
A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Optional[int] =config_and_inputs
A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int:
'''simple docstring'''
A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
A__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Dict =XLMModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
A__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
A__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : Tuple =min_length + idx + 1
A__ : Tuple =min_length + idx + 1
A__ : Dict =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : str =min_length + idx + 1
A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCAmelCase_ )
A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
A__ : Optional[Any] =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import argparse
import io
import requests
import torch
from omegaconf import OmegaConf
from diffusers import AutoencoderKL
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
assign_to_checkpoint,
conv_attn_to_linear,
create_vae_diffusers_config,
renew_vae_attention_paths,
renew_vae_resnet_paths,
)
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : str ) -> Optional[int]:
"""simple docstring"""
A__ : Any =checkpoint
A__ : Optional[int] ={}
A__ : Union[str, Any] =vae_state_dict["""encoder.conv_in.weight"""]
A__ : Optional[int] =vae_state_dict["""encoder.conv_in.bias"""]
A__ : Union[str, Any] =vae_state_dict["""encoder.conv_out.weight"""]
A__ : Optional[int] =vae_state_dict["""encoder.conv_out.bias"""]
A__ : List[str] =vae_state_dict["""encoder.norm_out.weight"""]
A__ : Dict =vae_state_dict["""encoder.norm_out.bias"""]
A__ : int =vae_state_dict["""decoder.conv_in.weight"""]
A__ : List[str] =vae_state_dict["""decoder.conv_in.bias"""]
A__ : Tuple =vae_state_dict["""decoder.conv_out.weight"""]
A__ : List[Any] =vae_state_dict["""decoder.conv_out.bias"""]
A__ : Union[str, Any] =vae_state_dict["""decoder.norm_out.weight"""]
A__ : int =vae_state_dict["""decoder.norm_out.bias"""]
A__ : Dict =vae_state_dict["""quant_conv.weight"""]
A__ : Dict =vae_state_dict["""quant_conv.bias"""]
A__ : Dict =vae_state_dict["""post_quant_conv.weight"""]
A__ : List[Any] =vae_state_dict["""post_quant_conv.bias"""]
# Retrieves the keys for the encoder down blocks only
A__ : Dict =len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} )
A__ : List[Any] ={
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(__snake_case )
}
# Retrieves the keys for the decoder up blocks only
A__ : int =len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} )
A__ : Union[str, Any] ={
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(__snake_case )
}
for i in range(__snake_case ):
A__ : Optional[int] =[key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
A__ : Optional[Any] =vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.weight" )
A__ : Union[str, Any] =vae_state_dict.pop(
f"encoder.down.{i}.downsample.conv.bias" )
A__ : Union[str, Any] =renew_vae_resnet_paths(__snake_case )
A__ : Dict ={"""old""": f"down.{i}.block", """new""": f"down_blocks.{i}.resnets"}
assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case )
A__ : Union[str, Any] =[key for key in vae_state_dict if """encoder.mid.block""" in key]
A__ : str =2
for i in range(1, num_mid_res_blocks + 1 ):
A__ : List[Any] =[key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
A__ : Dict =renew_vae_resnet_paths(__snake_case )
A__ : List[Any] ={"""old""": f"mid.block_{i}", """new""": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case )
A__ : Optional[int] =[key for key in vae_state_dict if """encoder.mid.attn""" in key]
A__ : Union[str, Any] =renew_vae_attention_paths(__snake_case )
A__ : Dict ={"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case )
conv_attn_to_linear(__snake_case )
for i in range(__snake_case ):
A__ : Any =num_up_blocks - 1 - i
A__ : Union[str, Any] =[
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
]
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
A__ : List[Any] =vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.weight"
]
A__ : Union[str, Any] =vae_state_dict[
f"decoder.up.{block_id}.upsample.conv.bias"
]
A__ : Dict =renew_vae_resnet_paths(__snake_case )
A__ : Union[str, Any] ={"""old""": f"up.{block_id}.block", """new""": f"up_blocks.{i}.resnets"}
assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case )
A__ : Optional[Any] =[key for key in vae_state_dict if """decoder.mid.block""" in key]
A__ : int =2
for i in range(1, num_mid_res_blocks + 1 ):
A__ : Union[str, Any] =[key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
A__ : Optional[Any] =renew_vae_resnet_paths(__snake_case )
A__ : Optional[int] ={"""old""": f"mid.block_{i}", """new""": f"mid_block.resnets.{i - 1}"}
assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case )
A__ : Union[str, Any] =[key for key in vae_state_dict if """decoder.mid.attn""" in key]
A__ : Union[str, Any] =renew_vae_attention_paths(__snake_case )
A__ : List[Any] ={"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""}
assign_to_checkpoint(__snake_case, __snake_case, __snake_case, additional_replacements=[meta_path], config=__snake_case )
conv_attn_to_linear(__snake_case )
return new_checkpoint
def __lowerCamelCase ( __snake_case : str, __snake_case : str, ) -> Dict:
"""simple docstring"""
A__ : int =requests.get(
""" https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" )
A__ : Optional[int] =io.BytesIO(r.content )
A__ : Dict =OmegaConf.load(__snake_case )
A__ : int =512
A__ : Any ="""cuda""" if torch.cuda.is_available() else """cpu"""
if checkpoint_path.endswith("""safetensors""" ):
from safetensors import safe_open
A__ : Union[str, Any] ={}
with safe_open(__snake_case, framework="""pt""", device="""cpu""" ) as f:
for key in f.keys():
A__ : Optional[Any] =f.get_tensor(__snake_case )
else:
A__ : Optional[Any] =torch.load(__snake_case, map_location=__snake_case )["""state_dict"""]
# Convert the VAE model.
A__ : Any =create_vae_diffusers_config(__snake_case, image_size=__snake_case )
A__ : Optional[int] =custom_convert_ldm_vae_checkpoint(__snake_case, __snake_case )
A__ : str =AutoencoderKL(**__snake_case )
vae.load_state_dict(__snake_case )
vae.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : str = argparse.ArgumentParser()
parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.')
__snake_case : Optional[int] = parser.parse_args()
vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
| 715 |
'''simple docstring'''
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def __lowerCamelCase ( __snake_case : int ) -> Optional[int]:
"""simple docstring"""
random.seed(__snake_case )
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# ^^ safe to call this function even if cuda is not available
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Optional[Any] =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : List[str] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : int =True
if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None:
A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Union[str, Any] =kwargs["""max_value"""]
if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Optional[Any] =kwargs["""min_value"""]
A__ : Any =list(lowerCAmelCase_ )
A__ : int =[p.clone().detach() for p in parameters]
if kwargs.get("""device""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
self.to(device=kwargs["""device"""] )
A__ : Optional[int] =None
A__ : Any =decay
A__ : List[Any] =min_decay
A__ : Optional[int] =update_after_step
A__ : List[str] =use_ema_warmup
A__ : str =inv_gamma
A__ : Union[str, Any] =power
A__ : str =0
A__ : str =None # set in `step()`
A__ : List[str] =model_cls
A__ : Optional[int] =model_config
@classmethod
def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel":
'''simple docstring'''
A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ )
A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config )
ema_model.load_state_dict(lowerCAmelCase_ )
return ema_model
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : Optional[int] =self.model_cls.from_config(self.model_config )
A__ : Optional[Any] =self.state_dict()
state_dict.pop("""shadow_params""" , lowerCAmelCase_ )
model.register_to_config(**lowerCAmelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float:
'''simple docstring'''
A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Union[str, Any] =(1 + step) / (10 + step)
A__ : str =min(lowerCAmelCase_ , self.decay )
# make sure decay is not smaller than min_decay
A__ : int =max(lowerCAmelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Any =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : Optional[int] =parameters.parameters()
A__ : Dict =list(lowerCAmelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : Any =self.get_decay(self.optimization_step )
A__ : Optional[int] =decay
A__ : List[str] =1 - decay
A__ : str =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : Optional[Any] =list(lowerCAmelCase_ )
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None:
'''simple docstring'''
A__ : str =[
p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ )
for p in self.shadow_params
]
def lowercase__ ( self : Optional[Any] ) -> dict:
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : List[str] =[param.detach().cpu().clone() for param in parameters]
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : List[str] =None
def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None:
'''simple docstring'''
A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ )
A__ : List[Any] =state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , lowerCAmelCase_ ):
raise ValueError("""Invalid min_decay""" )
A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , lowerCAmelCase_ ):
raise ValueError("""Invalid optimization_step""" )
A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , lowerCAmelCase_ ):
raise ValueError("""Invalid update_after_step""" )
A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Tuple =state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ )
if shadow_params is not None:
A__ : List[str] =shadow_params
if not isinstance(self.shadow_params , lowerCAmelCase_ ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 687 | 0 |
'''simple docstring'''
from typing import Any
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : Any ) -> Tuple:
'''simple docstring'''
A__ : int =data
A__ : int =None
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
A__ : str =None
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ : str =self.head
while temp is not None:
print(temp.data , end=""" """ )
A__ : Dict =temp.next
print()
def lowercase__ ( self : Dict , lowerCAmelCase_ : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =Node(lowerCAmelCase_ )
A__ : Tuple =self.head
A__ : int =new_node
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Optional[Any]:
'''simple docstring'''
if node_data_a == node_data_a:
return
else:
A__ : Tuple =self.head
while node_a is not None and node_a.data != node_data_a:
A__ : Dict =node_a.next
A__ : Optional[Any] =self.head
while node_a is not None and node_a.data != node_data_a:
A__ : Any =node_a.next
if node_a is None or node_a is None:
return
A__ : str =node_a.data, node_a.data
if __name__ == "__main__":
__snake_case : Optional[int] = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print('After swapping')
ll.print_list()
| 716 |
'''simple docstring'''
from __future__ import annotations
import requests
__snake_case : Union[str, Any] = set(
'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split()
)
def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict:
"""simple docstring"""
A__ : Union[str, Any] =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}"
raise ValueError(__snake_case )
A__ : Tuple =requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, )
if response.status_code == 429:
raise requests.HTTPError
A__ : Tuple =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
A__ : Tuple ={}
for id_ in range(__snake_case ):
A__ : List[Any] ={
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
| 687 | 0 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class lowerCamelCase ( datasets.BuilderConfig ):
'''simple docstring'''
__snake_case = None
class lowerCamelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
__snake_case = PandasConfig
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
A__ : Optional[int] =dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase_ , (str, list, tuple) ):
A__ : Any =data_files
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Any =[files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
A__ : int =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
A__ : List[str] =[]
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Optional[Any] =[files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
A__ : Optional[int] =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase_ , gen_kwargs={"""files""": files} ) )
return splits
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
A__ : List[str] =table_cast(lowerCAmelCase_ , self.config.features.arrow_schema )
return pa_table
def lowercase__ ( self : Tuple , lowerCAmelCase_ : str ) -> List[str]:
'''simple docstring'''
for i, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase_ ) ):
with open(lowerCAmelCase_ , """rb""" ) as f:
A__ : Optional[Any] =pa.Table.from_pandas(pd.read_pickle(lowerCAmelCase_ ) )
yield i, self._cast_table(lowerCAmelCase_ )
| 717 |
'''simple docstring'''
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__snake_case : Union[str, Any] = logging.getLogger(__name__)
__snake_case : int = tf.data.AUTOTUNE
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", )
parser.add_argument(
"""--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", )
parser.add_argument(
"""--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", )
parser.add_argument(
"""--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", )
parser.add_argument(
"""--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", )
parser.add_argument(
"""--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", )
parser.add_argument(
"""--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", )
parser.add_argument(
"""--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", )
parser.add_argument(
"""--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", )
parser.add_argument(
"""--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", )
parser.add_argument(
"""--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", )
parser.add_argument(
"""--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", )
parser.add_argument(
"""--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", )
parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" )
A__ : Optional[Any] =parser.parse_args()
return args
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
try:
if args.tpu_name:
A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(__snake_case )
tf.tpu.experimental.initialize_tpu_system(__snake_case )
return tpu
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : Any =0
for file in file_list:
A__ : Optional[int] =file.split("""/""" )[-1]
A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 )
A__ : str =int(__snake_case )
num_samples += sample_count
return num_samples
def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]:
"""simple docstring"""
A__ : List[str] =count_samples(__snake_case )
A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case )
if shuffle:
A__ : Optional[int] =dataset.shuffle(len(__snake_case ) )
A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) )
A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case )
if shuffle:
assert shuffle_buffer_size is not None
A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size )
A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case )
A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case )
A__ : Tuple =dataset.prefetch(__snake_case )
return dataset
def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
if not args.no_tpu:
A__ : Dict =initialize_tpu(__snake_case )
A__ : int =tf.distribute.TPUStrategy(__snake_case )
else:
A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer )
A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) )
if not training_records:
raise ValueError(f"No .tfrecord files found in {args.train_dataset}." )
A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." )
A__ : Optional[Any] =count_samples(__snake_case )
A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
A__ : str =steps_per_epoch * args.num_epochs
with strategy.scope():
A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
A__ , A__ : Optional[Any] =create_optimizer(
num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__snake_case, metrics=["""accuracy"""] )
def decode_fn(__snake_case : Tuple ):
A__ : Dict ={
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__snake_case, __snake_case )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
A__ : List[Any] =DataCollatorForLanguageModeling(
tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" )
def mask_with_collator(__snake_case : Optional[int] ):
# TF really needs an isin() function
A__ : Union[str, Any] =(
~tf.cast(batch["""attention_mask"""], tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
A__ , A__ : List[str] =data_collator.tf_mask_tokens(
batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, )
return batch
A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, )
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, )
A__ : Tuple =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) )
model.fit(
__snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__snake_case : str = parse_args()
main(args)
| 687 | 0 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( ) -> str:
"""simple docstring"""
A__ : Union[str, Any] =10
A__ : Dict =datasets.Features(
{
"""tokens""": datasets.Sequence(datasets.Value("""string""" ) ),
"""labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ),
"""answers""": datasets.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
"""id""": datasets.Value("""int64""" ),
} )
A__ : Dict =datasets.Dataset.from_dict(
{
"""tokens""": [["""foo"""] * 5] * n,
"""labels""": [[1] * 5] * n,
"""answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10,
"""id""": list(range(__snake_case ) ),
}, features=__snake_case, )
return dataset
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[int] ) -> int:
"""simple docstring"""
A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" )
dataset.map(cache_file_name=__snake_case )
return filename
# FILE_CONTENT + files
__snake_case = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> int:
"""simple docstring"""
A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt"""
A__ : List[Any] =FILE_CONTENT
with open(__snake_case, """w""" ) as f:
f.write(__snake_case )
return filename
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any] ) -> str:
"""simple docstring"""
import bza
A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2"""
A__ : str =bytes(__snake_case, """utf-8""" )
with bza.open(__snake_case, """wb""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> int:
"""simple docstring"""
import gzip
A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" )
A__ : List[str] =bytes(__snake_case, """utf-8""" )
with gzip.open(__snake_case, """wb""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
if datasets.config.LZ4_AVAILABLE:
import lza.frame
A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4"""
A__ : List[Any] =bytes(__snake_case, """utf-8""" )
with lza.frame.open(__snake_case, """wb""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[Any] ) -> List[str]:
"""simple docstring"""
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.7z"""
with pyazr.SevenZipFile(__snake_case, """w""" ) as archive:
archive.write(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : List[Any] ) -> int:
"""simple docstring"""
import tarfile
A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """file.txt.tar"""
with tarfile.TarFile(__snake_case, """w""" ) as f:
f.add(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[str] ) -> str:
"""simple docstring"""
import lzma
A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """file.txt.xz"""
A__ : str =bytes(__snake_case, """utf-8""" )
with lzma.open(__snake_case, """wb""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[str], __snake_case : str ) -> Union[str, Any]:
"""simple docstring"""
import zipfile
A__ : Any =tmp_path_factory.mktemp("""data""" ) / """file.txt.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict ) -> List[str]:
"""simple docstring"""
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
A__ : Optional[int] =tmp_path_factory.mktemp("""data""" ) / """file.txt.zst"""
A__ : Any =bytes(__snake_case, """utf-8""" )
with zstd.open(__snake_case, """wb""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """file.xml"""
A__ : Optional[Any] =textwrap.dedent(
"""\
<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<tmx version=\"1.4\">
<header segtype=\"sentence\" srclang=\"ca\" />
<body>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>
</tu>
</body>
</tmx>""" )
with open(__snake_case, """w""" ) as f:
f.write(__snake_case )
return filename
__snake_case = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__snake_case = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__snake_case = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__snake_case = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__snake_case = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict ) -> Tuple:
"""simple docstring"""
A__ : Dict =datasets.Dataset.from_dict(__snake_case )
A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" )
dataset.map(cache_file_name=__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" )
with contextlib.closing(sqlitea.connect(__snake_case ) ) as con:
A__ : Any =con.cursor()
cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" )
for item in DATA:
cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[int]:
"""simple docstring"""
A__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" )
with open(__snake_case, """w""", newline="""""" ) as f:
A__ : Tuple =csv.DictWriter(__snake_case, fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" )
with open(__snake_case, """w""", newline="""""" ) as f:
A__ : str =csv.DictWriter(__snake_case, fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : str, __snake_case : int ) -> Tuple:
"""simple docstring"""
import bza
A__ : List[str] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2"""
with open(__snake_case, """rb""" ) as f:
A__ : Optional[Any] =f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(__snake_case, """wb""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[int], __snake_case : Dict ) -> List[str]:
"""simple docstring"""
A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Any, __snake_case : List[Any], __snake_case : str ) -> Optional[int]:
"""simple docstring"""
A__ : Tuple =tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename(csv_path.replace(""".csv""", """.CSV""" ) ) )
f.write(__snake_case, arcname=os.path.basename(csva_path.replace(""".csv""", """.CSV""" ) ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Tuple, __snake_case : Any ) -> str:
"""simple docstring"""
A__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) )
f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
A__ : Optional[Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" )
A__ : Optional[int] =pa.schema(
{
"""col_1""": pa.string(),
"""col_2""": pa.intaa(),
"""col_3""": pa.floataa(),
} )
with open(__snake_case, """wb""" ) as f:
A__ : List[str] =pq.ParquetWriter(__snake_case, schema=__snake_case )
A__ : Tuple =pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__snake_case ) )] for k in DATA[0]}, schema=__snake_case )
writer.write_table(__snake_case )
writer.close()
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Tuple ) -> str:
"""simple docstring"""
A__ : Union[str, Any] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
A__ : List[Any] ={"""data""": DATA}
with open(__snake_case, """w""" ) as f:
json.dump(__snake_case, __snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict ) -> Optional[int]:
"""simple docstring"""
A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
A__ : Dict ={"""data""": DATA_DICT_OF_LISTS}
with open(__snake_case, """w""" ) as f:
json.dump(__snake_case, __snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict ) -> int:
"""simple docstring"""
A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" )
with open(__snake_case, """w""" ) as f:
for item in DATA:
f.write(json.dumps(__snake_case ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Tuple ) -> str:
"""simple docstring"""
A__ : List[str] =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" )
with open(__snake_case, """w""" ) as f:
for item in DATA:
f.write(json.dumps(__snake_case ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : str ) -> Dict:
"""simple docstring"""
A__ : str =str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" )
with open(__snake_case, """w""" ) as f:
for item in DATA_312:
f.write(json.dumps(__snake_case ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict ) -> Dict:
"""simple docstring"""
A__ : Optional[int] =str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" )
with open(__snake_case, """w""" ) as f:
for item in DATA_STR:
f.write(json.dumps(__snake_case ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int] ) -> Optional[int]:
"""simple docstring"""
import gzip
A__ : Dict =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" )
with open(__snake_case, """rb""" ) as orig_file:
with gzip.open(__snake_case, """wb""" ) as zipped_file:
zipped_file.writelines(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Tuple ) -> Any:
"""simple docstring"""
import gzip
A__ : int =str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" )
with open(__snake_case, """rb""" ) as orig_file:
with gzip.open(__snake_case, """wb""" ) as zipped_file:
zipped_file.writelines(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[str], __snake_case : str, __snake_case : Tuple ) -> Optional[int]:
"""simple docstring"""
A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
A__ : Optional[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.join("""nested""", os.path.basename(__snake_case ) ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : str, __snake_case : Dict ) -> Union[str, Any]:
"""simple docstring"""
A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) )
f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : str, __snake_case : Any ) -> List[str]:
"""simple docstring"""
A__ : List[Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar"""
with tarfile.TarFile(__snake_case, """w""" ) as f:
f.add(__snake_case, arcname=os.path.basename(__snake_case ) )
f.add(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[str], __snake_case : List[str], __snake_case : Any ) -> Union[str, Any]:
"""simple docstring"""
A__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar"""
with tarfile.TarFile(__snake_case, """w""" ) as f:
f.add(__snake_case, arcname=os.path.join("""nested""", os.path.basename(__snake_case ) ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Any:
"""simple docstring"""
A__ : int =["""0""", """1""", """2""", """3"""]
A__ : Any =str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" )
with open(__snake_case, """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : str ) -> Optional[Any]:
"""simple docstring"""
A__ : Union[str, Any] =["""0""", """1""", """2""", """3"""]
A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" )
with open(__snake_case, """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Tuple ) -> Optional[int]:
"""simple docstring"""
A__ : Optional[int] =["""0""", """1""", """2""", """3"""]
A__ : Dict =tmp_path_factory.mktemp("""data""" ) / """dataset.abc"""
with open(__snake_case, """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Any, __snake_case : int ) -> str:
"""simple docstring"""
A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : str, __snake_case : Union[str, Any], __snake_case : Union[str, Any] ) -> List[str]:
"""simple docstring"""
A__ : str =tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) )
f.write(__snake_case, arcname=os.path.join("""main_dir""", os.path.basename(__snake_case ) ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : Tuple ) -> int:
"""simple docstring"""
A__ : Any =tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename("""unsupported.ext""" ) )
f.write(__snake_case, arcname=os.path.basename("""unsupported_2.ext""" ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[str] ="""\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] )
A__ : Tuple =str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" )
with open(__snake_case, """w""", encoding="""utf-8""" ) as f:
f.write(__snake_case )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( ) -> Dict:
"""simple docstring"""
return os.path.join("""tests""", """features""", """data""", """test_image_rgb.jpg""" )
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( ) -> List[str]:
"""simple docstring"""
return os.path.join("""tests""", """features""", """data""", """test_audio_44100.wav""" )
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : int, __snake_case : List[str] ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip"""
with zipfile.ZipFile(__snake_case, """w""" ) as f:
f.write(__snake_case, arcname=os.path.basename(__snake_case ) )
f.write(__snake_case, arcname=os.path.basename(__snake_case ).replace(""".jpg""", """2.jpg""" ) )
return path
@pytest.fixture(scope="""session""" )
def __lowerCamelCase ( __snake_case : Optional[int] ) -> str:
"""simple docstring"""
A__ : Dict =tmp_path_factory.mktemp("""data_dir""" )
(data_dir / "subdir").mkdir()
with open(data_dir / """subdir""" / """train.txt""", """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """subdir""" / """test.txt""", """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden file
with open(data_dir / """subdir""" / """.test.txt""", """w""" ) as f:
f.write("""bar\n""" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / """.subdir""" / """train.txt""", """w""" ) as f:
f.write("""foo\n""" * 10 )
with open(data_dir / """.subdir""" / """test.txt""", """w""" ) as f:
f.write("""bar\n""" * 10 )
return data_dir
| 718 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__snake_case : Tuple = None
__snake_case : str = logging.get_logger(__name__)
__snake_case : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__snake_case : Optional[Any] = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
},
'tokenizer_file': {
'google/bigbird-roberta-base': (
'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'
),
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'
),
},
}
__snake_case : Union[str, Any] = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
__snake_case : List[Any] = '▁'
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case = BigBirdTokenizer
__snake_case = ['input_ids', 'attention_mask']
__snake_case = []
def __init__( self : str , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[int]="<unk>" , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : Dict="<pad>" , lowerCAmelCase_ : Tuple="[SEP]" , lowerCAmelCase_ : Optional[int]="[MASK]" , lowerCAmelCase_ : Optional[int]="[CLS]" , **lowerCAmelCase_ : Optional[int] , ) -> Any:
'''simple docstring'''
A__ : int =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token
A__ : Optional[int] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token
A__ : str =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token
A__ : List[str] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token
A__ : int =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token
A__ : List[str] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
A__ : Optional[int] =AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : Tuple =vocab_file
A__ : Dict =False if not self.vocab_file else True
def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : str =[self.sep_token_id]
A__ : Optional[int] =[self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowercase__ ( self : int , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : str =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : List[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
return (out_vocab_file,)
| 719 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__snake_case : Optional[int] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__snake_case : Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__snake_case : int = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__snake_case : Optional[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__snake_case : Dict = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 720 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str:
"""simple docstring"""
A__ : int =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any =""""""
else:
A__ : Optional[int] ="""vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : Optional[int] =in_proj_weight[
: config.hidden_size, :
]
A__ : str =in_proj_bias[: config.hidden_size]
A__ : Optional[Any] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : List[Any] =in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] =in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[Any] =["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : Dict =dct.pop(__snake_case )
A__ : Tuple =val
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str:
"""simple docstring"""
A__ : Tuple =ViTConfig()
# patch_size
if model_name[-1] == "8":
A__ : Optional[Any] =8
# set labels if required
if not base_model:
A__ : Optional[Any] =1_000
A__ : str ="""huggingface/label-files"""
A__ : Any ="""imagenet-1k-id2label.json"""
A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) )
A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : List[Any] =idalabel
A__ : List[Any] ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
A__ : str =384
A__ : Optional[Any] =1_536
A__ : Optional[Any] =12
A__ : Union[str, Any] =6
# load original model from torch hub
A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case )
original_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : List[str] =original_model.state_dict()
if base_model:
remove_classification_head_(__snake_case )
A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case )
for src, dest in rename_keys:
rename_key(__snake_case, __snake_case, __snake_case )
read_in_q_k_v(__snake_case, __snake_case, __snake_case )
# load HuggingFace model
if base_model:
A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval()
else:
A__ : List[str] =ViTForImageClassification(__snake_case ).eval()
model.load_state_dict(__snake_case )
# Check outputs on an image, prepared by ViTImageProcessor
A__ : Union[str, Any] =ViTImageProcessor()
A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Union[str, Any] =encoding["""pixel_values"""]
A__ : Union[str, Any] =model(__snake_case )
if base_model:
A__ : List[str] =original_model(__snake_case )
assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 )
else:
A__ : Optional[int] =original_model(__snake_case )
assert logits.shape == outputs.logits.shape
assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__snake_case : Tuple = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 687 | 0 |
'''simple docstring'''
def __lowerCamelCase ( __snake_case : int ) -> int:
"""simple docstring"""
A__ : list[list[int]] =[[0 for _ in range(__snake_case )] for _ in range(m + 1 )]
for i in range(m + 1 ):
A__ : List[Any] =1
for n in range(m + 1 ):
for k in range(1, __snake_case ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
__snake_case : List[Any] = int(input('Enter a number: ').strip())
print(partition(n))
except ValueError:
print('Please enter a number.')
