code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class A__ ( unittest.TestCase ): def a__ ( self : str ) -> Any: """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=_UpperCAmelCase , ) assert hasattr(self , 'env' ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str]=1 ) -> str: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def a__ ( self : Optional[int] , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" TrainingJobAnalytics(_UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.create_estimator() # run training estimator.fit() # result dataframe __lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , _UpperCAmelCase : WhisperForConditionalGeneration , _UpperCAmelCase : WhisperProcessor , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=_UpperCAmelCase , speech_processor=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> str: """simple docstring""" if slice_size == "auto": __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" self.enable_attention_slicing(_UpperCAmelCase ) @torch.no_grad() def __call__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=1_60_00 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , **_UpperCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" __lowercase = self.speech_processor.feature_extractor( _UpperCAmelCase , return_tensors='pt' , sampling_rate=_UpperCAmelCase ).input_features.to(self.device ) __lowercase = self.speech_model.generate(_UpperCAmelCase , max_length=48_00_00 ) __lowercase = self.speech_processor.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , normalize=_UpperCAmelCase )[ 0 ] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = len(_UpperCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_UpperCAmelCase )}.""" ) # get prompt text embeddings __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowercase = text_input_ids[:, : self.tokenizer.model_max_length] __lowercase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowercase , __lowercase , __lowercase = text_embeddings.shape __lowercase = text_embeddings.repeat(1 , _UpperCAmelCase , 1 ) __lowercase = text_embeddings.view(bs_embed * num_images_per_prompt , _UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''] * batch_size elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=""" f""" {type(_UpperCAmelCase )}.""" ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: __lowercase = negative_prompt __lowercase = text_input_ids.shape[-1] __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='pt' , ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = uncond_embeddings.shape[1] __lowercase = uncond_embeddings.repeat(1 , _UpperCAmelCase , 1 ) __lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowercase = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: __lowercase = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowercase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(_UpperCAmelCase ).sample __lowercase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = DiTPipeline lowerCAmelCase__ : Optional[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase__ : Dict = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCAmelCase__ : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase__ : Optional[Any] = False def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __lowercase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_UpperCAmelCase , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=_UpperCAmelCase , ) __lowercase = AutoencoderKL() __lowercase = DDIMScheduler() __lowercase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str]=0 ) -> Union[str, Any]: """simple docstring""" if str(_UpperCAmelCase ).startswith('mps' ): __lowercase = torch.manual_seed(_UpperCAmelCase ) else: __lowercase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __lowercase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a__ ( self : int ) -> str: """simple docstring""" __lowercase = 'cpu' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase = pipe(**_UpperCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowercase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1e-3 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_UpperCAmelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): def a__ ( self : str ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = torch.manual_seed(0 ) __lowercase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __lowercase = ['vase', 'umbrella', 'white shark', 'white wolf'] __lowercase = pipe.get_label_ids(_UpperCAmelCase ) __lowercase = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=40 , output_type='np' ).images for word, image in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __lowercase = ['vase', 'umbrella'] __lowercase = pipe.get_label_ids(_UpperCAmelCase ) __lowercase = torch.manual_seed(0 ) __lowercase = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type='np' ).images for word, image in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: __lowercase = torch.exp(SCREAMING_SNAKE_CASE ) __lowercase = torch.sum(SCREAMING_SNAKE_CASE , dim=1 ) # sum of exp(x_i) __lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(SCREAMING_SNAKE_CASE ) - B / A class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" super().__init__() __lowercase = config.output_attentions __lowercase = config.output_hidden_states __lowercase = nn.ModuleList([BertLayer(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __lowercase = nn.ModuleList([BertHighway(_UpperCAmelCase ) for _ in range(config.num_hidden_layers )] ) __lowercase = [-1 for _ in range(config.num_hidden_layers )] def a__ ( self : List[Any] , _UpperCAmelCase : Dict ) -> str: """simple docstring""" if (type(_UpperCAmelCase ) is float) or (type(_UpperCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __lowercase = x else: __lowercase = x def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , ) -> List[str]: """simple docstring""" __lowercase = () __lowercase = () __lowercase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __lowercase = all_hidden_states + (hidden_states,) __lowercase = layer_module( _UpperCAmelCase , _UpperCAmelCase , head_mask[i] , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = layer_outputs[0] if self.output_attentions: __lowercase = all_attentions + (layer_outputs[1],) __lowercase = (hidden_states,) if self.output_hidden_states: __lowercase = current_outputs + (all_hidden_states,) if self.output_attentions: __lowercase = current_outputs + (all_attentions,) __lowercase = self.highway[i](_UpperCAmelCase ) # logits, pooled_output if not self.training: __lowercase = highway_exit[0] __lowercase = entropy(_UpperCAmelCase ) __lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __lowercase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(_UpperCAmelCase , i + 1 ) else: __lowercase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __lowercase = all_hidden_states + (hidden_states,) __lowercase = (hidden_states,) if self.output_hidden_states: __lowercase = outputs + (all_hidden_states,) if self.output_attentions: __lowercase = outputs + (all_attentions,) __lowercase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , lowerCAmelCase__ , ) class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = BertEmbeddings(_UpperCAmelCase ) __lowercase = DeeBertEncoder(_UpperCAmelCase ) __lowercase = BertPooler(_UpperCAmelCase ) self.init_weights() def a__ ( self : Optional[int] ) -> int: """simple docstring""" self.encoder.init_highway_pooler(self.pooler ) def a__ ( self : str ) -> Optional[Any]: """simple docstring""" return self.embeddings.word_embeddings def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = value def a__ ( self : Optional[Any] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __lowercase = input_ids.size() elif inputs_embeds is not None: __lowercase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __lowercase = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if encoder_attention_mask is None: __lowercase = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __lowercase = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __lowercase = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __lowercase = encoder_attention_mask[:, None, None, :] __lowercase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __lowercase = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __lowercase = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __lowercase = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> Any: """simple docstring""" __lowercase = message __lowercase = exit_layer # start from 1! class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" super().__init__() __lowercase = BertPooler(_UpperCAmelCase ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size , config.num_labels ) def a__ ( self : Optional[Any] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) # "return" pooler_output # BertModel __lowercase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __lowercase = bmodel_output[1] __lowercase = self.dropout(_UpperCAmelCase ) __lowercase = self.classifier(_UpperCAmelCase ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase__ , ) class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeBertModel(_UpperCAmelCase ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=-1 , _UpperCAmelCase : Dict=False , ) -> Optional[int]: """simple docstring""" __lowercase = self.num_layers try: __lowercase = self.bert( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __lowercase = outputs[1] __lowercase = self.dropout(_UpperCAmelCase ) __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(_UpperCAmelCase ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } SCREAMING_SNAKE_CASE__ = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } SCREAMING_SNAKE_CASE__ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = VOCAB_FILES_NAMES lowerCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : List[Any] = ConvBertTokenizer def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]="[UNK]" , _UpperCAmelCase : str="[SEP]" , _UpperCAmelCase : Optional[int]="[PAD]" , _UpperCAmelCase : Any="[CLS]" , _UpperCAmelCase : List[Any]="[MASK]" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Optional[int] , ) -> Tuple: """simple docstring""" super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_UpperCAmelCase ) __lowercase = do_lower_case def a__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=None ) -> Optional[int]: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