else:
try:
__snake_case : str = int(sys.argv[1])
print(partition(n))
except ValueError:
print('Please pass a number.')
| 721 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'linear'
__snake_case = 'cosine'
__snake_case = 'cosine_with_restarts'
__snake_case = 'polynomial'
__snake_case = 'constant'
__snake_case = 'constant_with_warmup'
__snake_case = 'piecewise_constant'
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]:
"""simple docstring"""
return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1.0, __snake_case ) )
return 1.0
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]:
"""simple docstring"""
A__ : str ={}
A__ : Tuple =step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
A__ , A__ : int =rule_str.split(""":""" )
A__ : Optional[int] =int(__snake_case )
A__ : List[Any] =float(__snake_case )
A__ : Union[str, Any] =value
A__ : int =float(rule_list[-1] )
def create_rules_function(__snake_case : int, __snake_case : Dict ):
def rule_func(__snake_case : int ) -> float:
A__ : Any =sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__snake_case ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
A__ : Any =create_rules_function(__snake_case, __snake_case )
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : Dict ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]:
"""simple docstring"""
A__ : Optional[int] =optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
A__ : List[Any] =lr_init - lr_end
A__ : Any =num_training_steps - num_warmup_steps
A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps
A__ : List[str] =lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__snake_case, __snake_case, __snake_case )
__snake_case : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =SchedulerType(__snake_case )
A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__snake_case, last_epoch=__snake_case )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, )
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def __lowerCamelCase ( __snake_case : int ) -> bool:
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(__snake_case ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
__snake_case : Union[str, Any] = [num for num in range(3, 10_0001, 2) if not is_prime(num)]
def __lowerCamelCase ( __snake_case : int ) -> list[int]:
"""simple docstring"""
if not isinstance(__snake_case, __snake_case ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
A__ : str =[]
for num in range(len(__snake_case ) ):
A__ : List[Any] =0
while 2 * i * i <= odd_composites[num]:
A__ : List[str] =odd_composites[num] - 2 * i * i
if is_prime(__snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(__snake_case ) == n:
return list_nums
return []
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
return compute_nums(1 )[0]
if __name__ == "__main__":
print(F"""{solution() = }""")
| 700 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case : List[str] = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
__snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case : str = logging.get_logger(__name__)
__snake_case : Tuple = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'time_series_transformer'
__snake_case = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : Optional[Any] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : str = "student_t" , lowerCAmelCase_ : str = "nll" , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase_ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : str = "gelu" , lowerCAmelCase_ : int = 64 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : Dict=True , **lowerCAmelCase_ : str , ) -> Union[str, Any]:
'''simple docstring'''
A__ : Any =prediction_length
A__ : Any =context_length or prediction_length
A__ : Dict =distribution_output
A__ : str =loss
A__ : int =input_size
A__ : Optional[int] =num_time_features
A__ : Optional[int] =lags_sequence
A__ : str =scaling
A__ : Dict =num_dynamic_real_features
A__ : Tuple =num_static_real_features
A__ : List[Any] =num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase_ ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
A__ : Any =cardinality
else:
A__ : Optional[int] =[0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase_ ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
A__ : Optional[int] =embedding_dimension
else:
A__ : int =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
A__ : List[str] =num_parallel_samples
# Transformer architecture configuration
A__ : int =input_size * len(lowerCAmelCase_ ) + self._number_of_features
A__ : List[Any] =d_model
A__ : int =encoder_attention_heads
A__ : int =decoder_attention_heads
A__ : Optional[int] =encoder_ffn_dim
A__ : List[Any] =decoder_ffn_dim
A__ : int =encoder_layers
A__ : List[Any] =decoder_layers
A__ : int =dropout
A__ : Optional[Any] =attention_dropout
A__ : int =activation_dropout
A__ : List[Any] =encoder_layerdrop
A__ : List[str] =decoder_layerdrop
A__ : Optional[Any] =activation_function
A__ : str =init_std
A__ : Dict =use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 701 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Optional[int] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Tuple = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
__snake_case : Dict = 6378137.0
__snake_case : Optional[int] = 6356752.314245
__snake_case : str = 637_8137
def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float, __snake_case : float ) -> float:
"""simple docstring"""
A__ : Tuple =(AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
A__ : Union[str, Any] =atan((1 - flattening) * tan(radians(__snake_case ) ) )
A__ : str =atan((1 - flattening) * tan(radians(__snake_case ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
A__ : List[Any] =haversine_distance(__snake_case, __snake_case, __snake_case, __snake_case ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
A__ : Optional[Any] =(b_lata + b_lata) / 2
A__ : Optional[int] =(b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
A__ : Tuple =(sin(__snake_case ) ** 2) * (cos(__snake_case ) ** 2)
A__ : Union[str, Any] =cos(sigma / 2 ) ** 2
A__ : int =(sigma - sin(__snake_case )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
A__ : Optional[Any] =(cos(__snake_case ) ** 2) * (sin(__snake_case ) ** 2)
A__ : Optional[Any] =sin(sigma / 2 ) ** 2
A__ : int =(sigma + sin(__snake_case )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Any =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
A__ : Optional[Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting"""
A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench"""
A__ : Optional[Any] =jax.random.PRNGKey(0 )
A__ : List[str] =50
A__ : List[str] =jax.device_count()
A__ : List[str] =num_samples * [prompt]
A__ : List[str] =num_samples * [init_image]
A__ : Tuple =num_samples * [mask_image]
A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# shard inputs and rng
A__ : Dict =replicate(lowerCAmelCase_ )
A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() )
A__ : List[Any] =shard(lowerCAmelCase_ )
A__ : Union[str, Any] =shard(lowerCAmelCase_ )
A__ : str =shard(lowerCAmelCase_ )
A__ : List[str] =pipeline(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ )
A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 )
A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1]
A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ : Optional[int] =jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_pytesseract,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class lowerCamelCase :
'''simple docstring'''
@staticmethod
def lowercase__ ( *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
pass
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = MODEL_FOR_OBJECT_DETECTION_MAPPING
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
A__ : str =ObjectDetectionPipeline(model=lowerCAmelCase_ , image_processor=lowerCAmelCase_ )
return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"]
def lowercase__ ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ) -> Dict:
'''simple docstring'''
A__ : str =object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 )
self.assertGreater(len(lowerCAmelCase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCAmelCase_ , {
"""score""": ANY(lowerCAmelCase_ ),
"""label""": ANY(lowerCAmelCase_ ),
"""box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )},
} , )
import datasets
A__ : Dict =datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
A__ : Any =[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
]
A__ : Dict =object_detector(lowerCAmelCase_ , threshold=0.0 )
self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) )
for outputs in batch_outputs:
self.assertGreater(len(lowerCAmelCase_ ) , 0 )
for detected_object in outputs:
self.assertEqual(
lowerCAmelCase_ , {
"""score""": ANY(lowerCAmelCase_ ),
"""label""": ANY(lowerCAmelCase_ ),
"""box""": {"""xmin""": ANY(lowerCAmelCase_ ), """ymin""": ANY(lowerCAmelCase_ ), """xmax""": ANY(lowerCAmelCase_ ), """ymax""": ANY(lowerCAmelCase_ )},
} , )
@require_tf
@unittest.skip("""Object detection not implemented in TF""" )
def lowercase__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
pass
@require_torch
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
A__ : List[str] ="""hf-internal-testing/tiny-detr-mobilenetsv3"""
A__ : Dict =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ )
A__ : int =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ )
A__ : List[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}},
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}},
] , )
A__ : Optional[int] =object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] , threshold=0.0 , )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
[
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}},
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}},
],
[
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}},
{"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}},
],
] , )
@require_torch
@slow
def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple ="""facebook/detr-resnet-50"""
A__ : Tuple =AutoModelForObjectDetection.from_pretrained(lowerCAmelCase_ )
A__ : int =AutoFeatureExtractor.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =ObjectDetectionPipeline(model=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ )
A__ : Optional[Any] =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
] , )
A__ : Optional[Any] =object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
],
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
],
] , )
@require_torch
@slow
def lowercase__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] ="""facebook/detr-resnet-50"""
A__ : Optional[int] =pipeline("""object-detection""" , model=lowerCAmelCase_ )
A__ : int =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
] , )
A__ : Optional[Any] =object_detector(
[
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
] )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
],
[
{"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}},
{"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}},
{"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}},
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
],
] , )
@require_torch
@slow
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
A__ : Tuple =0.9985
A__ : Optional[Any] ="""facebook/detr-resnet-50"""
A__ : Dict =pipeline("""object-detection""" , model=lowerCAmelCase_ )
A__ : Any =object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=lowerCAmelCase_ )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}},
{"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}},
] , )
@require_torch
@require_pytesseract
@slow
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
A__ : Optional[Any] ="""Narsil/layoutlmv3-finetuned-funsd"""
A__ : Any =0.9993
A__ : List[Any] =pipeline("""object-detection""" , model=lowerCAmelCase_ , threshold=lowerCAmelCase_ )
A__ : Dict =object_detector(
"""https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ , decimals=4 ) , [
{"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}},
{"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}},
] , )
| 703 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : Dict = {
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'conditional_detr'
__snake_case = ['past_key_values']
__snake_case = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Tuple =backbone_config.get("""model_type""" )
A__ : List[str] =CONFIG_MAPPING[backbone_model_type]
A__ : Dict =config_class.from_dict(lowerCAmelCase_ )
A__ : int =use_timm_backbone
A__ : List[Any] =backbone_config
A__ : Optional[int] =num_channels
A__ : Optional[int] =num_queries
A__ : Union[str, Any] =d_model
A__ : Optional[int] =encoder_ffn_dim
A__ : Optional[Any] =encoder_layers
A__ : int =encoder_attention_heads
A__ : Optional[Any] =decoder_ffn_dim
A__ : Tuple =decoder_layers
A__ : Optional[Any] =decoder_attention_heads
A__ : Tuple =dropout
A__ : int =attention_dropout
A__ : Dict =activation_dropout
A__ : Union[str, Any] =activation_function
A__ : List[str] =init_std
A__ : str =init_xavier_std
A__ : int =encoder_layerdrop
A__ : List[Any] =decoder_layerdrop
A__ : Tuple =encoder_layers
A__ : Tuple =auxiliary_loss
A__ : List[Any] =position_embedding_type
A__ : int =backbone
A__ : Optional[int] =use_pretrained_backbone
A__ : str =dilation
# Hungarian matcher
A__ : Any =class_cost
A__ : str =bbox_cost
A__ : str =giou_cost
# Loss coefficients
A__ : Union[str, Any] =mask_loss_coefficient
A__ : int =dice_loss_coefficient
A__ : Union[str, Any] =cls_loss_coefficient
A__ : List[str] =bbox_loss_coefficient
A__ : str =giou_loss_coefficient
A__ : Optional[Any] =focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return self.d_model
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
A__ : int =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
A__ : str =self.backbone_config.to_dict()
A__ : int =self.__class__.model_type
return output
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.11' )
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return 12
| 687 | 0 |
'''simple docstring'''
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__snake_case : int = logging.getLogger(__name__)
def __lowerCamelCase ( __snake_case : torch.nn.Module, __snake_case : BnbQuantizationConfig, __snake_case : Union[str, os.PathLike] = None, __snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None, __snake_case : Optional[List[str]] = None, __snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None, __snake_case : Optional[Union[str, os.PathLike]] = None, __snake_case : bool = False, ) -> Any:
"""simple docstring"""
A__ : str =bnb_quantization_config.load_in_abit
A__ : str =bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"""You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"""
""" make sure you have the latest version of `bitsandbytes` installed.""" )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"""You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"""
"""make sure you have the latest version of `bitsandbytes` installed.""" )
A__ : Union[str, Any] =[]
# custom device map
if isinstance(__snake_case, __snake_case ) and len(device_map.keys() ) > 1:
A__ : List[str] =[key for key, value in device_map.items() if value in ["""disk""", """cpu"""]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
A__ : Any =get_keys_to_not_convert(__snake_case )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(__snake_case )
A__ : Optional[int] =bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
A__ : Optional[Any] =[]
A__ : List[str] =bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(__snake_case )
# compatibility with peft
A__ : Optional[int] =load_in_abit
A__ : Union[str, Any] =load_in_abit
A__ : Any =get_parameter_device(__snake_case )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"""It is not recommended to quantize a loaded model. """
"""The model should be instantiated under the `init_empty_weights` context manager.""" )
A__ : List[Any] =replace_with_bnb_layers(__snake_case, __snake_case, modules_to_not_convert=__snake_case )
# convert param to the right dtype
A__ : int =bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
A__ : int =name.replace(""".weight""", """""" ).replace(""".bias""", """""" )
A__ : Any =getattr(__snake_case, __snake_case, __snake_case )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(__snake_case ):
param.to(__snake_case )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info(
f"The model device type is {model_device.type}. However, cuda is needed for quantization."
"""We move the model to cuda.""" )
return model
elif weights_location is None:
raise RuntimeError(
f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " )
else:
with init_empty_weights():
A__ : Dict =replace_with_bnb_layers(
__snake_case, __snake_case, modules_to_not_convert=__snake_case )
A__ : Tuple =get_quantized_model_device_map(
__snake_case, __snake_case, __snake_case, max_memory=__snake_case, no_split_module_classes=__snake_case, )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
A__ : Tuple =True
A__ : Any =any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] )
load_checkpoint_in_model(
__snake_case, __snake_case, __snake_case, dtype=bnb_quantization_config.torch_dtype, offload_folder=__snake_case, offload_state_dict=__snake_case, keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules, offload_abit_bnb=load_in_abit and offload, )
return dispatch_model(__snake_case, device_map=__snake_case, offload_dir=__snake_case )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str], __snake_case : Union[str, Any]=None, __snake_case : str=None, __snake_case : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
if device_map is None:
if torch.cuda.is_available():
A__ : List[str] ={"""""": torch.cuda.current_device()}
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" )
if isinstance(__snake_case, __snake_case ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"""If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """
"""'sequential'.""" )
A__ : int ={}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
A__ : Dict ={}
A__ : Union[str, Any] =special_dtypes
A__ : Optional[Any] =no_split_module_classes
A__ : Any =bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
A__ : Union[str, Any] =get_balanced_memory(
__snake_case, low_zero=(device_map == """balanced_low_0"""), max_memory=__snake_case, **__snake_case, )
A__ : List[Any] =max_memory
A__ : List[Any] =infer_auto_device_map(__snake_case, **__snake_case )
if isinstance(__snake_case, __snake_case ):
# check if don't have any quantized module on the cpu
A__ : Tuple =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
A__ : Optional[int] ={
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
""" )
else:
logger.info(
"""Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" )
del device_map_without_some_modules
return device_map
def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[Any], __snake_case : List[Any]=None, __snake_case : Tuple=None ) -> List[Any]:
"""simple docstring"""
if modules_to_not_convert is None:
A__ : int =[]
A__ : Optional[int] =_replace_with_bnb_layers(
__snake_case, __snake_case, __snake_case, __snake_case )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def __lowerCamelCase ( __snake_case : Dict, __snake_case : Tuple, __snake_case : Dict=None, __snake_case : Tuple=None, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =False
for name, module in model.named_children():
if current_key_name is None:
A__ : str =[]
current_key_name.append(__snake_case )
if isinstance(__snake_case, nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
A__ : Optional[int] =""".""".join(__snake_case )
A__ : Dict =True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
A__ : str =False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
A__ : Optional[int] =bnb.nn.LinearabitLt(
module.in_features, module.out_features, module.bias is not None, has_fpaa_weights=__snake_case, threshold=bnb_quantization_config.llm_inta_threshold, )
elif bnb_quantization_config.load_in_abit:
A__ : Union[str, Any] =bnb.nn.Linearabit(
module.in_features, module.out_features, module.bias is not None, bnb_quantization_config.bnb_abit_compute_dtype, compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant, quant_type=bnb_quantization_config.bnb_abit_quant_type, )
else:
raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" )
A__ : Optional[int] =module.weight.data
if module.bias is not None:
A__ : str =module.bias.data
bnb_module.requires_grad_(__snake_case )
setattr(__snake_case, __snake_case, __snake_case )
A__ : List[str] =True
if len(list(module.children() ) ) > 0:
A__ : List[Any] =_replace_with_bnb_layers(
__snake_case, __snake_case, __snake_case, __snake_case )
A__ : Dict =has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def __lowerCamelCase ( __snake_case : List[str] ) -> str:
"""simple docstring"""
with init_empty_weights():
A__ : int =deepcopy(__snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
A__ : Optional[Any] =find_tied_parameters(__snake_case )
# For compatibility with Accelerate < 0.18
if isinstance(__snake_case, __snake_case ):
A__ : List[str] =sum(list(tied_params.values() ), [] ) + list(tied_params.keys() )
else:
A__ : Any =sum(__snake_case, [] )
A__ : List[str] =len(__snake_case ) > 0
# Check if it is a base model
A__ : Dict =False
if hasattr(__snake_case, """base_model_prefix""" ):
A__ : Dict =not hasattr(__snake_case, model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
A__ : List[Any] =list(model.named_children() )
A__ : List[str] =[list_modules[-1][0]]
# add last module together with tied weights
A__ : Dict =set(__snake_case ) - set(__snake_case )
A__ : Dict =list(set(__snake_case ) ) + list(__snake_case )
# remove ".weight" from the keys
A__ : Optional[int] =[""".weight""", """.bias"""]
A__ : str =[]
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
A__ : Union[str, Any] =name.replace(__snake_case, """""" )
filtered_module_names.append(__snake_case )
return filtered_module_names
def __lowerCamelCase ( __snake_case : List[Any] ) -> str:
"""simple docstring"""
for m in model.modules():
if isinstance(__snake_case, bnb.nn.Linearabit ):
return True
return False
def __lowerCamelCase ( __snake_case : nn.Module ) -> List[str]:
"""simple docstring"""
return next(parameter.parameters() ).device
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[Any], __snake_case : Tuple, __snake_case : int, __snake_case : str, __snake_case : List[str], __snake_case : Tuple ) -> int:
"""simple docstring"""
if fpaa_statistics is None:
set_module_tensor_to_device(__snake_case, __snake_case, 0, dtype=__snake_case, value=__snake_case )
A__ : List[Any] =param_name
A__ : Tuple =model
if "." in tensor_name:
A__ : Optional[int] =tensor_name.split(""".""" )
for split in splits[:-1]:
A__ : Optional[int] =getattr(__snake_case, __snake_case )
if new_module is None:
raise ValueError(f"{module} has no attribute {split}." )
A__ : Tuple =new_module
A__ : List[str] =splits[-1]
# offload weights
A__ : Union[str, Any] =False
offload_weight(module._parameters[tensor_name], __snake_case, __snake_case, index=__snake_case )
if hasattr(module._parameters[tensor_name], """SCB""" ):
offload_weight(
module._parameters[tensor_name].SCB, param_name.replace("""weight""", """SCB""" ), __snake_case, index=__snake_case, )
else:
offload_weight(__snake_case, __snake_case, __snake_case, index=__snake_case )
offload_weight(__snake_case, param_name.replace("""weight""", """SCB""" ), __snake_case, index=__snake_case )
set_module_tensor_to_device(__snake_case, __snake_case, """meta""", dtype=__snake_case, value=torch.empty(*param.size() ) )
| 704 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Union[str, Any] = logging.get_logger(__name__)
__snake_case : Optional[int] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
__snake_case = 'bit'
__snake_case = ['preactivation', 'bottleneck']
__snake_case = ['SAME', 'VALID']
def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A__ : List[Any] =global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
A__ : List[Any] =num_channels
A__ : Tuple =embedding_size
A__ : Union[str, Any] =hidden_sizes
A__ : List[str] =depths
A__ : Optional[Any] =layer_type
A__ : int =hidden_act
A__ : int =global_padding
A__ : int =num_groups
A__ : str =drop_path_rate
A__ : str =embedding_dynamic_padding
A__ : Dict =output_stride
A__ : Optional[int] =width_factor
A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
| 687 | 0 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def __lowerCamelCase ( __snake_case : int, __snake_case : Union[str, Any], __snake_case : int ) -> List[str]:
"""simple docstring"""
A__ : List[Any] =AlbertConfig.from_json_file(__snake_case )
print(f"Building PyTorch model from configuration: {config}" )
A__ : List[str] =AlbertForPreTraining(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_albert(__snake_case, __snake_case, __snake_case )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict(), __snake_case )
if __name__ == "__main__":
__snake_case : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--albert_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained ALBERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__snake_case : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 705 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__snake_case : List[str] = 5_0003
__snake_case : Dict = 5_0002
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = PLBartTokenizer
__snake_case = None
__snake_case = False
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )]
self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] )
A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ )
A__ : Dict =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Tuple =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )]
self.assertListEqual(
lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] )
A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'uclanlp/plbart-python-en_XX'
__snake_case = [
'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])',
'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])',
]
__snake_case = [
'Returns the maximum value of a b c.',
'Sums the values of a b c.',
]
__snake_case = [
134,
5452,
3_3460,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
988,
20,
3_3456,
19,
3_3456,
771,
39,
4258,
889,
3318,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : Optional[int] ) -> str:
'''simple docstring'''
A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" )
A__ : Optional[Any] =1
return cls
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
def lowercase__ ( self : int ) -> Optional[int]:
'''simple docstring'''
self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids )
A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase_ )
A__ : str =10
A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase_ )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
A__ : Tuple =tempfile.mkdtemp()
A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ )
@require_torch
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" )
A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
A__ : List[Any] =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" )
A__ : Optional[int] =self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" )
A__ : Optional[Any] =targets["""input_ids"""]
A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : Any =self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[1_50, 2_42, 2, 5_00_03]],
"""attention_mask""": [[1, 1, 1, 1]],
# java
"""forced_bos_token_id""": 5_00_01,
} , )
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : str = {
'configuration_distilbert': [
'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'DistilBertConfig',
'DistilBertOnnxConfig',
],
'tokenization_distilbert': ['DistilBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Tuple = ['DistilBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[Any] = [
'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'DistilBertForMaskedLM',
'DistilBertForMultipleChoice',
'DistilBertForQuestionAnswering',
'DistilBertForSequenceClassification',
'DistilBertForTokenClassification',
'DistilBertModel',
'DistilBertPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDistilBertForMaskedLM',
'TFDistilBertForMultipleChoice',
'TFDistilBertForQuestionAnswering',
'TFDistilBertForSequenceClassification',
'TFDistilBertForTokenClassification',
'TFDistilBertMainLayer',
'TFDistilBertModel',
'TFDistilBertPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'FlaxDistilBertForMaskedLM',
'FlaxDistilBertForMultipleChoice',
'FlaxDistilBertForQuestionAnswering',
'FlaxDistilBertForSequenceClassification',
'FlaxDistilBertForTokenClassification',
'FlaxDistilBertModel',
'FlaxDistilBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
__snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 706 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
__snake_case : str = False
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int ="""A painting of a squirrel eating a burger """
A__ : Tuple =torch.manual_seed(0 )
A__ : int =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase_ )
A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int =generator.manual_seed(0 )
A__ : Tuple =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict ="""A painting of a squirrel eating a burger """
A__ : Optional[int] =torch.manual_seed(0 )
A__ : List[str] =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class lowerCamelCase :
'''simple docstring'''
def __init__( self : List[str] ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =psutil.Process()
A__ : Union[str, Any] =False
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Optional[Any] =-1
while True:
A__ : Any =max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[Any] =True
A__ : str =threading.Thread(target=self.peak_monitor )
A__ : Optional[Any] =True
self.thread.start()
def lowercase__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
A__ : str =False
self.thread.join()
return self.cpu_memory_peak
__snake_case : List[Any] = PeakCPUMemory()
def __lowerCamelCase ( ) -> Dict:
"""simple docstring"""
A__ : Optional[Any] ={"""time""": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
A__ : Dict =psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
A__ : int =torch.cuda.memory_allocated(__snake_case )
torch.cuda.reset_peak_memory_stats()
return measures
def __lowerCamelCase ( __snake_case : int ) -> Dict:
"""simple docstring"""
A__ : List[Any] ={"""time""": time.time() - start_measures["""time"""]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
A__ : List[str] =(psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20
A__ : List[Any] =(cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
A__ : Dict =(torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20
A__ : Union[str, Any] =(torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20
return measures
def __lowerCamelCase ( __snake_case : int, __snake_case : Optional[Any] ) -> str:
"""simple docstring"""
print(f"{description}:" )
print(f"- Time: {measures['time']:.2f}s" )
for i in range(torch.cuda.device_count() ):
print(f"- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB" )
A__ : Optional[int] =measures[f"{i}-peak"]
print(f"- GPU {i} peak: {peak:.2f}MiB" )
print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" )
print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
| 707 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 42
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
A__ : Optional[Any] =Encoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , )
A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ )
A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
# pass init params to Decoder
A__ : Optional[Any] =Decoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , )
@apply_forward_hook
def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput:
'''simple docstring'''
A__ : Dict =self.encoder(lowerCAmelCase_ )
A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowerCAmelCase_ )
@apply_forward_hook
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
# also go through quantization layer
if not force_not_quantize:
A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ )
else:
A__ : List[str] =h
A__ : Dict =self.post_quant_conv(lowerCAmelCase_ )
A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
A__ : Optional[int] =sample
A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents
A__ : Tuple =self.decode(lowerCAmelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__snake_case : str = ''
__snake_case : List[Any] = ''
__snake_case : Optional[int] = ''
__snake_case : Union[str, Any] = 1 # (0 is vertical, 1 is horizontal)
def __lowerCamelCase ( ) -> None:
"""simple docstring"""
A__ : List[Any] =get_dataset(__snake_case, __snake_case )
print("""Processing...""" )
A__ : List[Any] =update_image_and_anno(__snake_case, __snake_case, __snake_case )
for index, image in enumerate(__snake_case ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
A__ : Optional[int] =random_chars(32 )
A__ : str =paths[index].split(os.sep )[-1].rsplit(""".""", 1 )[0]
A__ : Tuple =f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(f"/{file_root}.jpg", __snake_case, [cva.IMWRITE_JPEG_QUALITY, 85] )
print(f"Success {index+1}/{len(__snake_case )} with {file_name}" )
A__ : List[Any] =[]
for anno in new_annos[index]:
A__ : List[Any] =f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(__snake_case )
with open(f"/{file_root}.txt", """w""" ) as outfile:
outfile.write("""\n""".join(line for line in annos_list ) )
def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> tuple[list, list]:
"""simple docstring"""
A__ : Optional[Any] =[]
A__ : Optional[Any] =[]
for label_file in glob.glob(os.path.join(__snake_case, """*.txt""" ) ):
A__ : int =label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0]
with open(__snake_case ) as in_file:
A__ : List[Any] =in_file.readlines()
A__ : Optional[int] =os.path.join(__snake_case, f"{label_name}.jpg" )
A__ : List[str] =[]
for obj_list in obj_lists:
A__ : int =obj_list.rstrip("""\n""" ).split(""" """ )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(__snake_case )
labels.append(__snake_case )
return img_paths, labels
def __lowerCamelCase ( __snake_case : list, __snake_case : list, __snake_case : int = 1 ) -> tuple[list, list, list]:
"""simple docstring"""
A__ : List[str] =[]
A__ : Dict =[]
A__ : List[Any] =[]
for idx in range(len(__snake_case ) ):
A__ : Dict =[]
A__ : str =img_list[idx]
path_list.append(__snake_case )
A__ : Dict =anno_list[idx]
A__ : Any =cva.imread(__snake_case )
if flip_type == 1:
A__ : str =cva.flip(__snake_case, __snake_case )
for bbox in img_annos:
A__ : Union[str, Any] =1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
A__ : List[str] =cva.flip(__snake_case, __snake_case )
for bbox in img_annos:
A__ : Tuple =1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(__snake_case )
new_imgs_list.append(__snake_case )
return new_imgs_list, new_annos_lists, path_list
def __lowerCamelCase ( __snake_case : int = 32 ) -> str:
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
A__ : List[str] =ascii_lowercase + digits
return "".join(random.choice(__snake_case ) for _ in range(__snake_case ) )
if __name__ == "__main__":
main()
print('DONE ✅')
| 708 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : Optional[int] = logging.get_logger(__name__)
__snake_case : Tuple = {
'vocab_file': 'vocab.txt',
'merges_file': 'bpe.codes',
}
__snake_case : str = {
'vocab_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt',
},
'merges_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes',
},
}
__snake_case : List[Any] = {
'vinai/phobert-base': 256,
'vinai/phobert-large': 256,
}
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : str =char
A__ : List[Any] =set(__snake_case )
return pairs
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict:
'''simple docstring'''
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : int =vocab_file
A__ : Any =merges_file
A__ : Union[str, Any] ={}
A__ : Optional[int] =0
A__ : List[Any] =1
A__ : Tuple =2
A__ : Dict =3
self.add_from_file(lowerCAmelCase_ )
A__ : List[str] ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
A__ : str =merges_handle.read().split("""\n""" )[:-1]
A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges]
A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
A__ : Dict ={}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ : Dict =[self.cls_token_id]
A__ : Union[str, Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : int =tuple(lowerCAmelCase_ )
A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Tuple =get_pairs(lowerCAmelCase_ )
if not pairs:
return token
while True:
A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ , A__ : Tuple =bigram
A__ : Optional[int] =[]
A__ : Tuple =0
while i < len(lowerCAmelCase_ ):
try:
A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ : Union[str, Any] =j
if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Dict =tuple(lowerCAmelCase_ )
A__ : Dict =new_word
if len(lowerCAmelCase_ ) == 1:
break
else:
A__ : str =get_pairs(lowerCAmelCase_ )
A__ : Dict ="""@@ """.join(lowerCAmelCase_ )
A__ : Tuple =word[:-4]
A__ : Any =word
return word
def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
A__ : int =[]
A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip()
return out_string
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Optional[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Tuple =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.merges_file , lowerCAmelCase_ )
return out_vocab_file, out_merge_file
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
A__ : Union[str, Any] =f.readlines()
for lineTmp in lines:
A__ : List[Any] =lineTmp.strip()
A__ : Dict =line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
A__ : Tuple =line[:idx]
A__ : Tuple =len(self.encoder )
| 687 | 0 |
'''simple docstring'''
from collections.abc import Generator
from math import sin
def __lowerCamelCase ( __snake_case : bytes ) -> bytes:
"""simple docstring"""
if len(__snake_case ) != 32:
raise ValueError("""Input must be of length 32""" )
A__ : Optional[Any] =b""""""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def __lowerCamelCase ( __snake_case : int ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError("""Input must be non-negative""" )
A__ : List[str] =format(__snake_case, """08x""" )[-8:]
A__ : Any =b""""""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" )
return little_endian_hex
def __lowerCamelCase ( __snake_case : bytes ) -> bytes:
"""simple docstring"""
A__ : Optional[int] =b""""""
for char in message:
bit_string += format(__snake_case, """08b""" ).encode("""utf-8""" )
A__ : Optional[int] =format(len(__snake_case ), """064b""" ).encode("""utf-8""" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__snake_case ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def __lowerCamelCase ( __snake_case : bytes ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(__snake_case ) % 512 != 0:
raise ValueError("""Input must have length that's a multiple of 512""" )
for pos in range(0, len(__snake_case ), 512 ):
A__ : Optional[int] =bit_string[pos : pos + 512]
A__ : Union[str, Any] =[]
for i in range(0, 512, 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) )
yield block_words
def __lowerCamelCase ( __snake_case : int ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("""Input must be non-negative""" )
A__ : List[str] =format(__snake_case, """032b""" )
A__ : Optional[int] =""""""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__snake_case, 2 )
def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def __lowerCamelCase ( __snake_case : int, __snake_case : int ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("""Input must be non-negative""" )
if shift < 0:
raise ValueError("""Shift must be non-negative""" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def __lowerCamelCase ( __snake_case : bytes ) -> bytes:
"""simple docstring"""
A__ : Dict =preprocess(__snake_case )
A__ : int =[int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
A__ : Union[str, Any] =0X67_45_23_01
A__ : int =0Xef_cd_ab_89
A__ : Dict =0X98_ba_dc_fe
A__ : Optional[int] =0X10_32_54_76
A__ : Union[str, Any] =[
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__snake_case ):
A__ : Optional[int] =aa
A__ : Union[str, Any] =ba
A__ : Tuple =ca
A__ : Optional[int] =da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
A__ : Any =d ^ (b & (c ^ d))
A__ : Union[str, Any] =i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
A__ : Any =c ^ (d & (b ^ c))
A__ : List[str] =(5 * i + 1) % 16
elif i <= 47:
A__ : Any =b ^ c ^ d
A__ : Union[str, Any] =(3 * i + 5) % 16
else:
A__ : Optional[Any] =c ^ (b | not_aa(__snake_case ))
A__ : str =(7 * i) % 16
A__ : Any =(f + a + added_consts[i] + block_words[g]) % 2**32
A__ : Optional[int] =d
A__ : str =c
A__ : Tuple =b
A__ : int =sum_aa(__snake_case, left_rotate_aa(__snake_case, shift_amounts[i] ) )
# Add hashed chunk to running total
A__ : List[Any] =sum_aa(__snake_case, __snake_case )
A__ : List[str] =sum_aa(__snake_case, __snake_case )
A__ : Union[str, Any] =sum_aa(__snake_case, __snake_case )
A__ : str =sum_aa(__snake_case, __snake_case )
A__ : int =reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 709 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =nn.functional.normalize(__snake_case )
A__ : Optional[Any] =nn.functional.normalize(__snake_case )
return torch.mm(__snake_case, normalized_text_embeds.t() )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = CLIPConfig
__snake_case = ['CLIPEncoderLayer']
def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase_ )
A__ : str =CLIPVisionModel(config.vision_config )
A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ )
A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ )
A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any:
'''simple docstring'''
A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : Any =self.visual_projection(lowerCAmelCase_ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy()
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy()
A__ : List[str] =[]
A__ : Optional[int] =image_embeds.shape[0]
for i in range(lowerCAmelCase_ ):
A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : List[Any] =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A__ : Optional[Any] =special_cos_dist[i][concept_idx]
A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
A__ : Dict =0.01
for concept_idx in range(len(cos_dist[0] ) ):
A__ : Optional[int] =cos_dist[i][concept_idx]
A__ : List[str] =self.concept_embeds_weights[concept_idx].item()
A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(lowerCAmelCase_ )
result.append(lowerCAmelCase_ )
A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : List[Any] =self.visual_projection(lowerCAmelCase_ )
A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : Dict =0.0
A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 )
A__ : Tuple =special_care * 0.01
A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Optional[int] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Tuple = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 710 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =[]
for part_id in partition_order:
A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect()
for row_idx, row in enumerate(__snake_case ):
expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : str =spark.range(100 ).repartition(1 )
A__ : List[str] =Spark(__snake_case )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Tuple =spark.range(10 ).repartition(2 )
A__ : List[str] =[1, 0]
A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions.
A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(10 ).repartition(1 )
A__ : List[str] =SparkExamplesIterable(__snake_case )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__snake_case ):
assert row_id == f"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
A__ : Tuple =lambda __snake_case : x.reverse()
A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] )
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Any =spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : List[str] =spark.range(100 ).repartition(1 )
A__ : List[Any] =Spark(__snake_case )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Union[str, Any] = logging.get_logger(__name__)
__snake_case : Optional[int] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
__snake_case = 'bit'
__snake_case = ['preactivation', 'bottleneck']
__snake_case = ['SAME', 'VALID']
def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A__ : List[Any] =global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
A__ : List[Any] =num_channels
A__ : Tuple =embedding_size
A__ : Union[str, Any] =hidden_sizes
A__ : List[str] =depths
A__ : Optional[Any] =layer_type
A__ : int =hidden_act
A__ : int =global_padding
A__ : int =num_groups
A__ : str =drop_path_rate
A__ : str =embedding_dynamic_padding
A__ : Dict =output_stride
A__ : Optional[int] =width_factor
A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
A__ : Union[str, Any] =get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
| 711 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Any =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
A__ : Optional[Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting"""
A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench"""
A__ : Optional[Any] =jax.random.PRNGKey(0 )
A__ : List[str] =50
A__ : List[str] =jax.device_count()
A__ : List[str] =num_samples * [prompt]
A__ : List[str] =num_samples * [init_image]
A__ : Tuple =num_samples * [mask_image]
A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# shard inputs and rng
A__ : Dict =replicate(lowerCAmelCase_ )
A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() )
A__ : List[Any] =shard(lowerCAmelCase_ )
A__ : Union[str, Any] =shard(lowerCAmelCase_ )
A__ : str =shard(lowerCAmelCase_ )
A__ : List[str] =pipeline(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ )
A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 )
A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1]
A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ : Optional[int] =jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 712 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __lowerCamelCase ( __snake_case : Dict ) -> List[str]:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str:
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] =module
A__ : Union[str, Any] =nn.Sequential(
nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , )
A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'bigscience/bloom-1b7'
# Constant values
__snake_case = 2.109659552692574
__snake_case = 'Hello my name is'
__snake_case = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
__snake_case = 10
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
# Models and tokenizer
A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Models and tokenizer
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
A__ : str =self.model_abit.config
self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) )
A__ : Union[str, Any] =config.to_dict()
A__ : Any =config.to_diff_dict()
A__ : Optional[Any] =config.to_json_string()
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
A__ : int =self.model_fpaa.get_memory_footprint()
A__ : Optional[Any] =self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
A__ : Tuple =get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCAmelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
A__ : Tuple =True
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" )
A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
with self.assertRaises(lowerCAmelCase_ ):
A__ : Dict =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =self.model_fpaa.to(torch.floataa )
A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.half()
# Check this does not throw an error
A__ : int =self.model_fpaa.float()
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowercase__ ( cls : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple ="""t5-small"""
A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name )
A__ : Optional[int] ="""Translate in German: Hello, my dog is cute"""
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
from transformers import TaForConditionalGeneration
A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules
A__ : Optional[Any] =None
# test with `t5-small`
A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Optional[Any] =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : List[str] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ )
A__ : Dict =modules
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Any =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Dict =model.generate(**lowerCAmelCase_ )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
super().setUp()
# model_name
A__ : Any ="""bigscience/bloom-560m"""
A__ : List[Any] ="""t5-small"""
# Different types of model
A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Sequence classification model
A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# CausalLM model
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Seq2seq model
A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
A__ : Dict =pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
A__ : Optional[int] =self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : int =AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] ="""facebook/opt-350m"""
super().setUp()
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
A__ : int =False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
A__ : Dict =param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCAmelCase_ ) ):
A__ : int =LoRALayer(module.q_proj , rank=16 )
A__ : Any =LoRALayer(module.k_proj , rank=16 )
A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
A__ : Any =model.forward(**lowerCAmelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowerCAmelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'gpt2-xl'
__snake_case = 3.3191854854152187
| 687 | 0 |
'''simple docstring'''
def __lowerCamelCase ( __snake_case : int = 100 ) -> int:
"""simple docstring"""
A__ : Tuple =n * (n + 1) * (2 * n + 1) / 6
A__ : Optional[Any] =(n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 713 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__snake_case : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[int] ) -> Optional[int]:
"""simple docstring"""
A__ : Optional[Any] =torch.load(__snake_case, map_location="""cpu""" )
A__ : Optional[int] =chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
A__ : Any ={}
for k, v in state_dict.items():
if "pred_layer" in k:
A__ : str =v
else:
A__ : Dict =v
A__ : Union[str, Any] =chkpt["""params"""]
A__ : Dict ={n: v for n, v in config.items() if not isinstance(__snake_case, (torch.FloatTensor, numpy.ndarray) )}
A__ : List[str] =chkpt["""dico_word2id"""]
A__ : List[Any] ={s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""", """""" ): i for s, i in vocab.items()}
# Save pytorch-model
A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + CONFIG_NAME
A__ : Optional[Any] =pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(__snake_case, __snake_case )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(__snake_case, """w""", encoding="""utf-8""" ) as f:
f.write(json.dumps(__snake_case, indent=2 ) + """\n""" )
print(f"Save vocab file to {pytorch_config_dump_path}" )
with open(__snake_case, """w""", encoding="""utf-8""" ) as f:
f.write(json.dumps(__snake_case, indent=2 ) + """\n""" )
if __name__ == "__main__":
__snake_case : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__snake_case : Tuple = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 714 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple:
'''simple docstring'''
A__ : Tuple =parent
A__ : Any =batch_size
A__ : List[str] =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_lengths
A__ : int =use_token_type_ids
A__ : Union[str, Any] =use_labels
A__ : Optional[Any] =gelu_activation
A__ : List[Any] =sinusoidal_embeddings
A__ : List[Any] =causal
A__ : str =asm
A__ : Tuple =n_langs
A__ : Dict =vocab_size
A__ : Optional[Any] =n_special
A__ : Tuple =hidden_size
A__ : Dict =num_hidden_layers
A__ : int =num_attention_heads
A__ : Optional[Any] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Optional[int] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : Any =num_labels
A__ : str =num_choices
A__ : Optional[int] =summary_type
A__ : int =use_proj
A__ : Tuple =scope
A__ : Union[str, Any] =bos_token_id
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Tuple =None
if self.use_input_lengths:
A__ : Tuple =(
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ : Optional[Any] =None
if self.use_token_type_ids:
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ : Any =None
A__ : Tuple =None
A__ : Optional[Any] =None
if self.use_labels:
A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float()
A__ : str =ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Tuple =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
A__ : List[Any] =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Tuple =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
A__ : Optional[Any] =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
((A__) , ) : List[Any] =result_with_labels.to_tuple()
A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
((A__) , ) : Tuple =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : str =model(lowerCAmelCase_ )
A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
A__ : int =self.num_labels
A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =self.num_choices
A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Optional[int] =config_and_inputs
A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int:
'''simple docstring'''
A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
A__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Dict =XLMModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
A__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
A__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : Tuple =min_length + idx + 1
A__ : Tuple =min_length + idx + 1
A__ : Dict =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : str =min_length + idx + 1
A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCAmelCase_ )
A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
A__ : Optional[Any] =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
__snake_case : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
__snake_case : Optional[Any] = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n'
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
A__ : Dict =tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
A__ : Optional[Any] =self.diffusers_dir
shutil.copy(
os.path.join(lowerCAmelCase_ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def lowercase__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
A__ : List[Any] ="""src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def lowercase__ ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=None ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =comment + f"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
A__ : Optional[Any] =comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result
A__ : int =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
A__ : Tuple =black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ )
A__ : Tuple =os.path.join(self.diffusers_dir , """new_code.py""" )
with open(lowerCAmelCase_ , """w""" , newline="""\n""" ) as f:
f.write(lowerCAmelCase_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase_ )
with open(lowerCAmelCase_ , """r""" ) as f:
self.assertTrue(f.read() , lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCAmelCase_ , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCAmelCase_ ) , )
# Copy consistency with a really long name
A__ : Optional[int] ="""TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub("""Bert""" , lowerCAmelCase_ , lowerCAmelCase_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCAmelCase_ , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCAmelCase_ ) , )
| 715 |
'''simple docstring'''
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def __lowerCamelCase ( __snake_case : int ) -> Optional[int]:
"""simple docstring"""
random.seed(__snake_case )
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# ^^ safe to call this function even if cuda is not available
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Optional[Any] =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : List[str] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : int =True
if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None:
A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Union[str, Any] =kwargs["""max_value"""]
if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Optional[Any] =kwargs["""min_value"""]
A__ : Any =list(lowerCAmelCase_ )
A__ : int =[p.clone().detach() for p in parameters]
if kwargs.get("""device""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
self.to(device=kwargs["""device"""] )
A__ : Optional[int] =None
A__ : Any =decay
A__ : List[Any] =min_decay
A__ : Optional[int] =update_after_step
A__ : List[str] =use_ema_warmup
A__ : str =inv_gamma
A__ : Union[str, Any] =power
A__ : str =0
A__ : str =None # set in `step()`
A__ : List[str] =model_cls
A__ : Optional[int] =model_config
@classmethod
def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel":
'''simple docstring'''
A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ )
A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config )
ema_model.load_state_dict(lowerCAmelCase_ )
return ema_model
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : Optional[int] =self.model_cls.from_config(self.model_config )
A__ : Optional[Any] =self.state_dict()
state_dict.pop("""shadow_params""" , lowerCAmelCase_ )
model.register_to_config(**lowerCAmelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float:
'''simple docstring'''
A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Union[str, Any] =(1 + step) / (10 + step)
A__ : str =min(lowerCAmelCase_ , self.decay )
# make sure decay is not smaller than min_decay
A__ : int =max(lowerCAmelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Any =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : Optional[int] =parameters.parameters()
A__ : Dict =list(lowerCAmelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : Any =self.get_decay(self.optimization_step )
A__ : Optional[int] =decay
A__ : List[str] =1 - decay
A__ : str =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : Optional[Any] =list(lowerCAmelCase_ )
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None:
'''simple docstring'''
A__ : str =[
p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ )
for p in self.shadow_params
]
def lowercase__ ( self : Optional[Any] ) -> dict:
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : List[str] =[param.detach().cpu().clone() for param in parameters]
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : List[str] =None
def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None:
'''simple docstring'''
A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ )
A__ : List[Any] =state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , lowerCAmelCase_ ):
raise ValueError("""Invalid min_decay""" )
A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , lowerCAmelCase_ ):
raise ValueError("""Invalid optimization_step""" )
A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , lowerCAmelCase_ ):
raise ValueError("""Invalid update_after_step""" )
A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Tuple =state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ )
if shadow_params is not None:
A__ : List[str] =shadow_params
if not isinstance(self.shadow_params , lowerCAmelCase_ ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 687 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=18 , lowerCAmelCase_ : List[str]=30 , lowerCAmelCase_ : Dict=4_00 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Optional[int]=True , ) -> int:
'''simple docstring'''
A__ : List[Any] =size if size is not None else {"""shortest_edge""": 20}
A__ : Dict =crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
A__ : Any =parent
A__ : List[Any] =batch_size
A__ : Dict =num_channels
A__ : Optional[int] =image_size
A__ : Union[str, Any] =min_resolution
A__ : Any =max_resolution
A__ : List[Any] =do_resize
A__ : Union[str, Any] =size
A__ : str =do_center_crop
A__ : Dict =crop_size
A__ : int =do_flip_channel_order
def lowercase__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = MobileViTImageProcessor if is_vision_available() else None
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =MobileViTImageProcessingTester(self )
@property
def lowercase__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ : str =self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_center_crop""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """center_crop""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_flip_channel_order""" ) )
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
A__ : Any =self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
A__ : List[str] =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
pass
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
A__ : int =self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A__ : List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , Image.Image )
# Test not batched input
A__ : Dict =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A__ : Union[str, Any] =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
A__ : int =self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , np.ndarray )
# Test not batched input
A__ : List[str] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A__ : int =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Dict =self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , torch.Tensor )
# Test not batched input
A__ : Optional[Any] =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A__ : int =image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 716 |
'''simple docstring'''
from __future__ import annotations
import requests
__snake_case : Union[str, Any] = set(
'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split()
)
def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict:
"""simple docstring"""
A__ : Union[str, Any] =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}"
raise ValueError(__snake_case )
A__ : Tuple =requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, )
if response.status_code == 429:
raise requests.HTTPError
A__ : Tuple =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
A__ : Tuple ={}
for id_ in range(__snake_case ):
A__ : List[Any] ={
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
| 687 | 0 |
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
__snake_case : Optional[Any] = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> Tuple:
"""simple docstring"""
warnings.warn(__snake_case, __snake_case )
requires_backends(__snake_case, """sklearn""" )
return (preds == labels).mean()
def __lowerCamelCase ( __snake_case : str, __snake_case : Tuple ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(__snake_case, __snake_case )
requires_backends(__snake_case, """sklearn""" )
A__ : int =simple_accuracy(__snake_case, __snake_case )
A__ : Dict =fa_score(y_true=__snake_case, y_pred=__snake_case )
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Dict ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(__snake_case, __snake_case )
requires_backends(__snake_case, """sklearn""" )
A__ : Union[str, Any] =pearsonr(__snake_case, __snake_case )[0]
A__ : Any =spearmanr(__snake_case, __snake_case )[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Dict, __snake_case : List[Any] ) -> Any:
"""simple docstring"""
warnings.warn(__snake_case, __snake_case )
requires_backends(__snake_case, """sklearn""" )
assert len(__snake_case ) == len(__snake_case ), f"Predictions and labels have mismatched lengths {len(__snake_case )} and {len(__snake_case )}"
if task_name == "cola":
return {"mcc": matthews_corrcoef(__snake_case, __snake_case )}
elif task_name == "sst-2":
return {"acc": simple_accuracy(__snake_case, __snake_case )}
elif task_name == "mrpc":
return acc_and_fa(__snake_case, __snake_case )
elif task_name == "sts-b":
return pearson_and_spearman(__snake_case, __snake_case )
elif task_name == "qqp":
return acc_and_fa(__snake_case, __snake_case )
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(__snake_case, __snake_case )}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(__snake_case, __snake_case )}
elif task_name == "qnli":
return {"acc": simple_accuracy(__snake_case, __snake_case )}
elif task_name == "rte":
return {"acc": simple_accuracy(__snake_case, __snake_case )}
elif task_name == "wnli":
return {"acc": simple_accuracy(__snake_case, __snake_case )}
elif task_name == "hans":
return {"acc": simple_accuracy(__snake_case, __snake_case )}
else:
raise KeyError(__snake_case )
def __lowerCamelCase ( __snake_case : Dict, __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(__snake_case, __snake_case )
requires_backends(__snake_case, """sklearn""" )
if len(__snake_case ) != len(__snake_case ):
raise ValueError(f"Predictions and labels have mismatched lengths {len(__snake_case )} and {len(__snake_case )}" )
if task_name == "xnli":
return {"acc": simple_accuracy(__snake_case, __snake_case )}
else:
raise KeyError(__snake_case )
| 717 |
'''simple docstring'''
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__snake_case : Union[str, Any] = logging.getLogger(__name__)
__snake_case : int = tf.data.AUTOTUNE
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", )
parser.add_argument(
"""--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", )
parser.add_argument(
"""--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", )
parser.add_argument(
"""--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", )
parser.add_argument(
"""--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", )
parser.add_argument(
"""--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", )
parser.add_argument(
"""--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", )
parser.add_argument(
"""--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", )
parser.add_argument(
"""--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", )
parser.add_argument(
"""--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", )
parser.add_argument(
"""--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", )
parser.add_argument(
"""--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", )
parser.add_argument(
"""--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", )
parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" )
A__ : Optional[Any] =parser.parse_args()
return args
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
try:
if args.tpu_name:
A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(__snake_case )
tf.tpu.experimental.initialize_tpu_system(__snake_case )
return tpu
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : Any =0
for file in file_list:
A__ : Optional[int] =file.split("""/""" )[-1]
A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 )
A__ : str =int(__snake_case )
num_samples += sample_count
return num_samples
def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]:
"""simple docstring"""
A__ : List[str] =count_samples(__snake_case )
A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case )
if shuffle:
A__ : Optional[int] =dataset.shuffle(len(__snake_case ) )
A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) )
A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case )
if shuffle:
assert shuffle_buffer_size is not None
A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size )
A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case )
A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case )
A__ : Tuple =dataset.prefetch(__snake_case )
return dataset
def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
if not args.no_tpu:
A__ : Dict =initialize_tpu(__snake_case )
A__ : int =tf.distribute.TPUStrategy(__snake_case )
else:
A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer )
A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) )
if not training_records:
raise ValueError(f"No .tfrecord files found in {args.train_dataset}." )
A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." )
A__ : Optional[Any] =count_samples(__snake_case )
A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
A__ : str =steps_per_epoch * args.num_epochs
with strategy.scope():
A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
A__ , A__ : Optional[Any] =create_optimizer(