import os from collections import deque import torch from torch.utils.data import Dataset class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str="" , _UpperCAmelCase : int="train" ) -> Tuple: """simple docstring""" assert os.path.isdir(_UpperCAmelCase ) __lowercase = [] __lowercase = os.listdir(_UpperCAmelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ): continue self.documents.append(_UpperCAmelCase ) def __len__( self : List[str] ) -> List[str]: """simple docstring""" return len(self.documents ) def __getitem__( self : int , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = self.documents[idx] __lowercase = document_path.split('/' )[-1] with open(_UpperCAmelCase , encoding='utf-8' ) as source: __lowercase = source.read() __lowercase , __lowercase = process_story(_UpperCAmelCase ) return document_name, story_lines, summary_lines def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase = list(filter(lambda SCREAMING_SNAKE_CASE : len(SCREAMING_SNAKE_CASE ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it __lowercase = [_add_missing_period(SCREAMING_SNAKE_CASE ) for line in nonempty_lines] # gather article lines __lowercase = [] __lowercase = deque(SCREAMING_SNAKE_CASE ) while True: try: __lowercase = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(SCREAMING_SNAKE_CASE ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __lowercase = list(filter(lambda SCREAMING_SNAKE_CASE : not t.startswith('@highlight' ) , SCREAMING_SNAKE_CASE ) ) return story_lines, summary_lines def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> str: __lowercase = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: if len(SCREAMING_SNAKE_CASE ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE )) ) return sequence def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ) -> List[Any]: __lowercase = torch.ones_like(SCREAMING_SNAKE_CASE ) __lowercase = sequence == pad_token_id __lowercase = 0 return mask def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: __lowercase = [tokenizer.encode(SCREAMING_SNAKE_CASE ) for line in story_lines] __lowercase = [token for sentence in story_lines_token_ids for token in sentence] __lowercase = [tokenizer.encode(SCREAMING_SNAKE_CASE ) for line in summary_lines] __lowercase = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: __lowercase = [] for sequence in batch: __lowercase = -1 __lowercase = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE ) return torch.tensor(SCREAMING_SNAKE_CASE )
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A__ ( lowerCAmelCase__ ): def __init__( self : int , _UpperCAmelCase : Any=0.01 , _UpperCAmelCase : Optional[Any]=10_00 ) -> Dict: """simple docstring""" __lowercase = p_stop __lowercase = max_length def __iter__( self : Dict ) -> int: """simple docstring""" __lowercase = 0 __lowercase = False while not stop and count < self.max_length: yield count count += 1 __lowercase = random.random() < self.p_stop class A__ ( unittest.TestCase ): def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=True ) -> Optional[Any]: """simple docstring""" __lowercase = [ BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 ) ] __lowercase = [list(_UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_UpperCAmelCase ) for shard in batch_sampler_shards] , [len(_UpperCAmelCase ) for e in expected] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str ) -> Tuple: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) def a__ ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) def a__ ( self : List[str] ) -> Any: """simple docstring""" __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[[0, 1]], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) __lowercase = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __lowercase = [BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=False ) -> Any: """simple docstring""" random.seed(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = [ IterableDatasetShard( _UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase , num_processes=_UpperCAmelCase , process_index=_UpperCAmelCase , split_batches=_UpperCAmelCase , ) for i in range(_UpperCAmelCase ) ] __lowercase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_UpperCAmelCase ) iterable_dataset_lists.append(list(_UpperCAmelCase ) ) __lowercase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __lowercase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(len(_UpperCAmelCase ) % shard_batch_size == 0 ) __lowercase = [] for idx in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_UpperCAmelCase ) < len(_UpperCAmelCase ): reference += reference self.assertListEqual(_UpperCAmelCase , reference[: len(_UpperCAmelCase )] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = 42 __lowercase = RandomIterableDataset() self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) # Edge case with a very small dataset __lowercase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = BatchSampler(range(16 ) , batch_size=4 , drop_last=_UpperCAmelCase ) __lowercase = SkipBatchSampler(_UpperCAmelCase , 2 ) self.assertListEqual(list(_UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = DataLoader(list(range(16 ) ) , batch_size=4 ) __lowercase = skip_first_batches(_UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" Accelerator() __lowercase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
import enum import shutil import sys SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = shutil.get_terminal_size() SCREAMING_SNAKE_CASE__ = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class A__ ( enum.Enum ): lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Union[str, Any] = 1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]="" ) -> Union[str, Any]: sys.stdout.write(str(SCREAMING_SNAKE_CASE ) + end ) sys.stdout.flush() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str="" ) -> str: forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: forceWrite('\r' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ) -> List[str]: forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
from math import asin, atan, cos, radians, sin, sqrt, tan SCREAMING_SNAKE_CASE__ = 6378137.0 SCREAMING_SNAKE_CASE__ = 6356752.314245 SCREAMING_SNAKE_CASE__ = 637_8137 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: __lowercase = (AXIS_A - AXIS_B) / AXIS_A __lowercase = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) __lowercase = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE ) ) ) __lowercase = radians(SCREAMING_SNAKE_CASE ) __lowercase = radians(SCREAMING_SNAKE_CASE ) # Equation __lowercase = sin((phi_a - phi_a) / 2 ) __lowercase = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __lowercase = sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE ) * cos(SCREAMING_SNAKE_CASE ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "dinat" lowerCAmelCase__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Optional[int]=64 , _UpperCAmelCase : List[str]=[3, 4, 6, 5] , _UpperCAmelCase : Any=[2, 4, 8, 16] , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[int]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _UpperCAmelCase : int=3.0 , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Union[str, Any]=1e-5 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : str , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(_UpperCAmelCase ) __lowercase = num_heads __lowercase = kernel_size __lowercase = dilations __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = layer_norm_eps __lowercase = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) __lowercase = layer_scale_init_value __lowercase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_UpperCAmelCase ) + 1 )] __lowercase , __lowercase = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = KandinskyVaaPriorPipeline lowerCAmelCase__ : int = ["prompt"] lowerCAmelCase__ : Dict = ["prompt", "negative_prompt"] lowerCAmelCase__ : Union[str, Any] = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] lowerCAmelCase__ : Union[str, Any] = False @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return 32 @property def a__ ( self : Optional[int] ) -> str: """simple docstring""" return 32 @property def a__ ( self : str ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return 1_00 @property def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = { 'num_attention_heads': 2, 'attention_head_dim': 12, 