num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__snake_case, metrics=["""accuracy"""] )
def decode_fn(__snake_case : Tuple ):
A__ : Dict ={
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__snake_case, __snake_case )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
A__ : List[Any] =DataCollatorForLanguageModeling(
tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" )
def mask_with_collator(__snake_case : Optional[int] ):
# TF really needs an isin() function
A__ : Union[str, Any] =(
~tf.cast(batch["""attention_mask"""], tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
A__ , A__ : List[str] =data_collator.tf_mask_tokens(
batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, )
return batch
A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, )
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, )
A__ : Tuple =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) )
model.fit(
__snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__snake_case : str = parse_args()
main(args)
| 687 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
super().__init__()
self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : Dict , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]:
'''simple docstring'''
if audio_length_in_s is None:
A__ : Any =self.unet.config.sample_size / self.unet.config.sample_rate
A__ : Tuple =audio_length_in_s * self.unet.config.sample_rate
A__ : Dict =2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f"{audio_length_in_s} is too small. Make sure it's bigger or equal to"
f" {3 * down_scale_factor / self.unet.config.sample_rate}." )
A__ : Any =int(lowerCAmelCase_ )
if sample_size % down_scale_factor != 0:
A__ : Optional[Any] =(
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"
f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"
""" process.""" )
A__ : int =int(lowerCAmelCase_ )
A__ : Tuple =next(iter(self.unet.parameters() ) ).dtype
A__ : List[Any] =(batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
A__ : List[Any] =randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ )
# set step values
self.scheduler.set_timesteps(lowerCAmelCase_ , device=audio.device )
A__ : List[Any] =self.scheduler.timesteps.to(lowerCAmelCase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A__ : Optional[Any] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample
# 2. compute previous image: x_t -> t_t-1
A__ : Optional[int] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample
A__ : List[str] =audio.clamp(-1 , 1 ).float().cpu().numpy()
A__ : Optional[Any] =audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowerCAmelCase_ )
| 718 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__snake_case : Tuple = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n'
__snake_case : str = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n'
__snake_case : Union[str, Any] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Optional[int]=False ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[Any] =compute_bleu(
reference_corpus=lowerCAmelCase_ , translation_corpus=lowerCAmelCase_ , max_order=lowerCAmelCase_ , smooth=lowerCAmelCase_ )
(A__) : str =score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 719 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__snake_case : Optional[int] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__snake_case : Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__snake_case : int = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__snake_case : Optional[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__snake_case : Dict = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 687 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import floats_tensor, load_image, load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
__snake_case = ShapEImgaImgPipeline
__snake_case = ['image']
__snake_case = ['image']
__snake_case = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
__snake_case = False
@property
def lowercase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
return 32
@property
def lowercase__ ( self : Any ) -> List[Any]:
'''simple docstring'''
return 32
@property
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
return 8
@property
def lowercase__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
A__ : int =CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , )
A__ : List[Any] =CLIPVisionModel(lowerCAmelCase_ )
return model
@property
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
A__ : List[Any] =CLIPImageProcessor(
crop_size=2_24 , do_center_crop=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , )
return image_processor
@property
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
A__ : Optional[Any] ={
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""embedding_proj_norm_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
A__ : Union[str, Any] =PriorTransformer(**lowerCAmelCase_ )
return model
@property
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
torch.manual_seed(0 )
A__ : Optional[int] ={
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
A__ : str =ShapERenderer(**lowerCAmelCase_ )
return model
def lowercase__ ( self : Dict ) -> Dict:
'''simple docstring'''
A__ : str =self.dummy_prior
A__ : Union[str, Any] =self.dummy_image_encoder
A__ : Tuple =self.dummy_image_processor
A__ : List[Any] =self.dummy_renderer
A__ : Tuple =HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=lowerCAmelCase_ , clip_sample=lowerCAmelCase_ , clip_sample_range=1.0 , )
A__ : Optional[int] ={
"""prior""": prior,
"""image_encoder""": image_encoder,
"""image_processor""": image_processor,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def lowercase__ ( self : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=0 ) -> List[str]:
'''simple docstring'''
A__ : List[str] =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ )
if str(lowerCAmelCase_ ).startswith("""mps""" ):
A__ : Dict =torch.manual_seed(lowerCAmelCase_ )
else:
A__ : List[Any] =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ )
A__ : Tuple ={
"""image""": input_image,
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def lowercase__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] ="""cpu"""
A__ : Dict =self.get_dummy_components()
A__ : Tuple =self.pipeline_class(**lowerCAmelCase_ )
A__ : List[Any] =pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Optional[Any] =pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) )
A__ : int =output.images[0]
A__ : Optional[Any] =image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
A__ : Tuple =np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase__ ( self : int ) -> int:
'''simple docstring'''
A__ : Optional[int] =torch_device == """cpu"""
A__ : List[str] =True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , )
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : List[str] =self.get_dummy_components()
A__ : Any =self.pipeline_class(**lowerCAmelCase_ )
A__ : Optional[int] =pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict =1
A__ : str =2
A__ : str =self.get_dummy_inputs(lowerCAmelCase_ )
for key in inputs.keys():
if key in self.batch_params:
A__ : Tuple =batch_size * [inputs[key]]
A__ : List[str] =pipe(**lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
def lowercase__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : str =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" )
A__ : List[Any] =load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_img2img_out.npy""" )
A__ : Dict =ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" )
A__ : int =pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Tuple =torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 )
A__ : Optional[Any] =pipe(
lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
| 720 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str:
"""simple docstring"""
A__ : int =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any =""""""
else:
A__ : Optional[int] ="""vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : Optional[int] =in_proj_weight[
: config.hidden_size, :
]
A__ : str =in_proj_bias[: config.hidden_size]
A__ : Optional[Any] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : List[Any] =in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] =in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[Any] =["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : Dict =dct.pop(__snake_case )
A__ : Tuple =val
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str:
"""simple docstring"""
A__ : Tuple =ViTConfig()
# patch_size
if model_name[-1] == "8":
A__ : Optional[Any] =8
# set labels if required
if not base_model:
A__ : Optional[Any] =1_000
A__ : str ="""huggingface/label-files"""
A__ : Any ="""imagenet-1k-id2label.json"""
A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) )
A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : List[Any] =idalabel
A__ : List[Any] ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
A__ : str =384
A__ : Optional[Any] =1_536
A__ : Optional[Any] =12
A__ : Union[str, Any] =6
# load original model from torch hub
A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case )
original_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : List[str] =original_model.state_dict()
if base_model:
remove_classification_head_(__snake_case )
A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case )
for src, dest in rename_keys:
rename_key(__snake_case, __snake_case, __snake_case )
read_in_q_k_v(__snake_case, __snake_case, __snake_case )
# load HuggingFace model
if base_model:
A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval()
else:
A__ : List[str] =ViTForImageClassification(__snake_case ).eval()
model.load_state_dict(__snake_case )
# Check outputs on an image, prepared by ViTImageProcessor
A__ : Union[str, Any] =ViTImageProcessor()
A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Union[str, Any] =encoding["""pixel_values"""]
A__ : Union[str, Any] =model(__snake_case )
if base_model:
A__ : List[str] =original_model(__snake_case )
assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 )
else:
A__ : Optional[int] =original_model(__snake_case )
assert logits.shape == outputs.logits.shape
assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__snake_case : Tuple = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 721 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'linear'
__snake_case = 'cosine'
__snake_case = 'cosine_with_restarts'
__snake_case = 'polynomial'
__snake_case = 'constant'
__snake_case = 'constant_with_warmup'
__snake_case = 'piecewise_constant'
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]:
"""simple docstring"""
return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1.0, __snake_case ) )
return 1.0
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]:
"""simple docstring"""
A__ : str ={}
A__ : Tuple =step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
A__ , A__ : int =rule_str.split(""":""" )
A__ : Optional[int] =int(__snake_case )
A__ : List[Any] =float(__snake_case )
A__ : Union[str, Any] =value
A__ : int =float(rule_list[-1] )
def create_rules_function(__snake_case : int, __snake_case : Dict ):
def rule_func(__snake_case : int ) -> float:
A__ : Any =sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__snake_case ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
A__ : Any =create_rules_function(__snake_case, __snake_case )
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : Dict ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]:
"""simple docstring"""
A__ : Optional[int] =optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
A__ : List[Any] =lr_init - lr_end
A__ : Any =num_training_steps - num_warmup_steps
A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps
A__ : List[str] =lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__snake_case, __snake_case, __snake_case )
__snake_case : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =SchedulerType(__snake_case )
A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__snake_case, last_epoch=__snake_case )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, )
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
| 687 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_download, hf_hub_url
from PIL import Image
from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : str ) -> Union[str, Any]:
"""simple docstring"""
A__ : Optional[int] =SwinConfig(
embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["""stage2""", """stage3""", """stage4"""], )
A__ : Union[str, Any] =DetaConfig(
backbone_config=__snake_case, num_queries=900, encoder_ffn_dim=2_048, decoder_ffn_dim=2_048, num_feature_levels=5, assign_first_stage=__snake_case, with_box_refine=__snake_case, two_stage=__snake_case, )
# set labels
A__ : Optional[int] ="""huggingface/label-files"""
if "o365" in model_name:
A__ : Tuple =366
A__ : Union[str, Any] ="""object365-id2label.json"""
else:
A__ : Any =91
A__ : Optional[Any] ="""coco-detection-id2label.json"""
A__ : Optional[int] =num_labels
A__ : Any =json.load(open(cached_download(hf_hub_url(__snake_case, __snake_case, repo_type="""dataset""" ) ), """r""" ) )
A__ : str ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : Union[str, Any] =idalabel
A__ : Tuple ={v: k for k, v in idalabel.items()}
return config
def __lowerCamelCase ( __snake_case : Any ) -> List[str]:
"""simple docstring"""
A__ : int =[]
# stem
# fmt: off
rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") )
if i < 3:
rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") )
rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") )
rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") )
rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") )
rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") )
rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") )
rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") )
rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") )
# transformer encoder
for i in range(config.encoder_layers ):
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias") )
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight") )
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias") )
# transformer decoder
for i in range(config.decoder_layers ):
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight") )
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias") )
# fmt: on
return rename_keys
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : Tuple ) -> Any:
"""simple docstring"""
A__ : List[str] =dct.pop(__snake_case )
A__ : int =val
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[int] ) -> str:
"""simple docstring"""
A__ : Tuple =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
A__ : Tuple =num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
A__ : Optional[int] =state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" )
A__ : Union[str, Any] =state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : Any =in_proj_weight[:dim, :]
A__ : Any =in_proj_bias[: dim]
A__ : List[Any] =in_proj_weight[
dim : dim * 2, :
]
A__ : List[Any] =in_proj_bias[
dim : dim * 2
]
A__ : str =in_proj_weight[
-dim :, :
]
A__ : int =in_proj_bias[-dim :]
# fmt: on
def __lowerCamelCase ( __snake_case : str, __snake_case : Optional[Any] ) -> Tuple:
"""simple docstring"""
A__ : Union[str, Any] =config.d_model
for i in range(config.decoder_layers ):
# read in weights + bias of input projection layer of self-attention
A__ : Optional[Any] =state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight" )
A__ : str =state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : str =in_proj_weight[:hidden_size, :]
A__ : Dict =in_proj_bias[:hidden_size]
A__ : List[Any] =in_proj_weight[
hidden_size : hidden_size * 2, :
]
A__ : str =in_proj_bias[hidden_size : hidden_size * 2]
A__ : Optional[int] =in_proj_weight[-hidden_size:, :]
A__ : List[Any] =in_proj_bias[-hidden_size:]
def __lowerCamelCase ( ) -> List[str]:
"""simple docstring"""
A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Union[str, Any] =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[Any], __snake_case : int ) -> List[str]:
"""simple docstring"""
A__ : str =get_deta_config(__snake_case )
# load original state dict
if model_name == "deta-swin-large":
A__ : Optional[Any] =hf_hub_download(repo_id="""nielsr/deta-checkpoints""", filename="""adet_swin_ft.pth""" )
elif model_name == "deta-swin-large-o365":
A__ : Optional[Any] =hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""", filename="""deta_swin_pt_o365.pth""" )
else:
raise ValueError(f"Model name {model_name} not supported" )
A__ : Tuple =torch.load(__snake_case, map_location="""cpu""" )["""model"""]
# original state dict
for name, param in state_dict.items():
print(__snake_case, param.shape )
# rename keys
A__ : Tuple =create_rename_keys(__snake_case )
for src, dest in rename_keys:
rename_key(__snake_case, __snake_case, __snake_case )
read_in_swin_q_k_v(__snake_case, config.backbone_config )
read_in_decoder_q_k_v(__snake_case, __snake_case )
# fix some prefixes
for key in state_dict.copy().keys():
if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key:
A__ : Union[str, Any] =state_dict.pop(__snake_case )
A__ : Tuple =val
if "input_proj" in key:
A__ : Optional[Any] =state_dict.pop(__snake_case )
A__ : int =val
if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key:
A__ : int =state_dict.pop(__snake_case )
A__ : List[str] =val
# finally, create HuggingFace model and load state dict
A__ : Any =DetaForObjectDetection(__snake_case )
model.load_state_dict(__snake_case )
model.eval()
A__ : str ="""cuda""" if torch.cuda.is_available() else """cpu"""
model.to(__snake_case )
# load image processor
A__ : int =DetaImageProcessor(format="""coco_detection""" )
# verify our conversion on image
A__ : Tuple =prepare_img()
A__ : Any =processor(images=__snake_case, return_tensors="""pt""" )
A__ : Optional[Any] =encoding["""pixel_values"""]
A__ : Optional[int] =model(pixel_values.to(__snake_case ) )
# verify logits
print("""Logits:""", outputs.logits[0, :3, :3] )
print("""Boxes:""", outputs.pred_boxes[0, :3, :3] )
if model_name == "deta-swin-large":
A__ : Dict =torch.tensor(
[[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] )
A__ : Optional[int] =torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] )
elif model_name == "deta-swin-large-o365":
A__ : Union[str, Any] =torch.tensor(
[[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] )
A__ : Dict =torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] )
assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(__snake_case ), atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(__snake_case ), atol=1E-4 )
print("""Everything ok!""" )
if pytorch_dump_folder_path:
# Save model and processor
logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
model.save_pretrained(__snake_case )
processor.save_pretrained(__snake_case )
# Push to hub
if push_to_hub:
print("""Pushing model and processor to hub...""" )
model.push_to_hub(f"jozhang97/{model_name}" )
processor.push_to_hub(f"jozhang97/{model_name}" )
if __name__ == "__main__":
__snake_case : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
type=str,
default='deta-swin-large',
choices=['deta-swin-large', 'deta-swin-large-o365'],
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
help='Path to the folder to output PyTorch model.',
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__snake_case : str = parser.parse_args()
convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 700 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case : List[str] = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
__snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import operator as op
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Dict:
"""simple docstring"""
A__ : List[str] =[]
A__ : str =lambda __snake_case, __snake_case : int(x / y ) # noqa: E731 integer division operation
A__ : Optional[int] ={
"""^""": op.pow,
"""*""": op.mul,
"""/""": div,
"""+""": op.add,
"""-""": op.sub,
} # operators & their respective operation
# print table header
print("""Symbol""".center(8 ), """Action""".center(12 ), """Stack""", sep=""" | """ )
print("""-""" * (30 + len(__snake_case )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__snake_case ) # append x to stack
# output in tabular format
print(x.rjust(8 ), ("""push(""" + x + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """ )
else:
A__ : int =stack.pop() # pop stack
# output in tabular format
print("""""".rjust(8 ), ("""pop(""" + b + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """ )
A__ : Tuple =stack.pop() # pop stack
# output in tabular format
print("""""".rjust(8 ), ("""pop(""" + a + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """ )
stack.append(
str(opr[x](int(__snake_case ), int(__snake_case ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ), ("""push(""" + a + x + b + """)""").ljust(12 ), """,""".join(__snake_case ), sep=""" | """, )
return int(stack[0] )
if __name__ == "__main__":
__snake_case : Any = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix))
| 701 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Optional[int] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Tuple = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__snake_case : Tuple = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[Any] = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
__snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 702 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Any =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
A__ : Optional[Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting"""
A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench"""
A__ : Optional[Any] =jax.random.PRNGKey(0 )
A__ : List[str] =50
A__ : List[str] =jax.device_count()
A__ : List[str] =num_samples * [prompt]
A__ : List[str] =num_samples * [init_image]
A__ : Tuple =num_samples * [mask_image]
A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# shard inputs and rng
A__ : Dict =replicate(lowerCAmelCase_ )
A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() )
A__ : List[Any] =shard(lowerCAmelCase_ )
A__ : Union[str, Any] =shard(lowerCAmelCase_ )
A__ : str =shard(lowerCAmelCase_ )
A__ : List[str] =pipeline(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ )
A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 )
A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1]
A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ : Optional[int] =jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import namedtuple
def __lowerCamelCase ( __snake_case : float, __snake_case : float, __snake_case : float ) -> tuple:
"""simple docstring"""
A__ : Optional[int] =namedtuple("""result""", """name value""" )
if (voltage, current, power).count(0 ) != 1:
raise ValueError("""Only one argument must be 0""" )
elif power < 0:
raise ValueError(
"""Power cannot be negative in any electrical/electronics system""" )
elif voltage == 0:
return result("""voltage""", power / current )
elif current == 0:
return result("""current""", power / voltage )
elif power == 0:
return result("""power""", float(round(abs(voltage * current ), 2 ) ) )
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 703 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : Dict = {
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'conditional_detr'
__snake_case = ['past_key_values']
__snake_case = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Tuple =backbone_config.get("""model_type""" )
A__ : List[str] =CONFIG_MAPPING[backbone_model_type]
A__ : Dict =config_class.from_dict(lowerCAmelCase_ )
A__ : int =use_timm_backbone
A__ : List[Any] =backbone_config
A__ : Optional[int] =num_channels
A__ : Optional[int] =num_queries
A__ : Union[str, Any] =d_model
A__ : Optional[int] =encoder_ffn_dim
A__ : Optional[Any] =encoder_layers
A__ : int =encoder_attention_heads
A__ : Optional[Any] =decoder_ffn_dim
A__ : Tuple =decoder_layers
A__ : Optional[Any] =decoder_attention_heads
A__ : Tuple =dropout
A__ : int =attention_dropout
A__ : Dict =activation_dropout
A__ : Union[str, Any] =activation_function
A__ : List[str] =init_std
A__ : str =init_xavier_std
A__ : int =encoder_layerdrop
A__ : List[Any] =decoder_layerdrop
A__ : Tuple =encoder_layers
A__ : Tuple =auxiliary_loss
A__ : List[Any] =position_embedding_type
A__ : int =backbone
A__ : Optional[int] =use_pretrained_backbone
A__ : str =dilation
# Hungarian matcher
A__ : Any =class_cost
A__ : str =bbox_cost
A__ : str =giou_cost
# Loss coefficients
A__ : Union[str, Any] =mask_loss_coefficient
A__ : int =dice_loss_coefficient
A__ : Union[str, Any] =cls_loss_coefficient
A__ : List[str] =bbox_loss_coefficient
A__ : str =giou_loss_coefficient
A__ : Optional[Any] =focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return self.d_model
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
A__ : int =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
A__ : str =self.backbone_config.to_dict()
A__ : int =self.__class__.model_type
return output
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.11' )
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return 12
| 687 | 0 |
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def __lowerCamelCase ( __snake_case : str = "laptop" ) -> DataFrame:
"""simple docstring"""
A__ : str =f"https://www.amazon.in/laptop/s?k={product}"
A__ : Dict ={
"""User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""",
"""Accept-Language""": """en-US, en;q=0.5""",
}
A__ : List[str] =BeautifulSoup(requests.get(__snake_case, headers=__snake_case ).text )
# Initialize a Pandas dataframe with the column titles
A__ : Union[str, Any] =DataFrame(
columns=[
"""Product Title""",
"""Product Link""",
"""Current Price of the product""",
"""Product Rating""",
"""MRP of the product""",
"""Discount""",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"""div""", attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""}, ), soup.find_all("""div""", attrs={"""class""": """a-row a-size-base a-color-base"""} ), ):
try:
A__ : Tuple =item.ha.text
A__ : Optional[Any] ="""https://www.amazon.in/""" + item.ha.a["""href"""]
A__ : Any =item.find("""span""", attrs={"""class""": """a-offscreen"""} ).text
try:
A__ : Tuple =item.find("""span""", attrs={"""class""": """a-icon-alt"""} ).text
except AttributeError:
A__ : Optional[Any] ="""Not available"""
try:
A__ : Tuple =(
"""₹"""
+ item.find(
"""span""", attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1]
)
except AttributeError:
A__ : Union[str, Any] =""""""
try:
A__ : Optional[int] =float(
(
(
float(product_mrp.strip("""₹""" ).replace(""",""", """""" ) )
- float(product_price.strip("""₹""" ).replace(""",""", """""" ) )
)
/ float(product_mrp.strip("""₹""" ).replace(""",""", """""" ) )
)
* 100 )
except ValueError:
A__ : Optional[int] =float("""nan""" )
except AttributeError:
pass
A__ : List[str] =[
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
A__ : Any =""" """
A__ : Optional[int] =""" """
data_frame.index += 1
return data_frame
if __name__ == "__main__":
__snake_case : Tuple = 'headphones'
get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
| 704 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Union[str, Any] = logging.get_logger(__name__)
__snake_case : Optional[int] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
__snake_case = 'bit'
__snake_case = ['preactivation', 'bottleneck']
__snake_case = ['SAME', 'VALID']
def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A__ : List[Any] =global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
A__ : List[Any] =num_channels
A__ : Tuple =embedding_size
A__ : Union[str, Any] =hidden_sizes
A__ : List[str] =depths
A__ : Optional[Any] =layer_type
A__ : int =hidden_act
A__ : int =global_padding
A__ : int =num_groups
A__ : str =drop_path_rate
A__ : str =embedding_dynamic_padding
A__ : Dict =output_stride
A__ : Optional[int] =width_factor
A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
| 687 | 0 |
import doctest
from collections import deque
import numpy as np
class lowerCamelCase :
'''simple docstring'''
def __init__( self : List[Any] ) -> None:
'''simple docstring'''
A__ : Optional[int] =[2, 1, 2, -1]
A__ : Dict =[1, 2, 3, 4]
def lowercase__ ( self : List[str] ) -> list[float]:
'''simple docstring'''
A__ : Dict =len(self.first_signal )
A__ : Optional[int] =len(self.second_signal )
A__ : int =max(lowerCAmelCase_ , lowerCAmelCase_ )
# create a zero matrix of max_length x max_length
A__ : List[Any] =[[0] * max_length for i in range(lowerCAmelCase_ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase_ ):
A__ : Dict =deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase_ )
for j, item in enumerate(lowerCAmelCase_ ):
matrix[i][j] += item
# multiply the matrix with the first signal
A__ : int =np.matmul(np.transpose(lowerCAmelCase_ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase_ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 705 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__snake_case : List[str] = 5_0003
__snake_case : Dict = 5_0002
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = PLBartTokenizer
__snake_case = None
__snake_case = False
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )]
self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] )
A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ )
A__ : Dict =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Tuple =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )]
self.assertListEqual(
lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] )
A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'uclanlp/plbart-python-en_XX'
__snake_case = [
'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])',
'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])',
]
__snake_case = [
'Returns the maximum value of a b c.',
'Sums the values of a b c.',
]
__snake_case = [
134,
5452,
3_3460,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
988,
20,
3_3456,
19,
3_3456,
771,
39,
4258,
889,
3318,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : Optional[int] ) -> str:
'''simple docstring'''
A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" )
A__ : Optional[Any] =1
return cls
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
def lowercase__ ( self : int ) -> Optional[int]:
'''simple docstring'''
self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids )
A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase_ )
A__ : str =10
A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase_ )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
A__ : Tuple =tempfile.mkdtemp()
A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ )
@require_torch
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" )
A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
A__ : List[Any] =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" )
A__ : Optional[int] =self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" )
A__ : Optional[Any] =targets["""input_ids"""]
A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : Any =self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[1_50, 2_42, 2, 5_00_03]],
"""attention_mask""": [[1, 1, 1, 1]],
# java
"""forced_bos_token_id""": 5_00_01,
} , )
| 687 | 0 |
'''simple docstring'''
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
__snake_case : int = ''
if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'):
class lowerCamelCase ( tr.AbstractTransform ):
'''simple docstring'''
def __init__( self : List[str] , lowerCAmelCase_ : str = " " ) -> int:
'''simple docstring'''
A__ : Dict =sentence_delimiter
def lowercase__ ( self : Dict , lowerCAmelCase_ : str ) -> List[str]:
'''simple docstring'''
return list(lowerCAmelCase_ )
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : List[str] ) -> Optional[Any]:
'''simple docstring'''
A__ : Dict =[]
for sent_idx, sentence in enumerate(lowerCAmelCase_ ):
chars.extend(self.process_string(lowerCAmelCase_ ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase_ ) - 1:
chars.append(self.sentence_delimiter )
return chars
__snake_case : List[Any] = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
__snake_case : Optional[int] = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
__snake_case : str = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
__snake_case : Union[str, Any] = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n'
__snake_case : str = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/Word_error_rate""",
"""https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""",
] , )
def lowercase__ ( self : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False ) -> Optional[Any]:
'''simple docstring'''
if concatenate_texts:
return jiwer.compute_measures(
lowerCAmelCase_ , lowerCAmelCase_ , truth_transform=lowerCAmelCase_ , hypothesis_transform=lowerCAmelCase_ , )["wer"]
A__ : List[Any] =0
A__ : Any =0
for prediction, reference in zip(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Optional[Any] =jiwer.compute_measures(
lowerCAmelCase_ , lowerCAmelCase_ , truth_transform=lowerCAmelCase_ , hypothesis_transform=lowerCAmelCase_ , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 706 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
__snake_case : str = False
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int ="""A painting of a squirrel eating a burger """
A__ : Tuple =torch.manual_seed(0 )
A__ : int =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase_ )
A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int =generator.manual_seed(0 )
A__ : Tuple =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict ="""A painting of a squirrel eating a burger """
A__ : Optional[int] =torch.manual_seed(0 )
A__ : List[str] =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 707 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 42
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
A__ : Optional[Any] =Encoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , )
A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ )
A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
# pass init params to Decoder
A__ : Optional[Any] =Decoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , )
@apply_forward_hook
def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput:
'''simple docstring'''
A__ : Dict =self.encoder(lowerCAmelCase_ )
A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowerCAmelCase_ )
@apply_forward_hook