'embedding_dim': self.text_embedder_hidden_size, 'num_layers': 1, } __lowercase = PriorTransformer(**_UpperCAmelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __lowercase = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_24 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) __lowercase = CLIPVisionModelWithProjection(_UpperCAmelCase ) return model @property def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_24 , ) return image_processor def a__ ( self : int ) -> Dict: """simple docstring""" __lowercase = self.dummy_prior __lowercase = self.dummy_image_encoder __lowercase = self.dummy_text_encoder __lowercase = self.dummy_tokenizer __lowercase = self.dummy_image_processor __lowercase = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=_UpperCAmelCase , clip_sample_range=10.0 , ) __lowercase = { 'prior': prior, 'image_encoder': image_encoder, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'scheduler': scheduler, 'image_processor': image_processor, } return components def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=0 ) -> int: """simple docstring""" if str(_UpperCAmelCase ).startswith('mps' ): __lowercase = torch.manual_seed(_UpperCAmelCase ) else: __lowercase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __lowercase = { 'prompt': 'horse', 'generator': generator, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = 'cpu' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**_UpperCAmelCase ) __lowercase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __lowercase = output.image_embeds __lowercase = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] __lowercase = image[0, -10:] __lowercase = image_from_tuple[0, -10:] assert image.shape == (1, 32) __lowercase = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a__ ( self : int ) -> str: """simple docstring""" __lowercase = torch_device == 'cpu' __lowercase = True __lowercase = False self._test_inference_batch_single_identical( test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , test_mean_pixel_difference=_UpperCAmelCase , ) @skip_mps def a__ ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = torch_device == 'cpu' __lowercase = False self._test_attention_slicing_forward_pass( test_max_difference=_UpperCAmelCase , test_mean_pixel_difference=_UpperCAmelCase , )
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( ) -> Dict: # Get the sagemaker specific mp parameters from smp_options variable. __lowercase = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowercase = json.loads(SCREAMING_SNAKE_CASE ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowercase = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowercase = json.loads(SCREAMING_SNAKE_CASE ) if not mpi_options.get('sagemaker_mpi_enabled' , SCREAMING_SNAKE_CASE ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _UpperCAmelCase , ) @cached_property def a__ ( self : List[str] ) -> "torch.device": """simple docstring""" logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: __lowercase = torch.device('cpu' ) __lowercase = 0 elif is_sagemaker_model_parallel_available(): __lowercase = smp.local_rank() __lowercase = torch.device('cuda' , _UpperCAmelCase ) __lowercase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) __lowercase = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) __lowercase = torch.device('cuda' , self.local_rank ) __lowercase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowercase = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowercase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) __lowercase = torch.device('cuda' , self.local_rank ) __lowercase = 1 if device.type == "cuda": torch.cuda.set_device(_UpperCAmelCase ) return device @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def a__ ( self : str ) -> int: """simple docstring""" return not is_sagemaker_model_parallel_available() @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return False
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A__ ( unittest.TestCase ): def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = ['a', 'b', 'c'] # Defaults to last layer if both are None __lowercase , __lowercase = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['c'] ) self.assertEqual(_UpperCAmelCase , [2] ) # Out indices set to match out features __lowercase , __lowercase = get_aligned_output_features_output_indices(['a', 'c'] , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['a', 'c'] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features set to match out indices __lowercase , __lowercase = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['a', 'c'] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features selected from negative indices __lowercase , __lowercase = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['a', 'c'] ) self.assertEqual(_UpperCAmelCase , [-3, -1] ) def a__ ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , _UpperCAmelCase ) # Out features must be a list with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = BackboneMixin() __lowercase = ['a', 'b', 'c'] __lowercase = ['a', 'c'] __lowercase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __lowercase = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) __lowercase = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[Any]: __lowercase = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE , allow_abbrev=SCREAMING_SNAKE_CASE ) # The main config parser __lowercase = config_command_parser(SCREAMING_SNAKE_CASE ) # The subparser to add commands to __lowercase = config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __lowercase = get_config_parser() __lowercase = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: try: with open(SCREAMING_SNAKE_CASE , 'rb' ) as flax_state_f: __lowercase = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __lowercase = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __lowercase = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) __lowercase = '' __lowercase = flatten_dict(SCREAMING_SNAKE_CASE , sep='.' ) __lowercase = pt_model.state_dict() # keep track of unexpected & missing keys __lowercase = [] __lowercase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowercase = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __lowercase = flax_key_tuple_array[:-1] + ['weight'] __lowercase = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __lowercase = flax_key_tuple_array[:-1] + ['weight'] __lowercase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __lowercase = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): __lowercase = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) __lowercase = '.'.join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __lowercase = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list __lowercase = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) return pt_model
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) __lowercase = len(bin(SCREAMING_SNAKE_CASE )[3:] ) __lowercase = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] __lowercase = ( ( '1' + '0' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : str = StableDiffusionPanoramaPipeline lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def a__ ( self : Any ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __lowercase = DDIMScheduler() torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowercase = CLIPTextModel(_UpperCAmelCase ) __lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowercase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=0 ) -> Optional[Any]: """simple docstring""" __lowercase = torch.manual_seed(_UpperCAmelCase ) __lowercase = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase = sd_pipe(**_UpperCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_186, 0.5_374, 0.4_915, 0.4_135, 0.4_114, 0.4_563, 0.5_128, 0.4_977, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : List[str] ) -> Dict: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self : int ) -> List[Any]: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase = 'french fries' __lowercase = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : str ) -> int: """simple docstring""" __lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase = sd_pipe(**_UpperCAmelCase , view_batch_size=2 ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_187, 0.5_375, 0.4_915, 0.4_136, 0.4_114, 0.4_563, 0.5_128, 0.4_976, 0.4_757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) __lowercase = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase = sd_pipe(**_UpperCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.4_024, 0.6_510, 0.4_901, 0.5_378, 0.5_813, 0.5_622, 0.4_795, 0.4_467, 0.4_952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = PNDMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , skip_prk_steps=_UpperCAmelCase ) __lowercase = StableDiffusionPanoramaPipeline(**_UpperCAmelCase ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __lowercase = self.get_dummy_inputs(_UpperCAmelCase ) __lowercase = sd_pipe(**_UpperCAmelCase ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.6_391, 0.6_291, 0.4_861, 0.5_134, 0.5_552, 0.4_578, 0.5_032, 0.5_023, 0.4_539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : List[Any] , _UpperCAmelCase : str=0 ) -> Tuple: """simple docstring""" __lowercase = torch.manual_seed(_UpperCAmelCase ) __lowercase = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = 'stabilityai/stable-diffusion-2-base' __lowercase = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='scheduler' ) __lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __lowercase = self.get_inputs() __lowercase = pipe(**_UpperCAmelCase ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __lowercase = np.array( [ 0.36_968_392, 0.27_025_372, 0.32_446_766, 0.28_379_387, 0.36_363_274, 0.30_733_347, 0.27_100_027, 0.27_054_125, 0.25_536_096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=_UpperCAmelCase ) __lowercase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __lowercase = self.get_inputs() __lowercase = pipe(**_UpperCAmelCase ).images __lowercase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) __lowercase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = 0 def callback_fn(_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor ) -> None: __lowercase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [ 0.18_681_869, 0.33_907_816, 0.5_361_276, 0.14_432_865, -0.02_856_611, -0.73_941_123, 0.23_397_987, 0.47_322_682, -0.37_823_164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __lowercase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) __lowercase = latents[0, -3:, -3:, -1] __lowercase = np.array( [ 0.18_539_645, 0.33_987_248, 0.5_378_559, 0.14_437_142, -0.02_455_261, -0.7_338_317, 0.23_990_755, 0.47_356_272, -0.3_786_505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __lowercase = False __lowercase = 'stabilityai/stable-diffusion-2-base' __lowercase = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='scheduler' ) __lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) __lowercase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() __lowercase = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = 'stabilityai/stable-diffusion-2-base' __lowercase = DDIMScheduler.from_pretrained(_UpperCAmelCase , subfolder='scheduler' ) __lowercase = StableDiffusionPanoramaPipeline.from_pretrained(_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase ) __lowercase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase = self.get_inputs() __lowercase = pipe(**_UpperCAmelCase ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) __lowercase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowercase = tokenizer('Hello there' , return_tensors='np' ).input_ids __lowercase = tokenizer('Hi I am' , return_tensors='np' ).input_ids __lowercase = shift_tokens_right(_UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) __lowercase = model(_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits __lowercase = optax.softmax_cross_entropy(_UpperCAmelCase , onehot(_UpperCAmelCase , logits.shape[-1] ) ).mean() __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
SCREAMING_SNAKE_CASE__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ) -> list[str]: __lowercase = set() # keep track of all the paths to be checked __lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __lowercase = queue.pop(0 ) # get the last node from the path __lowercase = path[-1] if node not in explored: __lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __lowercase = list(SCREAMING_SNAKE_CASE ) new_path.append(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(SCREAMING_SNAKE_CASE ) # in case there's no path between the 2 nodes return [] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __lowercase = [start] __lowercase = set(SCREAMING_SNAKE_CASE ) # Keep tab on distances from `start` node. __lowercase = {start: 0, target: -1} while queue: __lowercase = queue.pop(0 ) if node == target: __lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(SCREAMING_SNAKE_CASE ) queue.append(SCREAMING_SNAKE_CASE ) __lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import pytest import datasets # Import fixture modules as plugins SCREAMING_SNAKE_CASE__ = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ) -> int: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __lowercase = tmp_path_factory.getbasetemp() / 'cache' __lowercase = test_hf_cache_home / 'datasets' __lowercase = test_hf_cache_home / 'metrics' __lowercase = test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(SCREAMING_SNAKE_CASE ) ) __lowercase = test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE ) ) __lowercase = test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE , scope='session' ) def __SCREAMING_SNAKE_CASE ( ) -> str: datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , SCREAMING_SNAKE_CASE ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , SCREAMING_SNAKE_CASE )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE__ = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE__ = BASE_URL + """/user""" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE__ = os.environ.get("""USER_TOKEN""", """""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> dict[Any, Any]: __lowercase = { 'Authorization': F"""token {auth_token}""", 'Accept': 'application/vnd.github.v3+json', } return requests.get(SCREAMING_SNAKE_CASE , headers=SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> int: __lowercase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __lowercase = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) __lowercase = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) __lowercase = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) __lowercase = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) __lowercase = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) __lowercase = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) __lowercase = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) __lowercase = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) __lowercase = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) __lowercase = key.replace('image_encoder.module' , 'flava.image_model' ) __lowercase = key.replace('text_encoder.module' , 'flava.text_model' ) __lowercase = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) __lowercase = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) __lowercase = key.replace('text_projection' , 'flava.text_projection' ) __lowercase = key.replace('image_projection' , 'flava.image_projection' ) __lowercase = value.float() for key, value in codebook_state_dict.items(): __lowercase = value return upgrade @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=None ) -> List[Any]: if config_path is not None: __lowercase = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: __lowercase = FlavaConfig() __lowercase = FlavaForPreTraining(SCREAMING_SNAKE_CASE ).eval() __lowercase = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , save_checkpoint=SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): __lowercase = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' ) else: __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) __lowercase = upgrade_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowercase = hf_model.state_dict() __lowercase = count_parameters(SCREAMING_SNAKE_CASE ) __lowercase = count_parameters(SCREAMING_SNAKE_CASE ) + count_parameters(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
import math from numpy import inf from scipy.integrate import quad def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if num <= 0: raise ValueError('math domain error' ) return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def a__ ( *_UpperCAmelCase : Dict , **_UpperCAmelCase : int ) -> str: """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Image ) -> str: __lowercase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Image ) -> Dict: __lowercase = np.array(SCREAMING_SNAKE_CASE ) __lowercase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE ), "shape": shape} @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): lowerCAmelCase__ : Dict = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase__ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def a__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = MaskGenerationPipeline(model=_UpperCAmelCase , image_processor=_UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def a__ ( self : List[Any] ) -> int: """simple docstring""" pass @slow @require_torch def a__ ( self : str ) -> List[Any]: """simple docstring""" __lowercase = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) __lowercase = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=2_56 ) # Shortening by hashing __lowercase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0_053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (4_80, 6_40)}, 'scores': 0.9_967}, {'mask': {'hash': '453c7844bd', 'shape': (4_80, 6_40)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (4_80, 6_40)}, 'scores': 0.9_909}, {'mask': {'hash': '64033ddc3f', 'shape': (4_80, 6_40)}, 'scores': 0.9_879}, {'mask': {'hash': '801064ff79', 'shape': (4_80, 6_40)}, 'scores': 0.9_834}, {'mask': {'hash': '6172f276ef', 'shape': (4_80, 6_40)}, 'scores': 0.9_716}, {'mask': {'hash': 'b49e60e084', 'shape': (4_80, 6_40)}, 'scores': 0.9_612}, {'mask': {'hash': 'a811e775fd', 'shape': (4_80, 6_40)}, 'scores': 0.9_599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (4_80, 6_40)}, 'scores': 0.9_552}, {'mask': {'hash': '9d8257e080', 'shape': (4_80, 6_40)}, 'scores': 0.9_532}, {'mask': {'hash': '32de6454a8', 'shape': (4_80, 6_40)}, 'scores': 0.9_516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (4_80, 6_40)}, 'scores': 0.9_499}, {'mask': {'hash': '3c6db475fb', 'shape': (4_80, 6_40)}, 'scores': 0.9_483}, {'mask': {'hash': 'c290813fb9', 'shape': (4_80, 