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
# also go through quantization layer
if not force_not_quantize:
A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ )
else:
A__ : List[str] =h
A__ : Dict =self.post_quant_conv(lowerCAmelCase_ )
A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
A__ : Optional[int] =sample
A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents
A__ : Tuple =self.decode(lowerCAmelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import MutableSequence
class lowerCamelCase :
def __init__( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : MutableSequence[float] ) -> None:
'''simple docstring'''
if len(lowerCAmelCase_ ) != degree + 1:
raise ValueError(
"""The number of coefficients should be equal to the degree + 1.""" )
A__ : list[float] =list(lowerCAmelCase_ )
A__ : Any =degree
def __add__( self : List[str] , lowerCAmelCase_ : Polynomial ) -> Polynomial:
'''simple docstring'''
if self.degree > polynomial_a.degree:
A__ : Optional[Any] =self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , lowerCAmelCase_ )
else:
A__ : str =polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , lowerCAmelCase_ )
def __sub__( self : List[Any] , lowerCAmelCase_ : Polynomial ) -> Polynomial:
'''simple docstring'''
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : Optional[Any] ) -> Polynomial:
'''simple docstring'''
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : Dict , lowerCAmelCase_ : Polynomial ) -> Polynomial:
'''simple docstring'''
A__ : list[float] =[0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , lowerCAmelCase_ )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : int | float ) -> int | float:
'''simple docstring'''
A__ : int | float =0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : Any ) -> str:
'''simple docstring'''
A__ : Dict =""""""
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCAmelCase_ )
return polynomial
def __repr__( self : Optional[Any] ) -> str:
'''simple docstring'''
return self.__str__()
def lowercase__ ( self : List[str] ) -> Polynomial:
'''simple docstring'''
A__ : list[float] =[0] * self.degree
for i in range(self.degree ):
A__ : str =self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : int | float = 0 ) -> Polynomial:
'''simple docstring'''
A__ : list[float] =[0] * (self.degree + 2)
A__ : Any =constant
for i in range(self.degree + 1 ):
A__ : List[str] =self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , lowerCAmelCase_ )
def __eq__( self : Union[str, Any] , lowerCAmelCase_ : object ) -> bool:
'''simple docstring'''
if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : str , lowerCAmelCase_ : object ) -> bool:
'''simple docstring'''
return not self.__eq__(lowerCAmelCase_ )
| 708 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : Optional[int] = logging.get_logger(__name__)
__snake_case : Tuple = {
'vocab_file': 'vocab.txt',
'merges_file': 'bpe.codes',
}
__snake_case : str = {
'vocab_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt',
},
'merges_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes',
},
}
__snake_case : List[Any] = {
'vinai/phobert-base': 256,
'vinai/phobert-large': 256,
}
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : str =char
A__ : List[Any] =set(__snake_case )
return pairs
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict:
'''simple docstring'''
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : int =vocab_file
A__ : Any =merges_file
A__ : Union[str, Any] ={}
A__ : Optional[int] =0
A__ : List[Any] =1
A__ : Tuple =2
A__ : Dict =3
self.add_from_file(lowerCAmelCase_ )
A__ : List[str] ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
A__ : str =merges_handle.read().split("""\n""" )[:-1]
A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges]
A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
A__ : Dict ={}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ : Dict =[self.cls_token_id]
A__ : Union[str, Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : int =tuple(lowerCAmelCase_ )
A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Tuple =get_pairs(lowerCAmelCase_ )
if not pairs:
return token
while True:
A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ , A__ : Tuple =bigram
A__ : Optional[int] =[]
A__ : Tuple =0
while i < len(lowerCAmelCase_ ):
try:
A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ : Union[str, Any] =j
if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Dict =tuple(lowerCAmelCase_ )
A__ : Dict =new_word
if len(lowerCAmelCase_ ) == 1:
break
else:
A__ : str =get_pairs(lowerCAmelCase_ )
A__ : Dict ="""@@ """.join(lowerCAmelCase_ )
A__ : Tuple =word[:-4]
A__ : Any =word
return word
def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
A__ : int =[]
A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip()
return out_string
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Optional[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Tuple =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.merges_file , lowerCAmelCase_ )
return out_vocab_file, out_merge_file
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
A__ : Union[str, Any] =f.readlines()
for lineTmp in lines:
A__ : List[Any] =lineTmp.strip()
A__ : Dict =line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
A__ : Tuple =line[:idx]
A__ : Tuple =len(self.encoder )
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> str | Literal[False]:
"""simple docstring"""
A__ : Any =list(__snake_case )
A__ : Dict =list(__snake_case )
A__ : List[str] =0
for i in range(len(__snake_case ) ):
if lista[i] != lista[i]:
count += 1
A__ : List[str] ="""_"""
if count > 1:
return False
else:
return "".join(__snake_case )
def __lowerCamelCase ( __snake_case : list[str] ) -> list[str]:
"""simple docstring"""
A__ : str =[]
while True:
A__ : Dict =["""$"""] * len(__snake_case )
A__ : List[str] =[]
for i in range(len(__snake_case ) ):
for j in range(i + 1, len(__snake_case ) ):
A__ : List[str] =compare_string(binary[i], binary[j] )
if k is False:
A__ : str ="""*"""
A__ : Union[str, Any] ="""*"""
temp.append("""X""" )
for i in range(len(__snake_case ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(__snake_case ) == 0:
return pi
A__ : Union[str, Any] =list(set(__snake_case ) )
def __lowerCamelCase ( __snake_case : int, __snake_case : Sequence[float] ) -> list[str]:
"""simple docstring"""
A__ : List[Any] =[]
for minterm in minterms:
A__ : Optional[Any] =""""""
for _ in range(__snake_case ):
A__ : str =str(minterm % 2 ) + string
minterm //= 2
temp.append(__snake_case )
return temp
def __lowerCamelCase ( __snake_case : str, __snake_case : str, __snake_case : int ) -> bool:
"""simple docstring"""
A__ : Optional[int] =list(__snake_case )
A__ : Union[str, Any] =list(__snake_case )
A__ : Optional[int] =0
for i in range(len(__snake_case ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __lowerCamelCase ( __snake_case : list[list[int]], __snake_case : list[str] ) -> list[str]:
"""simple docstring"""
A__ : List[Any] =[]
A__ : Any =[0] * len(__snake_case )
for i in range(len(chart[0] ) ):
A__ : Union[str, Any] =0
A__ : str =-1
for j in range(len(__snake_case ) ):
if chart[j][i] == 1:
count += 1
A__ : int =j
if count == 1:
A__ : Tuple =1
for i in range(len(__snake_case ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(__snake_case ) ):
A__ : Union[str, Any] =0
temp.append(prime_implicants[i] )
while True:
A__ : Optional[int] =0
A__ : List[Any] =-1
A__ : Dict =0
for i in range(len(__snake_case ) ):
A__ : Optional[int] =chart[i].count(1 )
if count_n > max_n:
A__ : Tuple =count_n
A__ : Dict =i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(__snake_case ) ):
A__ : List[str] =0
def __lowerCamelCase ( __snake_case : list[str], __snake_case : list[str] ) -> list[list[int]]:
"""simple docstring"""
A__ : Any =[[0 for x in range(len(__snake_case ) )] for x in range(len(__snake_case ) )]
for i in range(len(__snake_case ) ):
A__ : Optional[int] =prime_implicants[i].count("""_""" )
for j in range(len(__snake_case ) ):
if is_for_table(prime_implicants[i], binary[j], __snake_case ):
A__ : List[Any] =1
return chart
def __lowerCamelCase ( ) -> None:
"""simple docstring"""
A__ : Optional[Any] =int(input("""Enter the no. of variables\n""" ) )
A__ : Optional[int] =[
float(__snake_case )
for x in input(
"""Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split()
]
A__ : Dict =decimal_to_binary(__snake_case, __snake_case )
A__ : Optional[int] =check(__snake_case )
print("""Prime Implicants are:""" )
print(__snake_case )
A__ : Dict =prime_implicant_chart(__snake_case, __snake_case )
A__ : Union[str, Any] =selection(__snake_case, __snake_case )
print("""Essential Prime Implicants are:""" )
print(__snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 709 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =nn.functional.normalize(__snake_case )
A__ : Optional[Any] =nn.functional.normalize(__snake_case )
return torch.mm(__snake_case, normalized_text_embeds.t() )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = CLIPConfig
__snake_case = ['CLIPEncoderLayer']
def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase_ )
A__ : str =CLIPVisionModel(config.vision_config )
A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ )
A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ )
A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any:
'''simple docstring'''
A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : Any =self.visual_projection(lowerCAmelCase_ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy()
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy()
A__ : List[str] =[]
A__ : Optional[int] =image_embeds.shape[0]
for i in range(lowerCAmelCase_ ):
A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : List[Any] =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A__ : Optional[Any] =special_cos_dist[i][concept_idx]
A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
A__ : Dict =0.01
for concept_idx in range(len(cos_dist[0] ) ):
A__ : Optional[int] =cos_dist[i][concept_idx]
A__ : List[str] =self.concept_embeds_weights[concept_idx].item()
A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(lowerCAmelCase_ )
result.append(lowerCAmelCase_ )
A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : List[Any] =self.visual_projection(lowerCAmelCase_ )
A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : Dict =0.0
A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 )
A__ : Tuple =special_care * 0.01
A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 687 | 0 |
'''simple docstring'''
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = ComputeEnvironment.AMAZON_SAGEMAKER
__snake_case = True
__snake_case = 'ml.p3.2xlarge'
__snake_case = 'accelerate_sagemaker_execution_role'
__snake_case = 'hf-sm'
__snake_case = 'us-east-1'
__snake_case = 1
__snake_case = 'accelerate-sagemaker-1'
__snake_case = '1.6'
__snake_case = '4.4'
__snake_case = 'train.py'
__snake_case = [
'--model_name_or_path',
'bert',
'--do_train',
'False',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
__snake_case = [
'--model_name_or_path',
'bert',
'--do_train',
'--do_test',
'False',
'--do_predict',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[Any] =_convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args["""model_name_or_path"""] , lowerCAmelCase_ )
assert isinstance(converted_args["""do_train"""] , lowerCAmelCase_ )
assert isinstance(converted_args["""epochs"""] , lowerCAmelCase_ )
assert isinstance(converted_args["""learning_rate"""] , lowerCAmelCase_ )
assert isinstance(converted_args["""max_steps"""] , lowerCAmelCase_ )
with pytest.raises(lowerCAmelCase_ ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 710 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =[]
for part_id in partition_order:
A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect()
for row_idx, row in enumerate(__snake_case ):
expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : str =spark.range(100 ).repartition(1 )
A__ : List[str] =Spark(__snake_case )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Tuple =spark.range(10 ).repartition(2 )
A__ : List[str] =[1, 0]
A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions.
A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(10 ).repartition(1 )
A__ : List[str] =SparkExamplesIterable(__snake_case )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__snake_case ):
assert row_id == f"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
A__ : Tuple =lambda __snake_case : x.reverse()
A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] )
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Any =spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : List[str] =spark.range(100 ).repartition(1 )
A__ : List[Any] =Spark(__snake_case )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowerCamelCase :
'''simple docstring'''
__snake_case = LEDConfig
__snake_case = {}
__snake_case = 'gelu'
def __init__( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Union[str, Any]=99 , lowerCAmelCase_ : Optional[int]=32 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Dict=37 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=20 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[int]=4 , ) -> Tuple:
'''simple docstring'''
A__ : Optional[int] =parent
A__ : int =batch_size
A__ : Any =seq_length
A__ : Tuple =is_training
A__ : List[Any] =use_labels
A__ : List[str] =vocab_size
A__ : List[Any] =hidden_size
A__ : List[Any] =num_hidden_layers
A__ : List[Any] =num_attention_heads
A__ : Dict =intermediate_size
A__ : List[str] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Union[str, Any] =max_position_embeddings
A__ : str =eos_token_id
A__ : Optional[int] =pad_token_id
A__ : List[str] =bos_token_id
A__ : List[str] =attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
A__ : Dict =self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
A__ : Any =(
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
A__ : Dict =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
A__ : Optional[int] =tf.concat([input_ids, eos_tensor] , axis=1 )
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : str =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
A__ : str =prepare_led_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Union[str, Any] =tf.concat(
[tf.zeros_like(lowerCAmelCase_ )[:, :-1], tf.ones_like(lowerCAmelCase_ )[:, -1:]] , axis=-1 , )
A__ : Dict =global_attention_mask
return config, inputs_dict
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ) -> Optional[Any]:
'''simple docstring'''
A__ : Optional[Any] =TFLEDModel(config=lowerCAmelCase_ ).get_decoder()
A__ : List[str] =inputs_dict["""input_ids"""]
A__ : List[str] =input_ids[:1, :]
A__ : int =inputs_dict["""attention_mask"""][:1, :]
A__ : Tuple =1
# first forward pass
A__ : Dict =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ )
A__ : Union[str, Any] =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : Optional[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Tuple =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
A__ : List[str] =tf.concat([input_ids, next_tokens] , axis=-1 )
A__ : Optional[Any] =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0]
A__ : Tuple =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
A__ : str =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
A__ : Any =output_from_no_past[:, -3:, random_slice_idx]
A__ : Union[str, Any] =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 )
def __lowerCamelCase ( __snake_case : Optional[int], __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : int=None, __snake_case : Optional[Any]=None, __snake_case : List[Any]=None, __snake_case : Dict=None, ) -> int:
"""simple docstring"""
if attention_mask is None:
A__ : Optional[int] =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
A__ : str =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
A__ : Optional[Any] =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
__snake_case = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'conversational': TFLEDForConditionalGeneration,
'feature-extraction': TFLEDModel,
'summarization': TFLEDForConditionalGeneration,
'text2text-generation': TFLEDForConditionalGeneration,
'translation': TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
__snake_case = False
def lowercase__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
A__ : Any =TFLEDModelTester(self )
A__ : Any =ConfigTester(self , config_class=lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
A__ : List[Any] =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[int] =tf.zeros_like(inputs_dict["""attention_mask"""] )
A__ : int =2
A__ : str =tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , )
A__ : str =True
A__ : Union[str, Any] =self.model_tester.seq_length
A__ : Any =self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowerCAmelCase_ : Any ):
A__ : List[str] =outputs.decoder_attentions
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowerCAmelCase_ : List[Any] ):
A__ : int =[t.numpy() for t in outputs.encoder_attentions]
A__ : List[str] =[t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
A__ : Optional[int] =True
A__ : Union[str, Any] =False
A__ : Any =False
A__ : Union[str, Any] =model_class(lowerCAmelCase_ )
A__ : Tuple =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
A__ : str =len(lowerCAmelCase_ )
self.assertEqual(config.output_hidden_states , lowerCAmelCase_ )
check_encoder_attentions_output(lowerCAmelCase_ )
if self.is_encoder_decoder:
A__ : Any =model_class(lowerCAmelCase_ )
A__ : Optional[int] =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
self.assertEqual(config.output_hidden_states , lowerCAmelCase_ )
check_decoder_attentions_output(lowerCAmelCase_ )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A__ : Optional[Any] =True
A__ : int =model_class(lowerCAmelCase_ )
A__ : Optional[Any] =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
self.assertEqual(config.output_hidden_states , lowerCAmelCase_ )
check_encoder_attentions_output(lowerCAmelCase_ )
# Check attention is always last and order is fine
A__ : Optional[int] =True
A__ : List[Any] =True
A__ : Optional[Any] =model_class(lowerCAmelCase_ )
A__ : str =model(self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase_ ) )
self.assertEqual(model.config.output_hidden_states , lowerCAmelCase_ )
check_encoder_attentions_output(lowerCAmelCase_ )
@unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" )
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
pass
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
pass
def __lowerCamelCase ( __snake_case : List[str] ) -> str:
"""simple docstring"""
return tf.constant(__snake_case, dtype=tf.intaa )
__snake_case : Optional[int] = 1E-4
@slow
@require_tf
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
A__ : int =TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led
# change to intended input here
A__ : Optional[int] =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
A__ : int =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
A__ : str =prepare_led_inputs_dict(model.config , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : str =model(**lowerCAmelCase_ )[0]
A__ : Tuple =(1, 10_24, 7_68)
self.assertEqual(output.shape , lowerCAmelCase_ )
# change to expected output here
A__ : List[Any] =tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-3 )
def lowercase__ ( self : str ) -> Tuple:
'''simple docstring'''
A__ : Dict =TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" )
# change to intended input here
A__ : str =_long_tensor([5_12 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
A__ : Optional[int] =_long_tensor([1_28 * [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69]] )
A__ : Optional[Any] =prepare_led_inputs_dict(model.config , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Any =model(**lowerCAmelCase_ )[0]
A__ : List[Any] =(1, 10_24, model.config.vocab_size)
self.assertEqual(output.shape , lowerCAmelCase_ )
# change to expected output here
A__ : Optional[Any] =tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-3 , rtol=1e-3 )
| 711 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
from collections.abc import Sequence
from queue import Queue
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Optional[Any]=None ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =start
A__ : Optional[Any] =end
A__ : Optional[Any] =val
A__ : List[str] =(start + end) // 2
A__ : Tuple =left
A__ : Union[str, Any] =right
def __repr__( self : Dict ) -> int:
'''simple docstring'''
return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase_ : Sequence , lowerCAmelCase_ : Tuple ) -> Any:
'''simple docstring'''
A__ : List[str] =collection
A__ : Tuple =function
if self.collection:
A__ : Union[str, Any] =self._build_tree(0 , len(lowerCAmelCase_ ) - 1 )
def lowercase__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
self._update_tree(self.root , lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ) -> Optional[int]:
'''simple docstring'''
return self._query_range(self.root , lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] ) -> List[str]:
'''simple docstring'''
if start == end:
return SegmentTreeNode(lowerCAmelCase_ , lowerCAmelCase_ , self.collection[start] )
A__ : Optional[int] =(start + end) // 2
A__ : Dict =self._build_tree(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Tuple =self._build_tree(mid + 1 , lowerCAmelCase_ )
return SegmentTreeNode(lowerCAmelCase_ , lowerCAmelCase_ , self.fn(left.val , right.val ) , lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if node.start == i and node.end == i:
A__ : Any =val
return
if i <= node.mid:
self._update_tree(node.left , lowerCAmelCase_ , lowerCAmelCase_ )
else:
self._update_tree(node.right , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Dict =self.fn(node.left.val , node.right.val )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , lowerCAmelCase_ , lowerCAmelCase_ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , lowerCAmelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , lowerCAmelCase_ ) , )
else:
# range in right child tree
return self._query_range(node.right , lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> Any:
'''simple docstring'''
if self.root is not None:
A__ : int =Queue()
queue.put(self.root )
while not queue.empty():
A__ : str =queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('*' * 50)
__snake_case : Optional[int] = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 712 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __lowerCamelCase ( __snake_case : Dict ) -> List[str]:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str:
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] =module
A__ : Union[str, Any] =nn.Sequential(
nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , )
A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'bigscience/bloom-1b7'
# Constant values
__snake_case = 2.109659552692574
__snake_case = 'Hello my name is'
__snake_case = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
__snake_case = 10
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
# Models and tokenizer
A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Models and tokenizer
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
A__ : str =self.model_abit.config
self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) )
A__ : Union[str, Any] =config.to_dict()
A__ : Any =config.to_diff_dict()
A__ : Optional[Any] =config.to_json_string()
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
A__ : int =self.model_fpaa.get_memory_footprint()
A__ : Optional[Any] =self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
A__ : Tuple =get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCAmelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
A__ : Tuple =True
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" )
A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
with self.assertRaises(lowerCAmelCase_ ):
A__ : Dict =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =self.model_fpaa.to(torch.floataa )
A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.half()
# Check this does not throw an error
A__ : int =self.model_fpaa.float()
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowercase__ ( cls : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple ="""t5-small"""
A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name )
A__ : Optional[int] ="""Translate in German: Hello, my dog is cute"""
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
from transformers import TaForConditionalGeneration
A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules
A__ : Optional[Any] =None
# test with `t5-small`
A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Optional[Any] =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : List[str] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ )
A__ : Dict =modules
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Any =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Dict =model.generate(**lowerCAmelCase_ )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
super().setUp()
# model_name
A__ : Any ="""bigscience/bloom-560m"""
A__ : List[Any] ="""t5-small"""
# Different types of model
A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Sequence classification model
A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# CausalLM model
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Seq2seq model
A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
A__ : Dict =pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
A__ : Optional[int] =self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : int =AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] ="""facebook/opt-350m"""
super().setUp()
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
A__ : int =False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
A__ : Dict =param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCAmelCase_ ) ):
A__ : int =LoRALayer(module.q_proj , rank=16 )
A__ : Any =LoRALayer(module.k_proj , rank=16 )
A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
A__ : Any =model.forward(**lowerCAmelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowerCAmelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'gpt2-xl'
__snake_case = 3.3191854854152187
| 687 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : Tuple = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Tuple ) -> Any:
"""simple docstring"""
A__ : int =DPTConfig(embedding_type="""hybrid""" )
if "large" in checkpoint_url:
A__ : Optional[int] =1_024
A__ : Union[str, Any] =4_096
A__ : int =24
A__ : Dict =16
A__ : List[Any] =[5, 11, 17, 23]
A__ : List[str] =[256, 512, 1_024, 1_024]
A__ : Optional[Any] =(1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
A__ : List[str] =768
A__ : Optional[Any] =[1, 1, 1, 0.5]
A__ : Optional[int] =[256, 512, 768, 768]
A__ : Dict =150
A__ : Union[str, Any] =16
A__ : Any =(1, 384, 384)
A__ : Optional[int] =False
A__ : Optional[Any] ="""project"""
if "ade" in checkpoint_url:
A__ : Union[str, Any] =True
A__ : Optional[Any] =768
A__ : Any =[1, 1, 1, 0.5]
A__ : int =150
A__ : Any =16
A__ : Optional[Any] ="""huggingface/label-files"""
A__ : Optional[int] ="""ade20k-id2label.json"""
A__ : Any =json.load(open(cached_download(hf_hub_url(__snake_case, __snake_case, repo_type="""dataset""" ) ), """r""" ) )
A__ : int ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : Any =idalabel
A__ : Union[str, Any] ={v: k for k, v in idalabel.items()}
A__ : List[Any] =[1, 150, 480, 480]
return config, expected_shape
def __lowerCamelCase ( __snake_case : List[str] ) -> Any:
"""simple docstring"""
A__ : Any =["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(__snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Any ) -> List[str]:
"""simple docstring"""
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : Union[str, Any] =name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Union[str, Any] =name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : Any =name.replace("""patch_embed""", """""" )
if "pos_embed" in name:
A__ : Union[str, Any] =name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Optional[Any] =name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : Union[str, Any] =name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] =name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : Tuple =name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : Optional[Any] =name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name and "backbone" not in name:
A__ : Any =name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name and "backbone" not in name:
A__ : Dict =name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : List[str] =name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : Dict =name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] =name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[Any] =name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Dict =name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : int =name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Any =int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str =name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4 )}" )
if "out_conv" in name:
A__ : Optional[int] =name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : Optional[Any] =name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : str =name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : int =name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : Optional[Any] =name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : int =name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Union[str, Any] =name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : str =name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : List[Any] =name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : List[Any] =name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : str =name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Optional[Any] =name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] =name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : List[Any] =name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Tuple =name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : str =name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : str =name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : List[Any] =name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Union[str, Any] =name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Any =name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : Any =name.replace("""auxlayer""", """auxiliary_head.head""" )
if "backbone" in name:
A__ : Union[str, Any] =name.replace("""backbone""", """backbone.bit.encoder""" )
if ".." in name:
A__ : str =name.replace("""..""", """.""" )
if "stem.conv" in name:
A__ : str =name.replace("""stem.conv""", """bit.embedder.convolution""" )
if "blocks" in name:
A__ : Optional[Any] =name.replace("""blocks""", """layers""" )
if "convolution" in name and "backbone" in name:
A__ : Union[str, Any] =name.replace("""convolution""", """conv""" )
if "layer" in name and "backbone" in name:
A__ : List[str] =name.replace("""layer""", """layers""" )
if "backbone.bit.encoder.bit" in name:
A__ : Optional[int] =name.replace("""backbone.bit.encoder.bit""", """backbone.bit""" )
if "embedder.conv" in name:
A__ : List[Any] =name.replace("""embedder.conv""", """embedder.convolution""" )
if "backbone.bit.encoder.stem.norm" in name:
A__ : str =name.replace("""backbone.bit.encoder.stem.norm""", """backbone.bit.embedder.norm""" )
return name
def __lowerCamelCase ( __snake_case : Any, __snake_case : List[str] ) -> Any:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : List[Any] =state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" )
A__ : Any =state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : str =in_proj_weight[: config.hidden_size, :]
A__ : List[str] =in_proj_bias[: config.hidden_size]
A__ : List[str] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str =in_proj_weight[
-config.hidden_size :, :
]
A__ : List[str] =in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
A__ : Optional[int] ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Dict =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : Optional[Any], __snake_case : str, __snake_case : str, __snake_case : Any ) -> List[str]:
"""simple docstring"""
A__ : Any =get_dpt_config(__snake_case )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
A__ : Optional[Any] =torch.load(__snake_case, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(__snake_case )
# rename keys
for key in state_dict.copy().keys():
A__ : Optional[Any] =state_dict.pop(__snake_case )
A__ : List[str] =val
# read in qkv matrices
read_in_q_k_v(__snake_case, __snake_case )
# load HuggingFace model
A__ : Optional[int] =DPTForSemanticSegmentation(__snake_case ) if """ade""" in checkpoint_url else DPTForDepthEstimation(__snake_case )
model.load_state_dict(__snake_case )
model.eval()
# Check outputs on an image
A__ : Optional[Any] =480 if """ade""" in checkpoint_url else 384
A__ : Dict =DPTImageProcessor(size=__snake_case )
A__ : Union[str, Any] =prepare_img()
A__ : Union[str, Any] =image_processor(__snake_case, return_tensors="""pt""" )
# forward pass
A__ : Union[str, Any] =model(**__snake_case ).logits if """ade""" in checkpoint_url else model(**__snake_case ).predicted_depth
if show_prediction:
A__ : Tuple =(
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode="""bicubic""", align_corners=__snake_case, )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__snake_case )
if push_to_hub:
model.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" )
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
__snake_case : List[Any] = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 713 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__snake_case : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
__snake_case : List[Any] = logging.get_logger(__name__)
logging.set_verbosity_info()
def __lowerCamelCase ( __snake_case : str, __snake_case : str ) -> Dict:
"""simple docstring"""
if "xprophetnet" in prophetnet_checkpoint_path:
A__ : Dict =XLMProphetNetForConditionalGenerationOld.from_pretrained(__snake_case )
A__ : Tuple =XLMProphetNetForConditionalGeneration.from_pretrained(
__snake_case, output_loading_info=__snake_case )
else:
A__ : str =ProphetNetForConditionalGenerationOld.from_pretrained(__snake_case )