6_40)}, 'scores': 0.9_464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (4_80, 6_40)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (4_80, 6_40)}, 'scores': 0.9_408}, {'mask': {'hash': 'efb6cab859', 'shape': (4_80, 6_40)}, 'scores': 0.9_335}, {'mask': {'hash': '1ff2eafb30', 'shape': (4_80, 6_40)}, 'scores': 0.9_326}, {'mask': {'hash': '788b798e24', 'shape': (4_80, 6_40)}, 'scores': 0.9_262}, {'mask': {'hash': 'abea804f0e', 'shape': (4_80, 6_40)}, 'scores': 0.8_999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (4_80, 6_40)}, 'scores': 0.8_986}, {'mask': {'hash': 'cd24047c8a', 'shape': (4_80, 6_40)}, 'scores': 0.8_984}, {'mask': {'hash': '6943e6bcbd', 'shape': (4_80, 6_40)}, 'scores': 0.8_873}, {'mask': {'hash': 'b5f47c9191', 'shape': (4_80, 6_40)}, 'scores': 0.8_871} ] , ) # fmt: on @require_torch @slow def a__ ( self : str ) -> str: """simple docstring""" __lowercase = 'facebook/sam-vit-huge' __lowercase = pipeline('mask-generation' , model=_UpperCAmelCase ) __lowercase = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing __lowercase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (4_80, 6_40)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (4_80, 6_40)}, 'scores': 1.0_210}, {'mask': {'hash': 'dfe28a0388', 'shape': (4_80, 6_40)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (4_80, 6_40)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (4_80, 6_40)}, 'scores': 1.0_053}, ] , )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowercase = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE ) __lowercase = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Parse args __lowercase , __lowercase = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) __lowercase = parse_unknown_args(SCREAMING_SNAKE_CASE ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """facebook/wav2vec2-base-960h""": """https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json""", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "wav2vec2" def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : Tuple=30_72 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : str=1e-5 , _UpperCAmelCase : List[Any]="group" , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Any=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase : int=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : List[Any]=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=0.05 , _UpperCAmelCase : List[str]=10 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Dict=3_20 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Tuple=1_00 , _UpperCAmelCase : str=2_56 , _UpperCAmelCase : Optional[Any]=2_56 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]="sum" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : str=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase : Any=(5, 3, 3, 1, 1) , _UpperCAmelCase : int=(1, 2, 3, 1, 1) , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : int , ) -> int: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = conv_bias __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = vocab_size __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length __lowercase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = feat_quantizer_dropout __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # adapter __lowercase = add_adapter __lowercase = adapter_kernel_size __lowercase = adapter_stride __lowercase = num_adapter_layers __lowercase = output_hidden_size or hidden_size __lowercase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = xvector_output_dim @property def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class A__ : def __init__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = False def a__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Any: """simple docstring""" if not self.initialized: __lowercase = RagRetriever( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) __lowercase = True def a__ ( self : List[Any] ) -> Any: """simple docstring""" self.retriever.index.init_index() def a__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase = self.retriever._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=None ) -> str: """simple docstring""" if index is not None and index.is_initialized() and len(_UpperCAmelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) __lowercase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for worker in self.retrieval_workers ] ) def a__ ( self : Any ) -> Dict: """simple docstring""" logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def a__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowercase , __lowercase = ray.get(random_worker.retrieve.remote(_UpperCAmelCase , _UpperCAmelCase ) ) else: __lowercase , __lowercase = self._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCAmelCase ) @classmethod def a__ ( cls : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return super(_UpperCAmelCase , cls ).get_tokenizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) @classmethod def a__ ( cls : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = kwargs.pop('config' , _UpperCAmelCase ) or RagConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = RagTokenizer.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) __lowercase = rag_tokenizer.question_encoder __lowercase = rag_tokenizer.generator if indexed_dataset is not None: __lowercase = 'custom' __lowercase = CustomHFIndex(config.retrieval_vector_size , _UpperCAmelCase ) else: __lowercase = cls._build_index(_UpperCAmelCase ) return cls( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , retrieval_workers=_UpperCAmelCase , index=_UpperCAmelCase , )
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : str = "mgp-str" def __init__( self : Tuple , _UpperCAmelCase : int=[32, 1_28] , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : str=27 , _UpperCAmelCase : List[str]=38 , _UpperCAmelCase : Optional[Any]=5_02_57 , _UpperCAmelCase : Union[str, Any]=3_05_22 , _UpperCAmelCase : List[str]=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Dict=4.0 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Union[str, Any]=0.02 , **_UpperCAmelCase : int , ) -> List[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = max_token_length __lowercase = num_character_labels __lowercase = num_bpe_labels __lowercase = num_wordpiece_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = mlp_ratio __lowercase = distilled __lowercase = layer_norm_eps __lowercase = drop_rate __lowercase = qkv_bias __lowercase = attn_drop_rate __lowercase = drop_path_rate __lowercase = output_aa_attentions __lowercase = initializer_range
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
class A__ : def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" __lowercase = None __lowercase = None __lowercase = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = len(_UpperCAmelCase ) __lowercase = None def a__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" if sources is int: __lowercase = [sources] if sinks is int: __lowercase = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return __lowercase = sources[0] __lowercase = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: __lowercase = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __lowercase = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __lowercase = max_input_flow __lowercase = 0 __lowercase = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __lowercase = max_input_flow __lowercase = size - 1 def a__ ( self : int ) -> List[str]: """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def a__ ( self : Tuple , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" __lowercase = algorithm(self ) class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" __lowercase = flow_network __lowercase = flow_network.verticesCount __lowercase = flow_network.sourceIndex __lowercase = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __lowercase = flow_network.graph __lowercase = False def a__ ( self : Any ) -> Dict: """simple docstring""" if not self.executed: self._algorithm() __lowercase = True def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" pass class A__ ( lowerCAmelCase__ ): def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) # use this to save your result __lowercase = -1 def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class A__ ( lowerCAmelCase__ ): def __init__( self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = [[0] * self.verticies_count for i in range(self.verticies_count )] __lowercase = [0] * self.verticies_count __lowercase = [0] * self.verticies_count def a__ ( self : Dict ) -> Dict: """simple docstring""" __lowercase = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __lowercase = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __lowercase = 0 while i < len(_UpperCAmelCase ): __lowercase = vertices_list[i] __lowercase = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) __lowercase = 0 else: i += 1 __lowercase = sum(self.preflow[self.source_index] ) def a__ ( self : List[Any] , _UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" __lowercase = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" __lowercase = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __lowercase = self.heights[to_index] if min_height is not None: __lowercase = min_height + 1 if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [0] SCREAMING_SNAKE_CASE__ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] SCREAMING_SNAKE_CASE__ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network SCREAMING_SNAKE_CASE__ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate SCREAMING_SNAKE_CASE__ = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: __lowercase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) __lowercase = flatten_dict(SCREAMING_SNAKE_CASE ) return flax_params def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: __lowercase = {} __lowercase = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __lowercase = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __lowercase = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __lowercase = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __lowercase = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __lowercase = re.sub(R'layers_(\d+)' , R'layer.\1' , SCREAMING_SNAKE_CASE ) __lowercase = new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __lowercase = re.sub(R'layers_(\d+)' , R'layer.\1' , SCREAMING_SNAKE_CASE ) __lowercase = flax_dict[key] __lowercase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __lowercase = torch.from_numpy(converted_dict[key].T ) else: __lowercase = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Any=False ) -> Any: __lowercase = get_flax_param(SCREAMING_SNAKE_CASE ) if not use_large: __lowercase = PixaStructVisionConfig() __lowercase = PixaStructTextConfig() else: __lowercase = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __lowercase = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __lowercase = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE ) __lowercase = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE ) __lowercase = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowercase = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __lowercase = PixaStructImageProcessor() __lowercase = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) if use_large: __lowercase = 4096 __lowercase = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "swin2sr" lowerCAmelCase__ : Dict = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Optional[Any]=1_80 , _UpperCAmelCase : Tuple=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase : Optional[int]=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase : Any=8 , _UpperCAmelCase : List[str]=2.0 , _UpperCAmelCase : int=True , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : str=1e-5 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : int="1conv" , _UpperCAmelCase : int="pixelshuffle" , **_UpperCAmelCase : Tuple , ) -> str: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(_UpperCAmelCase ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class A__ : lowerCAmelCase__ : CommonSchedulerState # setable values lowerCAmelCase__ : jnp.ndarray lowerCAmelCase__ : jnp.ndarray lowerCAmelCase__ : Optional[int] = None @classmethod def a__ ( cls : List[str] , _UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ) -> Optional[int]: """simple docstring""" return cls(common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase ) @dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : DDPMSchedulerState class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCAmelCase__ : jnp.dtype @property def a__ ( self : List[str] ) -> str: """simple docstring""" return True @register_to_config def __init__( self : Dict , _UpperCAmelCase : int = 10_00 , _UpperCAmelCase : float = 0.0_001 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[jnp.ndarray] = None , _UpperCAmelCase : str = "fixed_small" , _UpperCAmelCase : bool = True , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : jnp.dtype = jnp.floataa , ) -> Tuple: """simple docstring""" __lowercase = dtype def a__ ( self : Tuple , _UpperCAmelCase : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: """simple docstring""" if common is None: __lowercase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __lowercase = jnp.array(1.0 , dtype=self.dtype ) __lowercase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_UpperCAmelCase , init_noise_sigma=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def a__ ( self : List[str] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Optional[int] = None ) -> jnp.ndarray: """simple docstring""" return sample def a__ ( self : Optional[Any] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : int , _UpperCAmelCase : Tuple = () ) -> DDPMSchedulerState: """simple docstring""" __lowercase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __lowercase = (jnp.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_UpperCAmelCase , timesteps=_UpperCAmelCase , ) def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=None ) -> Any: """simple docstring""" __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __lowercase = jnp.clip(_UpperCAmelCase , a_min=1e-2_0 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __lowercase = jnp.log(jnp.clip(_UpperCAmelCase , a_min=1e-2_0 ) ) elif variance_type == "fixed_large": __lowercase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __lowercase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __lowercase = variance __lowercase = state.common.betas[t] __lowercase = (predicted_variance + 1) / 2 __lowercase = frac * max_log + (1 - frac) * min_log return variance def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Optional[jax.random.KeyArray] = None , _UpperCAmelCase : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: """simple docstring""" __lowercase = timestep if key is None: __lowercase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = jnp.split(_UpperCAmelCase , sample.shape[1] , axis=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = state.common.alphas_cumprod[t] __lowercase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase = model_output elif self.config.prediction_type == "v_prediction": __lowercase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase = jnp.clip(_UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __lowercase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __lowercase = jax.random.split(_UpperCAmelCase , num=1 ) __lowercase = jax.random.normal(_UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_UpperCAmelCase , _UpperCAmelCase , predicted_variance=_UpperCAmelCase ) ** 0.5) * noise __lowercase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_UpperCAmelCase , state=_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return add_noise_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : DDPMSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , ) -> jnp.ndarray: """simple docstring""" return get_velocity_common(state.common , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __len__( self : int ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "blip_2_vision_model" def __init__( self : int , _UpperCAmelCase : Dict=14_08 , _UpperCAmelCase : Union[str, Any]=61_44 , _UpperCAmelCase : List[Any]=39 , _UpperCAmelCase : str=16 , _UpperCAmelCase : Any=2_24 , _UpperCAmelCase : int=14 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : str=0.00_001 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Any=1e-1_0 , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : int , ) -> Optional[int]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def a__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "blip_2_qformer" def __init__( self : Dict , _UpperCAmelCase : Optional[int]=3_05_22 , _UpperCAmelCase : Optional[Any]=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=5_12 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-1_2 , _UpperCAmelCase : Any=0 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : str=14_08 , **_UpperCAmelCase : Dict , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def a__ ( cls : Optional[int] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(_UpperCAmelCase ) __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __lowercase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "blip-2" lowerCAmelCase__ : int = True def __init__( self : int , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[int]=32 , **_UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__(**_UpperCAmelCase ) if vision_config is None: __lowercase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: __lowercase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: __lowercase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __lowercase = BlipaVisionConfig(**_UpperCAmelCase ) __lowercase = BlipaQFormerConfig(**_UpperCAmelCase ) __lowercase = text_config['model_type'] if 'model_type' in text_config else 'opt' __lowercase = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.02 @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : BlipaVisionConfig , _UpperCAmelCase : BlipaQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : List[Any] , ) -> str: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""", }, """tokenizer_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """google/fnet-base""": 512, """google/fnet-large""": 512, } SCREAMING_SNAKE_CASE__ = """▁""" class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = VOCAB_FILES_NAMES lowerCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Tuple = ["input_ids", "token_type_ids"] lowerCAmelCase__ : Tuple = FNetTokenizer def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : Optional[int]="[SEP]" , _UpperCAmelCase : Dict="<pad>" , _UpperCAmelCase : str="[CLS]" , _UpperCAmelCase : Tuple="[MASK]" , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" __lowercase = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = False if not self.vocab_file else True def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class A__ : def __init__( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=99 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : str=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : int=5_12 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Union[str, Any]=None , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = embedding_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : str ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : str ) -> Optional[int]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" __lowercase = MegatronBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = MegatronBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = MegatronBertForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = MegatronBertForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" __lowercase = MegatronBertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = MegatronBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = MegatronBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" __lowercase = self.num_labels __lowercase = MegatronBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.num_choices __lowercase = MegatronBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : Optional[int] = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Union[str, Any] = True # test_resize_embeddings = False lowerCAmelCase__ : Tuple = False def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=False ) -> List[Any]: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = MegatronBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : str ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_UpperCAmelCase ) def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> str: return torch.tensor( SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow @unittest.skip('Model is not available.' ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: __lowercase = os.path.join(os.environ['MYDIR'] , _UpperCAmelCase ) __lowercase = MegatronBertModel.from_pretrained(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.half() __lowercase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase )[0] __lowercase = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): __lowercase = output[0, ii, jj] __lowercase = expected[3 * ii + jj] __lowercase = 'ii={} jj={} a={} b={}'.format(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(math.isclose(_UpperCAmelCase , _UpperCAmelCase , rel_tol=_UpperCAmelCase , abs_tol=_UpperCAmelCase ) , msg=_UpperCAmelCase )
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ) -> str: return max(metric_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for gt in ground_truths ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: __lowercase = [line.strip() for line in open(SCREAMING_SNAKE_CASE , 'r' ).readlines()] __lowercase = [] if args.gold_data_mode == "qa": __lowercase = pd.read_csv(SCREAMING_SNAKE_CASE , sep='\t' , header=SCREAMING_SNAKE_CASE ) for answer_list in data[1]: __lowercase = ast.literal_eval(SCREAMING_SNAKE_CASE ) answers.append(SCREAMING_SNAKE_CASE ) else: __lowercase = [line.strip() for line in open(SCREAMING_SNAKE_CASE , 'r' ).readlines()] __lowercase = [[reference] for reference in references] __lowercase = __lowercase = __lowercase = 0 for prediction, ground_truths in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): total += 1 em += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) fa += metric_max_over_ground_truths(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = 100.0 * em / total __lowercase = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: __lowercase = args.k __lowercase = [line.strip() for line in open(SCREAMING_SNAKE_CASE , 'r' ).readlines()] __lowercase = [line.strip() for line in open(SCREAMING_SNAKE_CASE , 'r' ).readlines()] __lowercase = __lowercase = 0 for hypo, reference in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = set(hypo.split('\t' )[:k] ) __lowercase = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowercase = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: def strip_title(SCREAMING_SNAKE_CASE : Tuple ): if title.startswith('"' ): __lowercase = title[1:] if title.endswith('"' ): __lowercase = title[:-1] return title __lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , )['input_ids'].to(args.device ) __lowercase = rag_model.rag.question_encoder(SCREAMING_SNAKE_CASE ) __lowercase = question_enc_outputs[0] __lowercase = rag_model.retriever( SCREAMING_SNAKE_CASE , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) __lowercase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowercase = [] for docs in all_docs: __lowercase = [strip_title(SCREAMING_SNAKE_CASE ) for title in docs['title']] provenance_strings.append('\t'.join(SCREAMING_SNAKE_CASE ) ) return provenance_strings def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]: with torch.no_grad(): __lowercase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE ) __lowercase = inputs_dict.input_ids.to(args.device ) __lowercase = inputs_dict.attention_mask.to(args.device ) __lowercase = rag_model.generate( # rag_model overwrites generate SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=SCREAMING_SNAKE_CASE , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowercase = rag_model.retriever.generator_tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) if args.print_predictions: for q, a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): logger.info('Q: {} - A: {}'.format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return answers def __SCREAMING_SNAKE_CASE ( ) -> Any: __lowercase = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=SCREAMING_SNAKE_CASE , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=SCREAMING_SNAKE_CASE , choices=['exact', 'compressed', 'legacy'] , type=SCREAMING_SNAKE_CASE , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=SCREAMING_SNAKE_CASE , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=SCREAMING_SNAKE_CASE , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=SCREAMING_SNAKE_CASE , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=SCREAMING_SNAKE_CASE , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=SCREAMING_SNAKE_CASE , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=SCREAMING_SNAKE_CASE , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=SCREAMING_SNAKE_CASE , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=SCREAMING_SNAKE_CASE , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=SCREAMING_SNAKE_CASE , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) __lowercase = parser.parse_args() __lowercase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: __lowercase = {} if args.model_type is None: __lowercase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): __lowercase = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration __lowercase = args.n_docs if args.index_name is not None: __lowercase = args.index_name if args.index_path is not None: __lowercase = args.index_path else: __lowercase = BartForConditionalGeneration __lowercase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , SCREAMING_SNAKE_CASE ) __lowercase = get_scores if args.eval_mode == 'e2e' else get_precision_at_k __lowercase = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(SCREAMING_SNAKE_CASE ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): __lowercase = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __lowercase = model_class.from_pretrained(SCREAMING_SNAKE_CASE , retriever=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) model.retriever.init_retrieval() else: __lowercase = model_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: __lowercase = [] for line in tqdm(SCREAMING_SNAKE_CASE ): questions.append(line.strip() ) if len(SCREAMING_SNAKE_CASE ) == args.eval_batch_size: __lowercase = evaluate_batch_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) preds_file.write('\n'.join(SCREAMING_SNAKE_CASE ) + '\n' ) preds_file.flush() __lowercase = [] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = evaluate_batch_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) preds_file.write('\n'.join(SCREAMING_SNAKE_CASE ) ) preds_file.flush() score_fn(SCREAMING_SNAKE_CASE , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_args() main(args)