A__ : Dict =ProphetNetForConditionalGeneration.from_pretrained(
__snake_case, output_loading_info=__snake_case )
A__ : Dict =["""key_proj""", """value_proj""", """query_proj"""]
A__ : int ={
"""self_attn""": """ngram_self_attn""",
"""cross_attn""": """encoder_attn""",
"""cross_attn_layer_norm""": """encoder_attn_layer_norm""",
"""feed_forward_layer_norm""": """final_layer_norm""",
"""feed_forward""": """""",
"""intermediate""": """fc1""",
"""output""": """fc2""",
"""key_proj""": """k_proj""",
"""query_proj""": """q_proj""",
"""value_proj""": """v_proj""",
"""word_embeddings""": """embed_tokens""",
"""embeddings_layer_norm""": """emb_layer_norm""",
"""relative_pos_embeddings""": """relative_linear""",
"""ngram_embeddings""": """ngram_input_embed""",
"""position_embeddings""": """embed_positions""",
}
for key in loading_info["missing_keys"]:
A__ : List[str] =key.split(""".""" )
if attributes[0] == "lm_head":
A__ : int =prophet
A__ : Optional[Any] =prophet_old
else:
A__ : str =prophet.prophetnet
A__ : List[Any] =prophet_old.model
A__ : Any =False
for attribute in attributes:
if attribute in mapping:
A__ : int =mapping[attribute]
if not hasattr(__snake_case, __snake_case ) and len(__snake_case ) > 0:
A__ : str =attribute
elif hasattr(__snake_case, __snake_case ):
A__ : Optional[Any] =attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
A__ : Optional[int] =old_model.weight
logger.info(f"{attribute} is initialized." )
A__ : Dict =True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
A__ : Union[str, Any] =old_model.bias
logger.info(f"{attribute} is initialized" )
A__ : Tuple =True
break
elif attribute in special_keys and hasattr(__snake_case, """in_proj_weight""" ):
A__ : Optional[Any] =old_model.in_proj_weight.shape[0] // 3
A__ : Dict =getattr(__snake_case, __snake_case )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
A__ : List[str] =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
A__ : List[str] =nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
A__ : Tuple =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
A__ : Optional[Any] =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
A__ : Optional[Any] =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
A__ : Tuple =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
A__ : Dict =True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
A__ : Optional[Any] =nn.Parameter(old_model.embed_positions.weight[:512, :] )
A__ : int =True
break
if attribute.isdigit():
A__ : Any =model[int(__snake_case )]
A__ : Optional[int] =old_model[int(__snake_case )]
else:
A__ : int =getattr(__snake_case, __snake_case )
if old_attribute == "":
A__ : Tuple =old_model
else:
if not hasattr(__snake_case, __snake_case ):
raise ValueError(f"{old_model} does not have {old_attribute}" )
A__ : Dict =getattr(__snake_case, __snake_case )
if not is_key_init:
raise ValueError(f"{key} was not correctly initialized!" )
print(f"Saving model to {pytorch_dump_folder_path}" )
prophet.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__snake_case : Optional[int] = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 714 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple:
'''simple docstring'''
A__ : Tuple =parent
A__ : Any =batch_size
A__ : List[str] =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_lengths
A__ : int =use_token_type_ids
A__ : Union[str, Any] =use_labels
A__ : Optional[Any] =gelu_activation
A__ : List[Any] =sinusoidal_embeddings
A__ : List[Any] =causal
A__ : str =asm
A__ : Tuple =n_langs
A__ : Dict =vocab_size
A__ : Optional[Any] =n_special
A__ : Tuple =hidden_size
A__ : Dict =num_hidden_layers
A__ : int =num_attention_heads
A__ : Optional[Any] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Optional[int] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : Any =num_labels
A__ : str =num_choices
A__ : Optional[int] =summary_type
A__ : int =use_proj
A__ : Tuple =scope
A__ : Union[str, Any] =bos_token_id
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Tuple =None
if self.use_input_lengths:
A__ : Tuple =(
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ : Optional[Any] =None
if self.use_token_type_ids:
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ : Any =None
A__ : Tuple =None
A__ : Optional[Any] =None
if self.use_labels:
A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float()
A__ : str =ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Tuple =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
A__ : List[Any] =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Tuple =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
A__ : Optional[Any] =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
((A__) , ) : List[Any] =result_with_labels.to_tuple()
A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
((A__) , ) : Tuple =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : str =model(lowerCAmelCase_ )
A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
A__ : int =self.num_labels
A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =self.num_choices
A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Optional[int] =config_and_inputs
A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int:
'''simple docstring'''
A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
A__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Dict =XLMModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
A__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
A__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : Tuple =min_length + idx + 1
A__ : Tuple =min_length + idx + 1
A__ : Dict =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : str =min_length + idx + 1
A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCAmelCase_ )
A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
A__ : Optional[Any] =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class lowerCamelCase :
'''simple docstring'''
__snake_case = BlenderbotConfig
__snake_case = {}
__snake_case = 'gelu'
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str=13 , lowerCAmelCase_ : Dict=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : List[Any]=99 , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Optional[Any]=37 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Tuple=20 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : int=0 , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =parent
A__ : Optional[Any] =batch_size
A__ : str =seq_length
A__ : int =is_training
A__ : int =use_labels
A__ : str =vocab_size
A__ : List[Any] =hidden_size
A__ : str =num_hidden_layers
A__ : Any =num_attention_heads
A__ : Any =intermediate_size
A__ : Optional[int] =hidden_dropout_prob
A__ : List[Any] =attention_probs_dropout_prob
A__ : Tuple =max_position_embeddings
A__ : Tuple =eos_token_id
A__ : Optional[Any] =pad_token_id
A__ : List[Any] =bos_token_id
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
A__ : Tuple =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
A__ : List[Any] =tf.concat([input_ids, eos_tensor] , axis=1 )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : str =self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
A__ : Any =prepare_blenderbot_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
return config, inputs_dict
def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ) -> List[Any]:
'''simple docstring'''
A__ : Dict =TFBlenderbotModel(config=lowerCAmelCase_ ).get_decoder()
A__ : str =inputs_dict["""input_ids"""]
A__ : str =input_ids[:1, :]
A__ : Optional[Any] =inputs_dict["""attention_mask"""][:1, :]
A__ : Optional[Any] =inputs_dict["""head_mask"""]
A__ : Union[str, Any] =1
# first forward pass
A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ )
A__ : Dict =outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int =ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Tuple =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
A__ : str =tf.concat([input_ids, next_tokens] , axis=-1 )
A__ : Optional[int] =tf.concat([attention_mask, next_attn_mask] , axis=-1 )
A__ : int =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0]
A__ : List[str] =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
A__ : List[Any] =int(ids_tensor((1,) , output_from_past.shape[-1] ) )
A__ : Tuple =output_from_no_past[:, -3:, random_slice_idx]
A__ : List[str] =output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase_ , lowerCAmelCase_ , rtol=1e-3 )
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Union[str, Any], __snake_case : str, __snake_case : Optional[Any]=None, __snake_case : Dict=None, __snake_case : Optional[Any]=None, __snake_case : List[str]=None, __snake_case : Dict=None, ) -> str:
"""simple docstring"""
if attention_mask is None:
A__ : Tuple =tf.cast(tf.math.not_equal(__snake_case, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
A__ : Dict =tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
A__ : int =tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A__ : Optional[int] =tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCamelCase ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__snake_case = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__snake_case = (
{
'conversational': TFBlenderbotForConditionalGeneration,
'feature-extraction': TFBlenderbotModel,
'summarization': TFBlenderbotForConditionalGeneration,
'text2text-generation': TFBlenderbotForConditionalGeneration,
'translation': TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__snake_case = True
__snake_case = False
__snake_case = False
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =TFBlenderbotModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ )
@require_tokenizers
@require_tf
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = ['My friends are cool but they eat too many carbs.']
__snake_case = 'facebook/blenderbot-400M-distill'
@cached_property
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def lowercase__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
A__ : str =TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.tokenizer(self.src_text , return_tensors="""tf""" )
A__ : Optional[int] =self.model.generate(
model_inputs.input_ids , )
A__ : str =self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase_ )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 715 |
'''simple docstring'''
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def __lowerCamelCase ( __snake_case : int ) -> Optional[int]:
"""simple docstring"""
random.seed(__snake_case )
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# ^^ safe to call this function even if cuda is not available
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Optional[Any] =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : List[str] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : int =True
if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None:
A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Union[str, Any] =kwargs["""max_value"""]
if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Optional[Any] =kwargs["""min_value"""]
A__ : Any =list(lowerCAmelCase_ )
A__ : int =[p.clone().detach() for p in parameters]
if kwargs.get("""device""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
self.to(device=kwargs["""device"""] )
A__ : Optional[int] =None
A__ : Any =decay
A__ : List[Any] =min_decay
A__ : Optional[int] =update_after_step
A__ : List[str] =use_ema_warmup
A__ : str =inv_gamma
A__ : Union[str, Any] =power
A__ : str =0
A__ : str =None # set in `step()`
A__ : List[str] =model_cls
A__ : Optional[int] =model_config
@classmethod
def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel":
'''simple docstring'''
A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ )
A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config )
ema_model.load_state_dict(lowerCAmelCase_ )
return ema_model
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : Optional[int] =self.model_cls.from_config(self.model_config )
A__ : Optional[Any] =self.state_dict()
state_dict.pop("""shadow_params""" , lowerCAmelCase_ )
model.register_to_config(**lowerCAmelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float:
'''simple docstring'''
A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Union[str, Any] =(1 + step) / (10 + step)
A__ : str =min(lowerCAmelCase_ , self.decay )
# make sure decay is not smaller than min_decay
A__ : int =max(lowerCAmelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Any =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : Optional[int] =parameters.parameters()
A__ : Dict =list(lowerCAmelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : Any =self.get_decay(self.optimization_step )
A__ : Optional[int] =decay
A__ : List[str] =1 - decay
A__ : str =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : Optional[Any] =list(lowerCAmelCase_ )
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None:
'''simple docstring'''
A__ : str =[
p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ )
for p in self.shadow_params
]
def lowercase__ ( self : Optional[Any] ) -> dict:
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : List[str] =[param.detach().cpu().clone() for param in parameters]
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : List[str] =None
def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None:
'''simple docstring'''
A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ )
A__ : List[Any] =state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , lowerCAmelCase_ ):
raise ValueError("""Invalid min_decay""" )
A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , lowerCAmelCase_ ):
raise ValueError("""Invalid optimization_step""" )
A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , lowerCAmelCase_ ):
raise ValueError("""Invalid update_after_step""" )
A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Tuple =state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ )
if shadow_params is not None:
A__ : List[str] =shadow_params
if not isinstance(self.shadow_params , lowerCAmelCase_ ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 687 | 0 |
'''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
__snake_case : Optional[List[str]] = None
__snake_case : Optional[Any] = '<' if sys.byteorder == 'little' else '>'
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
__snake_case : Any = [
np.dtype('|b1'),
np.dtype('|u1'),
np.dtype('<u2'),
np.dtype('>u2'),
np.dtype('<i2'),
np.dtype('>i2'),
np.dtype('<u4'),
np.dtype('>u4'),
np.dtype('<i4'),
np.dtype('>i4'),
np.dtype('<f4'),
np.dtype('>f4'),
np.dtype('<f8'),
np.dtype('>f8'),
]
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = True
__snake_case = None
# Automatically constructed
__snake_case = 'PIL.Image.Image'
__snake_case = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
__snake_case = field(default='Image' , init=lowercase_ , repr=lowercase_ )
def __call__( self : List[str] ) -> List[str]:
'''simple docstring'''
return self.pa_type
def lowercase__ ( self : Dict , lowerCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict:
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Optional[Any] =np.array(lowerCAmelCase_ )
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return {"path": value, "bytes": None}
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return {"path": None, "bytes": value}
elif isinstance(lowerCAmelCase_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowerCAmelCase_ )
elif isinstance(lowerCAmelCase_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowerCAmelCase_ )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
def lowercase__ ( self : str , lowerCAmelCase_ : dict , lowerCAmelCase_ : List[Any]=None ) -> "PIL.Image.Image":
'''simple docstring'''
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
A__ : Tuple ={}
A__ : int =value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." )
else:
if is_local_path(lowerCAmelCase_ ):
A__ : List[str] =PIL.Image.open(lowerCAmelCase_ )
else:
A__ : Any =path.split("""::""" )[-1]
try:
A__ : Optional[Any] =string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["""repo_id"""]
A__ : Optional[Any] =token_per_repo_id.get(lowerCAmelCase_ )
except ValueError:
A__ : Optional[Any] =None
with xopen(lowerCAmelCase_ , """rb""" , use_auth_token=lowerCAmelCase_ ) as f:
A__ : Tuple =BytesIO(f.read() )
A__ : List[str] =PIL.Image.open(bytes_ )
else:
A__ : Optional[int] =PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def lowercase__ ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray:
'''simple docstring'''
if pa.types.is_string(storage.type ):
A__ : str =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() )
A__ : Optional[Any] =pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
A__ : Dict =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() )
A__ : Any =pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
A__ : Tuple =storage.field("""bytes""" )
else:
A__ : Optional[int] =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
A__ : Dict =storage.field("""path""" )
else:
A__ : List[str] =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() )
A__ : Tuple =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
A__ : Optional[Any] =pa.array(
[encode_np_array(np.array(lowerCAmelCase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
A__ : Tuple =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() )
A__ : List[Any] =pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase_ , self.pa_type )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : pa.StructArray ) -> pa.StructArray:
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase_ : Dict ):
with xopen(lowerCAmelCase_ , """rb""" ) as f:
A__ : Union[str, Any] =f.read()
return bytes_
A__ : List[Any] =pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
A__ : Dict =pa.array(
[os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
A__ : Dict =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase_ , self.pa_type )
def __lowerCamelCase ( ) -> List[str]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
A__ : Any =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCamelCase ( __snake_case : "PIL.Image.Image" ) -> bytes:
"""simple docstring"""
A__ : Dict =BytesIO()
if image.format in list_image_compression_formats():
A__ : Tuple =image.format
else:
A__ : Optional[int] ="""PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(__snake_case, format=__snake_case )
return buffer.getvalue()
def __lowerCamelCase ( __snake_case : "PIL.Image.Image" ) -> dict:
"""simple docstring"""
if hasattr(__snake_case, """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__snake_case )}
def __lowerCamelCase ( __snake_case : np.ndarray ) -> dict:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
A__ : Dict =array.dtype
A__ : Dict =dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
A__ : Optional[int] =dtype.kind
A__ : List[Any] =dtype.itemsize
A__ : Any =None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
A__ : str =np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." )
if dtype is not dest_dtype:
warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
A__ : Union[str, Any] =dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
A__ : int =dtype_byteorder + dtype_kind + str(__snake_case )
A__ : Dict =np.dtype(__snake_case )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" )
A__ : int =PIL.Image.fromarray(array.astype(__snake_case ) )
return {"path": None, "bytes": image_to_bytes(__snake_case )}
def __lowerCamelCase ( __snake_case : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
A__ : List[Any] =first_non_null_value(__snake_case )
if isinstance(__snake_case, __snake_case ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__snake_case, np.ndarray ):
A__ : int =no_op_if_value_is_null(__snake_case )
return [obj_to_image_dict_func(__snake_case ) for obj in objs]
elif isinstance(__snake_case, PIL.Image.Image ):
A__ : Any =no_op_if_value_is_null(__snake_case )
return [obj_to_image_dict_func(__snake_case ) for obj in objs]
else:
return objs
else:
return objs
| 716 |
'''simple docstring'''
from __future__ import annotations
import requests
__snake_case : Union[str, Any] = set(
'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split()
)
def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict:
"""simple docstring"""
A__ : Union[str, Any] =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}"
raise ValueError(__snake_case )
A__ : Tuple =requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, )
if response.status_code == 429:
raise requests.HTTPError
A__ : Tuple =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
A__ : Tuple ={}
for id_ in range(__snake_case ):
A__ : List[Any] ={
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
| 687 | 0 |
def __lowerCamelCase ( __snake_case : int = 100 ) -> int:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : List[Any] =0
A__ : Any =n + 1 # maximum limit
for a in range(2, __snake_case ):
for b in range(2, __snake_case ):
A__ : Dict =a**b # calculates the current power
collect_powers.add(__snake_case ) # adds the result to the set
return len(__snake_case )
if __name__ == "__main__":
print('Number of terms ', solution(int(str(input()).strip())))
| 717 |
'''simple docstring'''
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__snake_case : Union[str, Any] = logging.getLogger(__name__)
__snake_case : int = tf.data.AUTOTUNE
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", )
parser.add_argument(
"""--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", )
parser.add_argument(
"""--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", )
parser.add_argument(
"""--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", )
parser.add_argument(
"""--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", )
parser.add_argument(
"""--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", )
parser.add_argument(
"""--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", )
parser.add_argument(
"""--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", )
parser.add_argument(
"""--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", )
parser.add_argument(
"""--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", )
parser.add_argument(
"""--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", )
parser.add_argument(
"""--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", )
parser.add_argument(
"""--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", )
parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" )
A__ : Optional[Any] =parser.parse_args()
return args
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
try:
if args.tpu_name:
A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(__snake_case )
tf.tpu.experimental.initialize_tpu_system(__snake_case )
return tpu
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : Any =0
for file in file_list:
A__ : Optional[int] =file.split("""/""" )[-1]
A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 )
A__ : str =int(__snake_case )
num_samples += sample_count
return num_samples
def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]:
"""simple docstring"""
A__ : List[str] =count_samples(__snake_case )
A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case )
if shuffle:
A__ : Optional[int] =dataset.shuffle(len(__snake_case ) )
A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) )
A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case )
if shuffle:
assert shuffle_buffer_size is not None
A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size )
A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case )
A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case )
A__ : Tuple =dataset.prefetch(__snake_case )
return dataset
def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
if not args.no_tpu:
A__ : Dict =initialize_tpu(__snake_case )
A__ : int =tf.distribute.TPUStrategy(__snake_case )
else:
A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer )
A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) )
if not training_records:
raise ValueError(f"No .tfrecord files found in {args.train_dataset}." )
A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." )
A__ : Optional[Any] =count_samples(__snake_case )
A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
A__ : str =steps_per_epoch * args.num_epochs
with strategy.scope():
A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
A__ , A__ : Optional[Any] =create_optimizer(
num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__snake_case, metrics=["""accuracy"""] )
def decode_fn(__snake_case : Tuple ):
A__ : Dict ={
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__snake_case, __snake_case )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
A__ : List[Any] =DataCollatorForLanguageModeling(
tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" )
def mask_with_collator(__snake_case : Optional[int] ):
# TF really needs an isin() function
A__ : Union[str, Any] =(
~tf.cast(batch["""attention_mask"""], tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
A__ , A__ : List[str] =data_collator.tf_mask_tokens(
batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, )
return batch
A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, )
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, )
A__ : Tuple =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) )
model.fit(
__snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__snake_case : str = parse_args()
main(args)
| 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'google/vivit-b-16x2-kinetics400': (
'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json'
),
# See all Vivit models at https://huggingface.co/models?filter=vivit
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'vivit'
def __init__( self : str , lowerCAmelCase_ : List[str]=2_24 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : int=[2, 16, 16] , lowerCAmelCase_ : List[Any]=3 , lowerCAmelCase_ : int=7_68 , lowerCAmelCase_ : List[str]=12 , lowerCAmelCase_ : Optional[Any]=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu_fast" , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Any=1e-06 , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : List[str] , ) -> List[Any]:
'''simple docstring'''
A__ : Union[str, Any] =hidden_size
A__ : Optional[int] =num_hidden_layers
A__ : List[Any] =num_attention_heads
A__ : int =intermediate_size
A__ : Optional[int] =hidden_act
A__ : Optional[int] =hidden_dropout_prob
A__ : Dict =attention_probs_dropout_prob
A__ : Optional[int] =initializer_range
A__ : List[str] =layer_norm_eps
A__ : str =image_size
A__ : Dict =num_frames
A__ : str =tubelet_size
A__ : Union[str, Any] =num_channels
A__ : List[Any] =qkv_bias
super().__init__(**lowerCAmelCase_ )
| 718 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pi, sqrt
def __lowerCamelCase ( __snake_case : float, __snake_case : float ):
"""simple docstring"""
if inductance <= 0:
raise ValueError("""Inductance cannot be 0 or negative""" )
elif capacitance <= 0:
raise ValueError("""Capacitance cannot be 0 or negative""" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__snake_case : Optional[int] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__snake_case : Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__snake_case : int = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__snake_case : Optional[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__snake_case : Dict = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 687 | 0 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class lowerCamelCase :
__snake_case = None
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = None
__snake_case = None
__snake_case = False
__snake_case = False
__snake_case = False
__snake_case = True
__snake_case = None
__snake_case = 1
__snake_case = None
__snake_case = False
__snake_case = None
__snake_case = None
def lowercase__ ( self : List[str] ) -> "DownloadConfig":
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(lowerCAmelCase_ ) for k, v in self.__dict__.items()} )
| 720 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str:
"""simple docstring"""
A__ : int =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any =""""""
else:
A__ : Optional[int] ="""vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : Optional[int] =in_proj_weight[
: config.hidden_size, :
]
A__ : str =in_proj_bias[: config.hidden_size]
A__ : Optional[Any] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : List[Any] =in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] =in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[Any] =["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : Dict =dct.pop(__snake_case )
A__ : Tuple =val
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str:
"""simple docstring"""
A__ : Tuple =ViTConfig()
# patch_size
if model_name[-1] == "8":
A__ : Optional[Any] =8
# set labels if required
if not base_model:
A__ : Optional[Any] =1_000
A__ : str ="""huggingface/label-files"""
A__ : Any ="""imagenet-1k-id2label.json"""
A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) )
A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : List[Any] =idalabel
A__ : List[Any] ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
A__ : str =384
A__ : Optional[Any] =1_536
A__ : Optional[Any] =12
A__ : Union[str, Any] =6
# load original model from torch hub
A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case )
original_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : List[str] =original_model.state_dict()
if base_model:
remove_classification_head_(__snake_case )
A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case )
for src, dest in rename_keys:
rename_key(__snake_case, __snake_case, __snake_case )
read_in_q_k_v(__snake_case, __snake_case, __snake_case )
# load HuggingFace model
if base_model:
A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval()
else:
A__ : List[str] =ViTForImageClassification(__snake_case ).eval()
model.load_state_dict(__snake_case )
# Check outputs on an image, prepared by ViTImageProcessor
A__ : Union[str, Any] =ViTImageProcessor()
A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Union[str, Any] =encoding["""pixel_values"""]
A__ : Union[str, Any] =model(__snake_case )
if base_model:
A__ : List[str] =original_model(__snake_case )
assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 )
else:
A__ : Optional[int] =original_model(__snake_case )
assert logits.shape == outputs.logits.shape
assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__snake_case : Tuple = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 687 | 0 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
__snake_case : str = False
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int ="""A painting of a squirrel eating a burger """
A__ : Tuple =torch.manual_seed(0 )
A__ : int =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase_ )
A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int =generator.manual_seed(0 )
A__ : Tuple =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict ="""A painting of a squirrel eating a burger """
A__ : Optional[int] =torch.manual_seed(0 )
A__ : List[str] =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 721 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'linear'
__snake_case = 'cosine'
__snake_case = 'cosine_with_restarts'
__snake_case = 'polynomial'
__snake_case = 'constant'
__snake_case = 'constant_with_warmup'
__snake_case = 'piecewise_constant'
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]:
"""simple docstring"""
return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1.0, __snake_case ) )
return 1.0
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]:
"""simple docstring"""
A__ : str ={}
A__ : Tuple =step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
A__ , A__ : int =rule_str.split(""":""" )
A__ : Optional[int] =int(__snake_case )
A__ : List[Any] =float(__snake_case )
A__ : Union[str, Any] =value
A__ : int =float(rule_list[-1] )
def create_rules_function(__snake_case : int, __snake_case : Dict ):
def rule_func(__snake_case : int ) -> float:
A__ : Any =sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__snake_case ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
A__ : Any =create_rules_function(__snake_case, __snake_case )
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : Dict ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]:
"""simple docstring"""
A__ : Optional[int] =optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
A__ : List[Any] =lr_init - lr_end
A__ : Any =num_training_steps - num_warmup_steps
A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps
A__ : List[str] =lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__snake_case, __snake_case, __snake_case )
__snake_case : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =SchedulerType(__snake_case )
A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__snake_case, last_epoch=__snake_case )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, )
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
| 687 | 0 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
__snake_case : Tuple = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt')
__snake_case : Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
__snake_case : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = field(
default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} )
__snake_case = field(
default=lowercase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
__snake_case = field(
default=lowercase_ , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , )
__snake_case = field(default=lowercase_ , metadata={'help': 'A folder containing the training data.'} )
__snake_case = field(default=lowercase_ , metadata={'help': 'A folder containing the validation data.'} )
__snake_case = field(
default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} )
__snake_case = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} )
__snake_case = field(
default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , )
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
def lowercase__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
A__ : Dict ={}
if self.train_dir is not None:
A__ : Dict =self.train_dir
if self.validation_dir is not None:
A__ : str =self.validation_dir
A__ : Any =data_files if data_files else None
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a '
'checkpoint identifier on the hub. '
'Don\'t set if you want to train a model from scratch.'
)
} , )
__snake_case = field(
default=lowercase_ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowercase_ )} , )
__snake_case = field(
default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'Override some existing default config settings when a model is trained from scratch. Example: '
'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'
)
} , )
__snake_case = field(
default=lowercase_ , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , )
__snake_case = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
__snake_case = field(default=lowercase_ , metadata={'help': 'Name or path of preprocessor config.'} )
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.'
)
} , )
__snake_case = field(
default=lowercase_ , metadata={
'help': (
'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.'
)
} , )
__snake_case = field(
default=lowercase_ , metadata={'help': 'Stride to use for the encoder.'} , )
class lowerCamelCase :
'''simple docstring'''
def __init__( self : int , lowerCAmelCase_ : List[str]=1_92 , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : List[Any]=0.6 ) -> str:
'''simple docstring'''
A__ : List[Any] =input_size
A__ : Union[str, Any] =mask_patch_size
A__ : List[Any] =model_patch_size
A__ : str =mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError("""Input size must be divisible by mask patch size""" )
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError("""Mask patch size must be divisible by model patch size""" )
A__ : List[str] =self.input_size // self.mask_patch_size
A__ : Optional[Any] =self.mask_patch_size // self.model_patch_size
A__ : Optional[Any] =self.rand_size**2
A__ : Tuple =int(np.ceil(self.token_count * self.mask_ratio ) )
def __call__( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =np.random.permutation(self.token_count )[: self.mask_count]
A__ : Any =np.zeros(self.token_count , dtype=lowerCAmelCase_ )
A__ : Tuple =1
A__ : Dict =mask.reshape((self.rand_size, self.rand_size) )
A__ : str =mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 )
return torch.tensor(mask.flatten() )
def __lowerCamelCase ( __snake_case : List[Any] ) -> Optional[Any]:
"""simple docstring"""
A__ : List[Any] =torch.stack([example["""pixel_values"""] for example in examples] )
A__ : int =torch.stack([example["""mask"""] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def __lowerCamelCase ( ) -> Optional[int]:
"""simple docstring"""
A__ : List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A__ : Any =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A__ : List[str] =parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mim""", __snake_case, __snake_case )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
A__ : List[Any] =training_args.get_process_log_level()
logger.setLevel(__snake_case )
transformers.utils.logging.set_verbosity(__snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
A__ : Optional[int] =None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A__ : int =get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
A__ : Dict =load_dataset(
data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# If we don't have a validation split, split off a percentage of train as validation.
A__ : Any =None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split, __snake_case ) and data_args.train_val_split > 0.0:
A__ : Tuple =ds["""train"""].train_test_split(data_args.train_val_split )
A__ : Union[str, Any] =split["""train"""]
A__ : Optional[int] =split["""test"""]
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A__ : Union[str, Any] ={
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
A__ : Union[str, Any] =AutoConfig.from_pretrained(model_args.config_name_or_path, **__snake_case )
elif model_args.model_name_or_path:
A__ : List[Any] =AutoConfig.from_pretrained(model_args.model_name_or_path, **__snake_case )
else:
A__ : str =CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}" )
config.update_from_string(model_args.config_overrides )
logger.info(f"New config: {config}" )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(__snake_case, """decoder_type""" ):
A__ : Tuple ="""simmim"""
# adapt config
A__ : Tuple =model_args.image_size if model_args.image_size is not None else config.image_size
A__ : int =model_args.patch_size if model_args.patch_size is not None else config.patch_size
A__ : List[str] =(
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
"""image_size""": model_args.image_size,
"""patch_size""": model_args.patch_size,
"""encoder_stride""": model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
A__ : str =AutoImageProcessor.from_pretrained(model_args.image_processor_name, **__snake_case )
elif model_args.model_name_or_path:
A__ : Tuple =AutoImageProcessor.from_pretrained(model_args.model_name_or_path, **__snake_case )
else:
A__ : List[Any] ={
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
A__ : List[str] =IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
A__ : List[str] =AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=__snake_case, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
else:
logger.info("""Training new model from scratch""" )
A__ : Dict =AutoModelForMaskedImageModeling.from_config(__snake_case )
if training_args.do_train:
A__ : Any =ds["""train"""].column_names
else:
A__ : Dict =ds["""validation"""].column_names
if data_args.image_column_name is not None:
A__ : Tuple =data_args.image_column_name
elif "image" in column_names:
A__ : List[Any] ="""image"""
elif "img" in column_names:
A__ : Dict ="""img"""
else:
A__ : str =column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
A__ : str =Compose(
[
Lambda(lambda __snake_case : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std ),
] )
# create mask generator
A__ : Union[str, Any] =MaskGenerator(
input_size=model_args.image_size, mask_patch_size=data_args.mask_patch_size, model_patch_size=model_args.patch_size, mask_ratio=data_args.mask_ratio, )
def preprocess_images(__snake_case : Union[str, Any] ):
A__ : List[str] =[transforms(__snake_case ) for image in examples[image_column_name]]
A__ : List[str] =[mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
A__ : int =ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(__snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
A__ : Union[str, Any] =(
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(__snake_case )
# Initialize our trainer
A__ : List[str] =Trainer(
model=__snake_case, args=__snake_case, train_dataset=ds["""train"""] if training_args.do_train else None, eval_dataset=ds["""validation"""] if training_args.do_eval else None, tokenizer=__snake_case, data_collator=__snake_case, )
# Training
if training_args.do_train:
A__ : Tuple =None
if training_args.resume_from_checkpoint is not None:
A__ : Optional[int] =training_args.resume_from_checkpoint
elif last_checkpoint is not None:
A__ : Tuple =last_checkpoint
A__ : List[Any] =trainer.train(resume_from_checkpoint=__snake_case )
trainer.save_model()
trainer.log_metrics("""train""", train_result.metrics )
trainer.save_metrics("""train""", train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
A__ : List[str] =trainer.evaluate()
trainer.log_metrics("""eval""", __snake_case )
trainer.save_metrics("""eval""", __snake_case )
# Write model card and (optionally) push to hub
A__ : List[Any] ={
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """masked-image-modeling""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-image-modeling"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__snake_case )
else:
trainer.create_model_card(**__snake_case )
if __name__ == "__main__":
main()
| 700 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case : List[str] = {
'configuration_squeezebert': [
'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'SqueezeBertConfig',
'SqueezeBertOnnxConfig',
],
'tokenization_squeezebert': ['SqueezeBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = ['SqueezeBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'SqueezeBertForMaskedLM',
'SqueezeBertForMultipleChoice',
'SqueezeBertForQuestionAnswering',
'SqueezeBertForSequenceClassification',
'SqueezeBertForTokenClassification',
'SqueezeBertModel',
'SqueezeBertModule',
'SqueezeBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
__snake_case : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case : Optional[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'timm_backbone'
def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Union[str, Any]=3 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
A__ : Tuple =backbone
A__ : Optional[Any] =num_channels
A__ : Union[str, Any] =features_only
A__ : str =use_pretrained_backbone
A__ : Tuple =True
A__ : Union[str, Any] =out_indices if out_indices is not None else (-1,)
| 701 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Optional[int] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Tuple = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : int = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def __lowerCamelCase ( __snake_case : int ) -> Optional[int]:
"""simple docstring"""
random.seed(__snake_case )
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# ^^ safe to call this function even if cuda is not available
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Optional[Any] =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : List[str] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : int =True
if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None:
A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Union[str, Any] =kwargs["""max_value"""]
if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Optional[Any] =kwargs["""min_value"""]
A__ : Any =list(lowerCAmelCase_ )
A__ : int =[p.clone().detach() for p in parameters]
if kwargs.get("""device""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
self.to(device=kwargs["""device"""] )
A__ : Optional[int] =None
A__ : Any =decay
A__ : List[Any] =min_decay
A__ : Optional[int] =update_after_step
A__ : List[str] =use_ema_warmup
A__ : str =inv_gamma
A__ : Union[str, Any] =power
A__ : str =0
A__ : str =None # set in `step()`
A__ : List[str] =model_cls
A__ : Optional[int] =model_config
@classmethod
def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel":
'''simple docstring'''
A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ )
A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config )
ema_model.load_state_dict(lowerCAmelCase_ )
return ema_model
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : Optional[int] =self.model_cls.from_config(self.model_config )
A__ : Optional[Any] =self.state_dict()
state_dict.pop("""shadow_params""" , lowerCAmelCase_ )
model.register_to_config(**lowerCAmelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float:
'''simple docstring'''
A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Union[str, Any] =(1 + step) / (10 + step)
A__ : str =min(lowerCAmelCase_ , self.decay )
# make sure decay is not smaller than min_decay
A__ : int =max(lowerCAmelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Any =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : Optional[int] =parameters.parameters()
A__ : Dict =list(lowerCAmelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : Any =self.get_decay(self.optimization_step )
A__ : Optional[int] =decay
A__ : List[str] =1 - decay
A__ : str =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : Optional[Any] =list(lowerCAmelCase_ )
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None:
'''simple docstring'''
A__ : str =[
p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ )
for p in self.shadow_params
]
def lowercase__ ( self : Optional[Any] ) -> dict:
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : List[str] =[param.detach().cpu().clone() for param in parameters]
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : List[str] =None
def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None:
'''simple docstring'''
A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ )
A__ : List[Any] =state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , lowerCAmelCase_ ):
raise ValueError("""Invalid min_decay""" )
A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , lowerCAmelCase_ ):
raise ValueError("""Invalid optimization_step""" )
A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , lowerCAmelCase_ ):
raise ValueError("""Invalid update_after_step""" )
A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Tuple =state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ )
if shadow_params is not None:
A__ : List[str] =shadow_params
if not isinstance(self.shadow_params , lowerCAmelCase_ ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 702 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Any =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
A__ : Optional[Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
A__ : Optional[int] ="""xvjiarui/stable-diffusion-2-inpainting"""
A__ , A__ : List[str] =FlaxStableDiffusionInpaintPipeline.from_pretrained(lowerCAmelCase_ , safety_checker=lowerCAmelCase_ )
A__ : List[str] ="""Face of a yellow cat, high resolution, sitting on a park bench"""
A__ : Optional[Any] =jax.random.PRNGKey(0 )
A__ : List[str] =50
A__ : List[str] =jax.device_count()
A__ : List[str] =num_samples * [prompt]
A__ : List[str] =num_samples * [init_image]
A__ : Tuple =num_samples * [mask_image]
A__ , A__ , A__ : List[Any] =pipeline.prepare_inputs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
# shard inputs and rng
A__ : Dict =replicate(lowerCAmelCase_ )
A__ : Union[str, Any] =jax.random.split(lowerCAmelCase_ , jax.device_count() )
A__ : List[Any] =shard(lowerCAmelCase_ )
A__ : Union[str, Any] =shard(lowerCAmelCase_ )
A__ : str =shard(lowerCAmelCase_ )
A__ : List[str] =pipeline(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , jit=lowerCAmelCase_ )
A__ : List[Any] =output.images.reshape(lowerCAmelCase_ , 5_12 , 5_12 , 3 )
A__ : str =images[0, 2_53:2_56, 2_53:2_56, -1]
A__ : Tuple =jnp.asarray(jax.device_get(image_slice.flatten() ) )
A__ : Optional[int] =jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
from sklearn.metrics import mean_squared_error
import datasets
__snake_case : Dict = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
__snake_case : Optional[int] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
__snake_case : Optional[Any] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def lowercase__ ( self : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Union[str, Any]="uniform_average" , lowerCAmelCase_ : Optional[int]=True ) -> List[str]:
'''simple docstring'''
A__ : Optional[int] =mean_squared_error(
lowerCAmelCase_ , lowerCAmelCase_ , sample_weight=lowerCAmelCase_ , multioutput=lowerCAmelCase_ , squared=lowerCAmelCase_ )
return {"mse": mse}
| 703 |
'''simple docstring'''
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case : List[Any] = logging.get_logger(__name__)
__snake_case : Dict = {
'microsoft/conditional-detr-resnet-50': (
'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'
),
}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'conditional_detr'
__snake_case = ['past_key_values']
__snake_case = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Tuple=3_00 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : str=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : Any=6 , lowerCAmelCase_ : Any=20_48 , lowerCAmelCase_ : Union[str, Any]=8 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : Optional[Any]="relu" , lowerCAmelCase_ : Union[str, Any]=2_56 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : Optional[Any]=1.0 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : List[Any]="sine" , lowerCAmelCase_ : Optional[int]="resnet50" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Optional[Any]=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : str=1 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=0.25 , **lowerCAmelCase_ : int , ) -> Dict:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[int] =CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Tuple =backbone_config.get("""model_type""" )
A__ : List[str] =CONFIG_MAPPING[backbone_model_type]
A__ : Dict =config_class.from_dict(lowerCAmelCase_ )
A__ : int =use_timm_backbone
A__ : List[Any] =backbone_config
A__ : Optional[int] =num_channels
A__ : Optional[int] =num_queries
A__ : Union[str, Any] =d_model
A__ : Optional[int] =encoder_ffn_dim
A__ : Optional[Any] =encoder_layers
A__ : int =encoder_attention_heads
A__ : Optional[Any] =decoder_ffn_dim
A__ : Tuple =decoder_layers
A__ : Optional[Any] =decoder_attention_heads
A__ : Tuple =dropout
A__ : int =attention_dropout
A__ : Dict =activation_dropout
A__ : Union[str, Any] =activation_function
A__ : List[str] =init_std
A__ : str =init_xavier_std
A__ : int =encoder_layerdrop
A__ : List[Any] =decoder_layerdrop
A__ : Tuple =encoder_layers
A__ : Tuple =auxiliary_loss
A__ : List[Any] =position_embedding_type
A__ : int =backbone
A__ : Optional[int] =use_pretrained_backbone
A__ : str =dilation
# Hungarian matcher
A__ : Any =class_cost
A__ : str =bbox_cost
A__ : str =giou_cost
# Loss coefficients
A__ : Union[str, Any] =mask_loss_coefficient
A__ : int =dice_loss_coefficient
A__ : Union[str, Any] =cls_loss_coefficient
A__ : List[str] =bbox_loss_coefficient
A__ : str =giou_loss_coefficient
A__ : Optional[Any] =focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ )
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return self.d_model
def lowercase__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
A__ : int =copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
A__ : str =self.backbone_config.to_dict()
A__ : int =self.__class__.model_type
return output
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = version.parse('1.11' )
@property
def lowercase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def lowercase__ ( self : Any ) -> float:
'''simple docstring'''
return 1e-5
@property
def lowercase__ ( self : Any ) -> int:
'''simple docstring'''
return 12
| 687 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'encoder-decoder'
__snake_case = True
def __init__( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
A__ : Tuple =kwargs.pop("""encoder""" )
A__ : Dict =encoder_config.pop("""model_type""" )
A__ : int =kwargs.pop("""decoder""" )
A__ : Optional[int] =decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
A__ : Optional[int] =AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : Any =AutoConfig.for_model(lowerCAmelCase_ , **lowerCAmelCase_ )
A__ : List[Any] =True
@classmethod
def lowercase__ ( cls : List[str] , lowerCAmelCase_ : PretrainedConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Any ) -> PretrainedConfig:
'''simple docstring'''
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
A__ : str =True
A__ : Union[str, Any] =True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase_ )
def lowercase__ ( self : int ) -> str:
'''simple docstring'''
A__ : List[str] =copy.deepcopy(self.__dict__ )
A__ : Optional[Any] =self.encoder.to_dict()
A__ : Union[str, Any] =self.decoder.to_dict()
A__ : str =self.__class__.model_type
return output
| 704 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case : Union[str, Any] = logging.get_logger(__name__)
__snake_case : Optional[int] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
__snake_case = 'bit'
__snake_case = ['preactivation', 'bottleneck']
__snake_case = ['SAME', 'VALID']
def __init__( self : List[str] , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : int=64 , lowerCAmelCase_ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCAmelCase_ : str=[3, 4, 6, 3] , lowerCAmelCase_ : Optional[Any]="preactivation" , lowerCAmelCase_ : str="relu" , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[Any]=32 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A__ : List[Any] =global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
A__ : List[Any] =num_channels
A__ : Tuple =embedding_size
A__ : Union[str, Any] =hidden_sizes
A__ : List[str] =depths
A__ : Optional[Any] =layer_type
A__ : int =hidden_act
A__ : int =global_padding
A__ : int =num_groups
A__ : str =drop_path_rate
A__ : str =embedding_dynamic_padding
A__ : Dict =output_stride
A__ : Optional[int] =width_factor
A__ : List[str] =["""stem"""] + [f"stage{idx}" for idx in range(1 , len(lowerCAmelCase_ ) + 1 )]
A__ , A__ : Union[str, Any] =get_aligned_output_features_output_indices(
out_features=lowerCAmelCase_ , out_indices=lowerCAmelCase_ , stage_names=self.stage_names )
| 687 | 0 |
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = 42
__snake_case = None
# Automatically constructed
__snake_case = 'dict'
__snake_case = None
__snake_case = field(default='Translation' , init=lowercase_ , repr=lowercase_ )
def __call__( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowercase__ ( self : List[str] ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class lowerCamelCase :
'''simple docstring'''
__snake_case = None
__snake_case = None
__snake_case = None
# Automatically constructed
__snake_case = 'dict'
__snake_case = None
__snake_case = field(default='TranslationVariableLanguages' , init=lowercase_ , repr=lowercase_ )
def lowercase__ ( self : List[str] ) -> int:
'''simple docstring'''
A__ : Tuple =sorted(set(self.languages ) ) if self.languages else None
A__ : str =len(self.languages ) if self.languages else None
def __call__( self : List[str] ) -> List[str]:
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
A__ : List[Any] =set(self.languages )
if self.languages and set(lowerCAmelCase_ ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(lowerCAmelCase_ ) - lang_set ) )}) are not in valid set ({', '.join(lowerCAmelCase_ )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
A__ : str =[]
for lang, text in translation_dict.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
A__ : Union[str, Any] =zip(*sorted(lowerCAmelCase_ ) )
return {"language": languages, "translation": translations}
def lowercase__ ( self : Dict ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 705 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
__snake_case : List[str] = 5_0003
__snake_case : Dict = 5_0002
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = PLBartTokenizer
__snake_case = None
__snake_case = False
def lowercase__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ )
A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )]
self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] )
A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ )
A__ : Dict =tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ )
self.assertListEqual(
lowerCAmelCase_ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
A__ : Tuple =tokenizer.vocab_size
A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )]
self.assertListEqual(
lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] )
A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go"""
A__ : int =tokenizer(lowerCAmelCase_ ).input_ids
self.assertEqual(
tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'uclanlp/plbart-python-en_XX'
__snake_case = [
'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])',
'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])',
]
__snake_case = [
'Returns the maximum value of a b c.',
'Sums the values of a b c.',
]
__snake_case = [
134,
5452,
3_3460,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
988,
20,
3_3456,
19,
3_3456,
771,
39,
4258,
889,
3318,
3_3441,
3_3463,
3_3465,
3_3463,
3_3449,
2471,
2,
PYTHON_CODE,
]
@classmethod
def lowercase__ ( cls : Optional[int] ) -> str:
'''simple docstring'''
A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" )
A__ : Optional[Any] =1
return cls
def lowercase__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 )
def lowercase__ ( self : int ) -> List[str]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
def lowercase__ ( self : int ) -> Optional[int]:
'''simple docstring'''
self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids )
A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2]
A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ )
A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ )
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20]
self.assertIsInstance(src_text[0] , lowerCAmelCase_ )
A__ : str =10
A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase_ )
self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] )
def lowercase__ ( self : Tuple ) -> str:
'''simple docstring'''
A__ : Tuple =tempfile.mkdtemp()
A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ )
@require_torch
def lowercase__ ( self : Any ) -> Any:
'''simple docstring'''
A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" )
A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
A__ : List[Any] =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def lowercase__ ( self : Any ) -> Dict:
'''simple docstring'''
A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" )
A__ : Optional[int] =self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" )
A__ : Optional[Any] =targets["""input_ids"""]
A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowercase__ ( self : Any ) -> str:
'''simple docstring'''
A__ : Any =self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" )
self.assertEqual(
nested_simplify(lowerCAmelCase_ ) , {
# A, test, EOS, en_XX
"""input_ids""": [[1_50, 2_42, 2, 5_00_03]],
"""attention_mask""": [[1, 1, 1, 1]],
# java
"""forced_bos_token_id""": 5_00_01,
} , )
| 687 | 0 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase ( lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = None
__snake_case = BloomTokenizerFast
__snake_case = BloomTokenizerFast
__snake_case = True
__snake_case = False
__snake_case = 'tokenizer_file'
__snake_case = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'}
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
super().setUp()
A__ : Union[str, Any] =BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self : Tuple , **lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ )
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
A__ : Any =self.get_rust_tokenizer()
A__ : List[str] =["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""]
A__ : int =[[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
A__ : Optional[int] =tokenizer.batch_encode_plus(lowerCAmelCase_ )["""input_ids"""]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Any =tokenizer.batch_decode(lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : int=6 ) -> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
A__ : Optional[int] =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
A__ : Tuple ="""This is a simple input"""
A__ : Union[str, Any] =["""This is a simple input 1""", """This is a simple input 2"""]
A__ : List[str] =("""This is a simple input""", """This is a pair""")
A__ : Any =[
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
try:
tokenizer_r.encode(lowerCAmelCase_ , max_length=lowerCAmelCase_ )
tokenizer_r.encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ )
tokenizer_r.batch_encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ )
tokenizer_r.encode(lowerCAmelCase_ , max_length=lowerCAmelCase_ )
tokenizer_r.batch_encode_plus(lowerCAmelCase_ , max_length=lowerCAmelCase_ )
except ValueError:
self.fail("""Bloom Tokenizer should be able to deal with padding""" )
A__ : int =None # Hotfixing padding = None
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" )
# Simple input
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" )
# Simple input
self.assertRaises(
lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , )
# Pair input
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" )
# Pair input
self.assertRaises(lowerCAmelCase_ , tokenizer_r.encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" )
# Pair input
self.assertRaises(
lowerCAmelCase_ , tokenizer_r.batch_encode_plus , lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , )
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
A__ : str =self.get_rust_tokenizer()
A__ : Tuple =load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=lowerCAmelCase_ )
A__ : int =next(iter(lowerCAmelCase_ ) )["""premise"""] # pick up one data
A__ : Optional[int] =list(sample_data.values() )
A__ : Tuple =list(map(tokenizer.encode , lowerCAmelCase_ ) )
A__ : Optional[Any] =[tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) for x in output_tokens]
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def lowercase__ ( self : str ) -> Dict:
'''simple docstring'''
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 706 |
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
__snake_case : str = False
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
pass
@nightly
@require_torch_gpu
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> Any:
'''simple docstring'''
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[str] =VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int ="""A painting of a squirrel eating a burger """
A__ : Tuple =torch.manual_seed(0 )
A__ : int =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase_ )
A__ : str =VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase_ )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : int =generator.manual_seed(0 )
A__ : Tuple =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def lowercase__ ( self : Optional[int] ) -> int:
'''simple docstring'''
A__ : Any =VersatileDiffusionTextToImagePipeline.from_pretrained(
"""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase_ )
pipe.set_progress_bar_config(disable=lowerCAmelCase_ )
A__ : Dict ="""A painting of a squirrel eating a burger """
A__ : Optional[int] =torch.manual_seed(0 )
A__ : List[str] =pipe(
prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
A__ : List[str] =image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
A__ : Tuple =np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 687 | 0 |
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __lowerCamelCase ( __snake_case : str = "AAPL" ) -> str:
"""simple docstring"""
A__ : Optional[int] =f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"
A__ : Dict =BeautifulSoup(requests.get(__snake_case ).text, """html.parser""" )
A__ : Union[str, Any] ="""My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""", class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 707 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 42
class lowerCamelCase ( lowercase_ , lowercase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : List[str] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (64,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 32 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.18215 , lowerCAmelCase_ : str = "group" , ) -> List[str]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
A__ : Optional[Any] =Encoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , )
A__ : Dict =vq_embed_dim if vq_embed_dim is not None else latent_channels
A__ : Union[str, Any] =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
A__ : Optional[int] =VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ )
A__ : Tuple =nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
# pass init params to Decoder
A__ : Optional[Any] =Decoder(
in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , )
@apply_forward_hook
def lowercase__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput:
'''simple docstring'''
A__ : Dict =self.encoder(lowerCAmelCase_ )
A__ : Union[str, Any] =self.quant_conv(lowerCAmelCase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=lowerCAmelCase_ )
@apply_forward_hook
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
# also go through quantization layer
if not force_not_quantize:
A__ , A__ , A__ : Tuple =self.quantize(lowerCAmelCase_ )
else:
A__ : List[str] =h
A__ : Dict =self.post_quant_conv(lowerCAmelCase_ )
A__ : List[Any] =self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
def lowercase__ ( self : str , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
A__ : Optional[int] =sample
A__ : Union[str, Any] =self.encode(lowerCAmelCase_ ).latents
A__ : Tuple =self.decode(lowerCAmelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__snake_case : Union[str, Any] = {
'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] = [
'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoForCausalLM',
'GPTNeoForQuestionAnswering',
'GPTNeoForSequenceClassification',
'GPTNeoForTokenClassification',
'GPTNeoModel',
'GPTNeoPreTrainedModel',
'load_tf_weights_in_gpt_neo',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'FlaxGPTNeoForCausalLM',
'FlaxGPTNeoModel',
'FlaxGPTNeoPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 708 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case : Optional[int] = logging.get_logger(__name__)
__snake_case : Tuple = {
'vocab_file': 'vocab.txt',
'merges_file': 'bpe.codes',
}
__snake_case : str = {
'vocab_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt',
},
'merges_file': {
'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes',
'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes',
},
}
__snake_case : List[Any] = {
'vinai/phobert-base': 256,
'vinai/phobert-large': 256,
}
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =set()
A__ : Optional[int] =word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : str =char
A__ : List[Any] =set(__snake_case )
return pairs
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = VOCAB_FILES_NAMES
__snake_case = PRETRAINED_VOCAB_FILES_MAP
__snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]="<s>" , lowerCAmelCase_ : List[str]="</s>" , lowerCAmelCase_ : str="</s>" , lowerCAmelCase_ : int="<s>" , lowerCAmelCase_ : List[str]="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Tuple="<mask>" , **lowerCAmelCase_ : Dict , ) -> Dict:
'''simple docstring'''
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
A__ : int =vocab_file
A__ : Any =merges_file
A__ : Union[str, Any] ={}
A__ : Optional[int] =0
A__ : List[Any] =1
A__ : Tuple =2
A__ : Dict =3
self.add_from_file(lowerCAmelCase_ )
A__ : List[str] ={v: k for k, v in self.encoder.items()}
with open(lowerCAmelCase_ , encoding="""utf-8""" ) as merges_handle:
A__ : str =merges_handle.read().split("""\n""" )[:-1]
A__ : Tuple =[tuple(merge.split()[:-1] ) for merge in merges]
A__ : Optional[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
A__ : Dict ={}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A__ : Dict =[self.cls_token_id]
A__ : Union[str, Any] =[self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowercase__ ( self : str , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None , lowerCAmelCase_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A__ : Tuple =[self.sep_token_id]
A__ : Dict =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowercase__ ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return len(self.encoder )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase__ ( self : str , lowerCAmelCase_ : Any ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : int =tuple(lowerCAmelCase_ )
A__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Tuple =get_pairs(lowerCAmelCase_ )
if not pairs:
return token
while True:
A__ : List[Any] =min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ , A__ : Tuple =bigram
A__ : Optional[int] =[]
A__ : Tuple =0
while i < len(lowerCAmelCase_ ):
try:
A__ : str =word.index(lowerCAmelCase_ , lowerCAmelCase_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A__ : Union[str, Any] =j
if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Dict =tuple(lowerCAmelCase_ )
A__ : Dict =new_word
if len(lowerCAmelCase_ ) == 1:
break
else:
A__ : str =get_pairs(lowerCAmelCase_ )
A__ : Dict ="""@@ """.join(lowerCAmelCase_ )
A__ : Tuple =word[:-4]
A__ : Any =word
return word
def lowercase__ ( self : List[str] , lowerCAmelCase_ : str ) -> Any:
'''simple docstring'''
A__ : int =[]
A__ : Optional[int] =re.findall(R"""\S+\n?""" , lowerCAmelCase_ )
for token in words:
split_tokens.extend(list(self.bpe(lowerCAmelCase_ ).split(""" """ ) ) )
return split_tokens
def lowercase__ ( self : str , lowerCAmelCase_ : Union[str, Any] ) -> int:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase_ , self.unk_token )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =""" """.join(lowerCAmelCase_ ).replace("""@@ """ , """""" ).strip()
return out_string
def lowercase__ ( self : str , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
A__ : Optional[Any] =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Tuple =os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.vocab_file , lowerCAmelCase_ )
if os.path.abspath(self.merges_file ) != os.path.abspath(lowerCAmelCase_ ):
copyfile(self.merges_file , lowerCAmelCase_ )
return out_vocab_file, out_merge_file
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> Any:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
try:
with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(lowerCAmelCase_ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
A__ : Union[str, Any] =f.readlines()
for lineTmp in lines:
A__ : List[Any] =lineTmp.strip()
A__ : Dict =line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
A__ : Tuple =line[:idx]
A__ : Tuple =len(self.encoder )
| 687 | 0 |
'''simple docstring'''
from collections import deque
def __lowerCamelCase ( __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[str] =len(__snake_case )
A__ : Optional[Any] =deque()
A__ : Tuple =[False for _ in range(__snake_case )]
A__ : Any =[-1 for _ in range(__snake_case )]
A__ : List[str] =index_of[:]
def strong_connect(__snake_case : Any, __snake_case : Optional[int], __snake_case : Union[str, Any] ):
A__ : Dict =index # the number when this node is seen
A__ : Optional[Any] =index # lowest rank node reachable from here
index += 1
stack.append(__snake_case )
A__ : Dict =True
for w in g[v]:
if index_of[w] == -1:
A__ : List[str] =strong_connect(__snake_case, __snake_case, __snake_case )
A__ : str =(
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
A__ : List[str] =(
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
A__ : Any =[]
A__ : Tuple =stack.pop()
A__ : List[str] =False
component.append(__snake_case )
while w != v:
A__ : Union[str, Any] =stack.pop()
A__ : List[Any] =False
component.append(__snake_case )
components.append(__snake_case )
return index
A__ : Any =[]
for v in range(__snake_case ):
if index_of[v] == -1:
strong_connect(__snake_case, 0, __snake_case )
return components
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Any ) -> List[str]:
"""simple docstring"""
A__ : Dict =[[] for _ in range(__snake_case )]
for u, v in edges:
g[u].append(__snake_case )
return g
if __name__ == "__main__":
# Test
__snake_case : Optional[int] = 7
__snake_case : Union[str, Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6]
__snake_case : List[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
__snake_case : str = [(u, v) for u, v in zip(source, target)]
__snake_case : Optional[int] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 709 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case : List[str] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Any, __snake_case : Any ) -> int:
"""simple docstring"""
A__ : Union[str, Any] =nn.functional.normalize(__snake_case )
A__ : Optional[Any] =nn.functional.normalize(__snake_case )
return torch.mm(__snake_case, normalized_text_embeds.t() )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = CLIPConfig
__snake_case = ['CLIPEncoderLayer']
def __init__( self : Tuple , lowerCAmelCase_ : CLIPConfig ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase_ )
A__ : str =CLIPVisionModel(config.vision_config )
A__ : Optional[Any] =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowerCAmelCase_ )
A__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Any =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowerCAmelCase_ )
A__ : Optional[Any] =nn.Parameter(torch.ones(17 ) , requires_grad=lowerCAmelCase_ )
A__ : int =nn.Parameter(torch.ones(3 ) , requires_grad=lowerCAmelCase_ )
@torch.no_grad()
def lowercase__ ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ) -> Any:
'''simple docstring'''
A__ : Any =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : Any =self.visual_projection(lowerCAmelCase_ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Any =cosine_distance(lowerCAmelCase_ , self.special_care_embeds ).cpu().float().numpy()
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds ).cpu().float().numpy()
A__ : List[str] =[]
A__ : Optional[int] =image_embeds.shape[0]
for i in range(lowerCAmelCase_ ):
A__ : List[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : List[Any] =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A__ : Optional[Any] =special_cos_dist[i][concept_idx]
A__ : Union[str, Any] =self.special_care_embeds_weights[concept_idx].item()
A__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} )
A__ : Dict =0.01
for concept_idx in range(len(cos_dist[0] ) ):
A__ : Optional[int] =cos_dist[i][concept_idx]
A__ : List[str] =self.concept_embeds_weights[concept_idx].item()
A__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(lowerCAmelCase_ )
result.append(lowerCAmelCase_ )
A__ : int =[len(res["""bad_concepts"""] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor ) -> Optional[int]:
'''simple docstring'''
A__ : Optional[Any] =self.vision_model(lowerCAmelCase_ )[1] # pooled_output
A__ : List[Any] =self.visual_projection(lowerCAmelCase_ )
A__ : Union[str, Any] =cosine_distance(lowerCAmelCase_ , self.special_care_embeds )
A__ : Optional[int] =cosine_distance(lowerCAmelCase_ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A__ : Dict =0.0
A__ : Dict =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A__ : Union[str, Any] =torch.any(special_scores > 0 , dim=1 )
A__ : Tuple =special_care * 0.01
A__ : str =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A__ : List[Any] =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A__ : Optional[int] =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 687 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 710 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def __lowerCamelCase ( __snake_case : Tuple, __snake_case : List[Any] ) -> str:
"""simple docstring"""
A__ : Optional[int] =[]
for part_id in partition_order:
A__ : int =df.where(f"SPARK_PARTITION_ID() = {part_id}" ).collect()
for row_idx, row in enumerate(__snake_case ):
expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : str =spark.range(100 ).repartition(1 )
A__ : List[str] =Spark(__snake_case )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Tuple:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Tuple =spark.range(10 ).repartition(2 )
A__ : List[str] =[1, 0]
A__ : Tuple =_generate_iterable_examples(__snake_case, __snake_case ) # Reverse the partitions.
A__ : Dict =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, __snake_case )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
A__ , A__ : Union[str, Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : Any =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(10 ).repartition(1 )
A__ : List[str] =SparkExamplesIterable(__snake_case )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(__snake_case ):
assert row_id == f"0_{i}"
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : List[str] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Union[str, Any] =spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
A__ : Tuple =lambda __snake_case : x.reverse()
A__ : List[str] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [2, 1, 0] )
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shuffle_data_sources(__snake_case )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : List[Any] =expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
A__ : List[Any] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : Any =spark.range(20 ).repartition(4 )
# Partitions 0 and 2
A__ : str =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Any =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [0, 2] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Dict =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
A__ : Union[str, Any] =SparkExamplesIterable(__snake_case ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
A__ : Union[str, Any] =_get_expected_row_ids_and_row_dicts_for_partition_order(__snake_case, [1, 3] )
for i, (row_id, row_dict) in enumerate(__snake_case ):
A__ , A__ : Optional[int] =expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def __lowerCamelCase ( ) -> Any:
"""simple docstring"""
A__ : Optional[int] =pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
A__ : List[str] =spark.range(100 ).repartition(1 )
A__ : List[Any] =Spark(__snake_case )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 687 | 0 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : int = 6 ) -> None:
'''simple docstring'''
A__ : Node | None =None
A__ : Node | None =None
self.create_linked_list(lowerCAmelCase_ )
def lowercase__ ( self : Any , lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
A__ : Dict =Node()
A__ : str =current_node
A__ : Tuple =current_node
A__ : Dict =current_node
for _ in range(1 , lowerCAmelCase_ ):
A__ : Union[str, Any] =Node()
A__ : Optional[int] =current_node
A__ : Tuple =previous_node
A__ : Optional[int] =current_node
A__ : Any =self.front
A__ : Union[str, Any] =previous_node
def lowercase__ ( self : Union[str, Any] ) -> bool:
'''simple docstring'''
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def lowercase__ ( self : List[str] ) -> Any | None:
'''simple docstring'''
self.check_can_perform_operation()
return self.front.data if self.front else None
def lowercase__ ( self : Any , lowerCAmelCase_ : Any ) -> None:
'''simple docstring'''
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
A__ : List[Any] =self.rear.next
if self.rear:
A__ : Optional[Any] =data
def lowercase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
A__ : int =self.front.data
A__ : Any =None
return data
A__ : Tuple =self.front
A__ : str =old_front.next
A__ : str =old_front.data
A__ : List[Any] =None
return data
def lowercase__ ( self : List[Any] ) -> None:
'''simple docstring'''
if self.is_empty():
raise Exception("""Empty Queue""" )
def lowercase__ ( self : Tuple ) -> None:
'''simple docstring'''
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] ) -> None:
'''simple docstring'''
A__ : Any | None =None
A__ : Node | None =None
A__ : Node | None =None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 711 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case : int = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
__snake_case : Union[str, Any] = HfApi()
__snake_case : int = {}
# fmt: off
__snake_case : List[Any] = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
__snake_case : Dict = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
__snake_case : str = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
__snake_case : Union[str, Any] = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
__snake_case : Union[str, Any] = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
__snake_case : Dict = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
__snake_case : str = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
__snake_case : List[str] = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
__snake_case : str = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
__snake_case : Optional[Any] = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
__snake_case : Optional[Any] = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
__snake_case : Dict = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
__snake_case : Dict = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
__snake_case : Tuple = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
__snake_case : Optional[Any] = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
__snake_case : Optional[Any] = api.list_models(filter='diffusers')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
__snake_case : Tuple = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1]
print(F"""Started running {mod.modelId}!!!""")
if mod.modelId.startswith('CompVis'):
__snake_case : str = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet')
else:
__snake_case : int = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
__snake_case : Union[str, Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
__snake_case : Tuple = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
__snake_case : List[str] = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3
)
print(F"""{mod.modelId} has passed successfully!!!""")
| 712 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __lowerCamelCase ( __snake_case : Dict ) -> List[str]:
"""simple docstring"""
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase_ : nn.Module , lowerCAmelCase_ : int ) -> str:
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] =module
A__ : Union[str, Any] =nn.Sequential(
nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , )
A__ : Tuple =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Optional[int] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
__snake_case = 'bigscience/bloom-1b7'
# Constant values
__snake_case = 2.109659552692574
__snake_case = 'Hello my name is'
__snake_case = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
__snake_case = 10
def lowercase__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
# Models and tokenizer
A__ : List[Any] =AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# Models and tokenizer
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="""auto""" )
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
A__ : str =self.model_abit.config
self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) )
A__ : Union[str, Any] =config.to_dict()
A__ : Any =config.to_diff_dict()
A__ : Optional[Any] =config.to_json_string()
def lowercase__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
A__ : int =self.model_fpaa.get_memory_footprint()
A__ : Optional[Any] =self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
A__ : Tuple =get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCAmelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def lowercase__ ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
A__ : int =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Union[str, Any] =self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
A__ : Tuple =True
A__ : Optional[int] =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" )
A__ : Union[str, Any] =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =model_abit_from_config.generate(
input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Any:
'''simple docstring'''
A__ : Tuple =BitsAndBytesConfig()
with self.assertRaises(lowerCAmelCase_ ):
A__ : Dict =AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , )
def lowercase__ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
with self.assertRaises(lowerCAmelCase_ ):
# Tries with `str`
self.model_abit.to("""cpu""" )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device("""cuda:0""" ) )
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCAmelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" )
A__ : Optional[Any] =self.model_fpaa.to(torch.floataa )
A__ : Dict =self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.to("""cpu""" )
# Check this does not throw an error
A__ : List[str] =self.model_fpaa.half()
# Check this does not throw an error
A__ : int =self.model_fpaa.float()
def lowercase__ ( self : int ) -> Dict:
'''simple docstring'''
A__ : Dict =AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def lowercase__ ( cls : List[str] ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple ="""t5-small"""
A__ : Optional[Any] ="""google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense
A__ : Optional[int] =AutoTokenizer.from_pretrained(cls.model_name )
A__ : Optional[int] ="""Translate in German: Hello, my dog is cute"""
def lowercase__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
from transformers import TaForConditionalGeneration
A__ : Optional[int] =TaForConditionalGeneration._keep_in_fpaa_modules
A__ : Optional[Any] =None
# test with `t5-small`
A__ : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : List[str] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Optional[Any] =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : List[str] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Tuple =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Union[str, Any] =model.generate(**lowerCAmelCase_ )
A__ : Dict =modules
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
A__ : Optional[int] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
A__ : Dict =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Any =model.generate(**lowerCAmelCase_ )
# test with `flan-t5-small`
A__ : Union[str, Any] =TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
A__ : Optional[int] =self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 )
A__ : Dict =model.generate(**lowerCAmelCase_ )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : List[Any] ) -> int:
'''simple docstring'''
super().setUp()
# model_name
A__ : Any ="""bigscience/bloom-560m"""
A__ : List[Any] ="""t5-small"""
# Different types of model
A__ : Dict =AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Sequence classification model
A__ : List[Any] =AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# CausalLM model
A__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
# Seq2seq model
A__ : List[str] =AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" )
def lowercase__ ( self : Dict ) -> int:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : str ) -> List[Any]:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
A__ : Dict =pipeline(
"""text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
A__ : Optional[int] =self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
super().setUp()
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
A__ : int =AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
A__ : str =self.tokenizer(self.input_text , return_tensors="""pt""" )
# Second real batch
A__ : Any =model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def lowercase__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] ="""facebook/opt-350m"""
super().setUp()
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ):
return
# Step 1: freeze all parameters
A__ : Optional[Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
A__ : int =False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
A__ : Dict =param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCAmelCase_ ) ):
A__ : int =LoRALayer(module.q_proj , rank=16 )
A__ : Any =LoRALayer(module.k_proj , rank=16 )
A__ : Union[str, Any] =LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
A__ : List[Any] =self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
A__ : Any =model.forward(**lowerCAmelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowerCAmelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'gpt2-xl'
__snake_case = 3.3191854854152187
| 687 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case : Dict = logging.get_logger(__name__)
__snake_case : Dict = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'}
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'openai-gpt'
__snake_case = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Any , lowerCAmelCase_ : Optional[int]=4_04_78 , lowerCAmelCase_ : int=5_12 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : List[Any]=12 , lowerCAmelCase_ : Any="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Tuple=1e-5 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : List[str]="cls_index" , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=0.1 , **lowerCAmelCase_ : Tuple , ) -> int:
'''simple docstring'''
A__ : Optional[Any] =vocab_size
A__ : Dict =n_positions
A__ : List[Any] =n_embd
A__ : Dict =n_layer
A__ : Union[str, Any] =n_head
A__ : Dict =afn
A__ : List[str] =resid_pdrop
A__ : Optional[Any] =embd_pdrop
A__ : Optional[Any] =attn_pdrop
A__ : Tuple =layer_norm_epsilon
A__ : Optional[Any] =initializer_range
A__ : Union[str, Any] =summary_type
A__ : Tuple =summary_use_proj
A__ : Tuple =summary_activation
A__ : Optional[int] =summary_first_dropout
A__ : Optional[Any] =summary_proj_to_labels
super().__init__(**lowerCAmelCase_ )
| 713 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__snake_case : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 687 | 0 |
'''simple docstring'''
def __lowerCamelCase ( __snake_case : int | float | str ) -> tuple[int, int]:
"""simple docstring"""
try:
A__ : Union[str, Any] =float(__snake_case )
except ValueError:
raise ValueError("""Please enter a valid number""" )
A__ : List[str] =decimal - int(__snake_case )
if fractional_part == 0:
return int(__snake_case ), 1
else:
A__ : Tuple =len(str(__snake_case ).split(""".""" )[1] )
A__ : Any =int(decimal * (10**number_of_frac_digits) )
A__ : Any =10**number_of_frac_digits
A__ : List[Any] =denominator, numerator
while True:
A__ : Tuple =dividend % divisor
if remainder == 0:
break
A__ : List[Any] =divisor, remainder
A__ : Optional[int] =numerator / divisor, denominator / divisor
return int(__snake_case ), int(__snake_case )
if __name__ == "__main__":
print(F"""{decimal_to_fraction(2) = }""")
print(F"""{decimal_to_fraction(89.0) = }""")
print(F"""{decimal_to_fraction('67') = }""")
print(F"""{decimal_to_fraction('45.0') = }""")
print(F"""{decimal_to_fraction(1.5) = }""")
print(F"""{decimal_to_fraction('6.25') = }""")
print(F"""{decimal_to_fraction('78td') = }""")
| 714 |
'''simple docstring'''
import unittest
from transformers import XLMConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMWithLMHeadModel,
)
from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple=13 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict=True , lowerCAmelCase_ : List[str]=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : str=99 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : str=32 , lowerCAmelCase_ : List[str]=5 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : List[Any]=5_12 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Union[str, Any]=0.02 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[Any]=4 , lowerCAmelCase_ : List[str]="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=0 , ) -> Tuple:
'''simple docstring'''
A__ : Tuple =parent
A__ : Any =batch_size
A__ : List[str] =seq_length
A__ : Optional[Any] =is_training
A__ : Dict =use_input_lengths
A__ : int =use_token_type_ids
A__ : Union[str, Any] =use_labels
A__ : Optional[Any] =gelu_activation
A__ : List[Any] =sinusoidal_embeddings
A__ : List[Any] =causal
A__ : str =asm
A__ : Tuple =n_langs
A__ : Dict =vocab_size
A__ : Optional[Any] =n_special
A__ : Tuple =hidden_size
A__ : Dict =num_hidden_layers
A__ : int =num_attention_heads
A__ : Optional[Any] =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Optional[int] =max_position_embeddings
A__ : Optional[int] =type_sequence_label_size
A__ : Tuple =initializer_range
A__ : Any =num_labels
A__ : str =num_choices
A__ : Optional[int] =summary_type
A__ : int =use_proj
A__ : Tuple =scope
A__ : Union[str, Any] =bos_token_id
def lowercase__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict =random_attention_mask([self.batch_size, self.seq_length] )
A__ : Tuple =None
if self.use_input_lengths:
A__ : Tuple =(
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
A__ : Optional[Any] =None
if self.use_token_type_ids:
A__ : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
A__ : Any =None
A__ : Tuple =None
A__ : Optional[Any] =None
if self.use_labels:
A__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] =ids_tensor([self.batch_size] , 2 ).float()
A__ : str =ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] =self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowercase__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return XLMConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , ) -> Optional[Any]:
'''simple docstring'''
A__ : List[str] =XLMModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Dict =model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Any =model(lowerCAmelCase_ , langs=lowerCAmelCase_ )
A__ : Tuple =model(lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , ) -> Union[str, Any]:
'''simple docstring'''
A__ : List[Any] =XLMWithLMHeadModel(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Tuple =model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , ) -> str:
'''simple docstring'''
A__ : Union[str, Any] =XLMForQuestionAnsweringSimple(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Optional[int] =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
A__ : List[Any] =outputs
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowercase__ ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : str =XLMForQuestionAnswering(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] =model(lowerCAmelCase_ )
A__ : Tuple =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , )
A__ : Optional[Any] =model(
lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , )
((A__) , ) : List[Any] =result_with_labels.to_tuple()
A__ : Tuple =model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ )
((A__) , ) : Tuple =result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int , ) -> Any:
'''simple docstring'''
A__ : Union[str, Any] =XLMForSequenceClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : str =model(lowerCAmelCase_ )
A__ : List[Any] =model(lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowercase__ ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
A__ : int =self.num_labels
A__ : Tuple =XLMForTokenClassification(lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any =model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , ) -> List[str]:
'''simple docstring'''
A__ : Optional[Any] =self.num_choices
A__ : Optional[int] =XLMForMultipleChoice(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Optional[int] =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] =model(
lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowercase__ ( self : str ) -> List[str]:
'''simple docstring'''
A__ : Dict =self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Optional[int] =config_and_inputs
A__ : Any ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths}
return config, inputs_dict
@require_torch
class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
XLMModel,
XLMWithLMHeadModel,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMForQuestionAnsweringSimple,
XLMForTokenClassification,
XLMForMultipleChoice,
)
if is_torch_available()
else ()
)
__snake_case = (
(XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__snake_case = (
{
'feature-extraction': XLMModel,
'fill-mask': XLMWithLMHeadModel,
'question-answering': XLMForQuestionAnsweringSimple,
'text-classification': XLMForSequenceClassification,
'text-generation': XLMWithLMHeadModel,
'token-classification': XLMForTokenClassification,
'zero-shot': XLMForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowercase__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ) -> int:
'''simple docstring'''
A__ : Tuple =super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ )
if return_labels:
if model_class.__name__ == "XLMForQuestionAnswering":
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
A__ : Any =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ )
return inputs_dict
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
A__ : Dict =XLMModelTester(self )
A__ : List[str] =ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 )
def lowercase__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self : str ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ )
def lowercase__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ )
def lowercase__ ( self : List[str] ) -> Dict:
'''simple docstring'''
A__ : Any =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ )
def lowercase__ ( self : List[Any] ) -> str:
'''simple docstring'''
A__ : List[str] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Any ) -> Tuple:
'''simple docstring'''
A__ : Optional[Any] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
A__ : Optional[int] =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]=False , lowerCAmelCase_ : Tuple=1 ) -> Tuple:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_attentions in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : Tuple =min_length + idx + 1
A__ : Tuple =min_length + idx + 1
A__ : Dict =(
batch_size * num_beam_groups,
config.num_attention_heads,
tgt_len,
src_len,
)
# check attn size
self.assertListEqual(
[layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) )
def lowercase__ ( self : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Union[str, Any]=1 ) -> Any:
'''simple docstring'''
self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertListEqual(
[isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , )
self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups )
for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ):
# adds PAD dummy token
A__ : str =min_length + idx + 1
A__ : List[Any] =(batch_size * num_beam_groups, seq_len, config.hidden_size)
# check hidden size
self.assertListEqual(
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , )
pass
@slow
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Tuple =XLMModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowercase__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
A__ : Any =XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" )
model.to(lowerCAmelCase_ )
A__ : List[Any] =torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president
A__ : Optional[Any] =[
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
14,
4_47,
] # the president the president the president the president the president the president the president the president the president the president
# TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
A__ : Tuple =model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ )
self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
| 687 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.