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str: return " ".join( ''.join(word[::-1] ) if len(SCREAMING_SNAKE_CASE ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_UpperCAmelCase ).to(_UpperCAmelCase ) __lowercase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowercase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowercase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowercase = model(input_ids.to(_UpperCAmelCase ) , labels=labels.to(_UpperCAmelCase ) ).loss __lowercase = -(labels.shape[-1] * loss.item()) __lowercase = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str]=False ) -> Dict: __lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=False ) -> List[str]: for i in range(config.num_hidden_layers ): if base_model: __lowercase = '' else: __lowercase = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) __lowercase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ) -> Any: __lowercase = dct.pop(SCREAMING_SNAKE_CASE ) __lowercase = val def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: __lowercase = DeiTConfig() # all deit models have fine-tuned heads __lowercase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __lowercase = 1000 __lowercase = 'huggingface/label-files' __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = int(deit_name[-6:-4] ) __lowercase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): __lowercase = 192 __lowercase = 768 __lowercase = 12 __lowercase = 3 elif deit_name[9:].startswith('small' ): __lowercase = 384 __lowercase = 1536 __lowercase = 12 __lowercase = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 # load original model from timm __lowercase = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase = timm_model.state_dict() __lowercase = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model __lowercase = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by DeiTImageProcessor __lowercase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __lowercase = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE , crop_size=config.image_size ) __lowercase = image_processor(images=prepare_img() , return_tensors='pt' ) __lowercase = encoding['pixel_values'] __lowercase = model(SCREAMING_SNAKE_CASE ) __lowercase = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = BioGptTokenizer lowerCAmelCase__ : List[Any] = False def a__ ( self : List[str] ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def a__ ( self : Optional[int] , _UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" __lowercase = 'lower newer' __lowercase = 'lower newer' return input_text, output_text def a__ ( self : int ) -> Any: """simple docstring""" __lowercase = BioGptTokenizer(self.vocab_file , self.merges_file ) __lowercase = 'lower' __lowercase = ['low', 'er</w>'] __lowercase = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = tokens + ['<unk>'] __lowercase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) @slow def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) SCREAMING_SNAKE_CASE__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} SCREAMING_SNAKE_CASE__ = """zero2""" SCREAMING_SNAKE_CASE__ = """zero3""" SCREAMING_SNAKE_CASE__ = [ZEROa, ZEROa] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __lowercase = parameterized.to_safe_name('_'.join(str(SCREAMING_SNAKE_CASE ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class A__ ( lowerCAmelCase__ ): @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ) -> Tuple: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> int: """simple docstring""" self.run_and_check( stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" pass def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> Optional[Any]: """simple docstring""" __lowercase = models[model] __lowercase = self.run_trainer( stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , ) self.do_checks(_UpperCAmelCase ) return output_dir def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> Tuple: """simple docstring""" __lowercase = self.get_auto_remove_tmp_dir('./xxx' , after=_UpperCAmelCase ) __lowercase = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(_UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __lowercase = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __lowercase = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __lowercase = self.get_launcher(_UpperCAmelCase ) __lowercase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) return output_dir def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any]=False ) -> Optional[int]: """simple docstring""" __lowercase = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
from math import pi def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
class A__ : def __init__( self : Any ) -> Any: """simple docstring""" __lowercase = '' __lowercase = '' __lowercase = [] def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __lowercase = self.__min_dist_top_down_dp(_UpperCAmelCase , n - 1 ) __lowercase = self.__min_dist_top_down_dp(m - 1 , _UpperCAmelCase ) __lowercase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __lowercase = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = worda __lowercase = worda __lowercase = [[-1 for _ in range(len(_UpperCAmelCase ) )] for _ in range(len(_UpperCAmelCase ) )] return self.__min_dist_top_down_dp(len(_UpperCAmelCase ) - 1 , len(_UpperCAmelCase ) - 1 ) def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = worda __lowercase = worda __lowercase = len(_UpperCAmelCase ) __lowercase = len(_UpperCAmelCase ) __lowercase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase = j elif j == 0: # second string is empty __lowercase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase = self.dp[i - 1][j - 1] else: __lowercase = self.dp[i][j - 1] __lowercase = self.dp[i - 1][j] __lowercase = self.dp[i - 1][j - 1] __lowercase = 1 + min(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = EditDistance() print("""****************** Testing Edit Distance DP Algorithm ******************""") print() SCREAMING_SNAKE_CASE__ = input("""Enter the first string: """).strip() SCREAMING_SNAKE_CASE__ = input("""Enter the second string: """).strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("""*************** End of Testing Edit Distance DP Algorithm ***************""")
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class A__ ( lowerCAmelCase__ ): def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ) -> int: """simple docstring""" __lowercase = dataset __lowercase = process __lowercase = params def __len__( self : Union[str, Any] ) -> str: """simple docstring""" return len(self.dataset ) def __getitem__( self : List[str] , _UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowercase = self.dataset[i] __lowercase = self.process(_UpperCAmelCase , **self.params ) return processed class A__ ( lowerCAmelCase__ ): def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=None ) -> str: """simple docstring""" __lowercase = loader __lowercase = infer __lowercase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __lowercase = None __lowercase = loader_batch_size # Internal bookkeeping __lowercase = None __lowercase = None def __len__( self : Optional[int] ) -> List[str]: """simple docstring""" return len(self.loader ) def __iter__( self : List[str] ) -> str: """simple docstring""" __lowercase = iter(self.loader ) return self def a__ ( self : int ) -> List[str]: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __lowercase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __lowercase = {} for k, element in self._loader_batch_data.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Convert ModelOutput to tuple first __lowercase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __lowercase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __lowercase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __lowercase = self._loader_batch_data.__class__(_UpperCAmelCase ) self._loader_batch_index += 1 return result def a__ ( self : Any ) -> List[str]: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __lowercase = next(self.iterator ) __lowercase = self.infer(_UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = len(_UpperCAmelCase ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size # Setting internal index to unwrap the batch __lowercase = processed __lowercase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class A__ ( lowerCAmelCase__ ): def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int=None ) -> Optional[Any]: """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __iter__( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = iter(self.loader ) __lowercase = None return self def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" if self.subiterator is None: __lowercase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __lowercase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __lowercase = self.infer(next(self.iterator ) , **self.params ) __lowercase = next(self.subiterator ) return processed class A__ ( lowerCAmelCase__ ): def __iter__( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = iter(self.loader ) return self def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = False __lowercase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop('is_last' ) accumulator.append(_UpperCAmelCase ) if is_last: return accumulator while not is_last: __lowercase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = len(_UpperCAmelCase ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size __lowercase = processed __lowercase = 0 while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop('is_last' ) accumulator.append(_UpperCAmelCase ) if is_last: return accumulator else: __lowercase = processed __lowercase = item.pop('is_last' ) accumulator.append(_UpperCAmelCase ) return accumulator class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : Dataset , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = dataset __lowercase = key def __len__( self : int ) -> Tuple: """simple docstring""" return len(self.dataset ) def __getitem__( self : Dict , _UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.dataset[i][self.key] class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : Dataset , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> List[Any]: """simple docstring""" __lowercase = dataset __lowercase = keya __lowercase = keya def __len__( self : Dict ) -> Dict: """simple docstring""" return len(self.dataset ) def __getitem__( self : str , _UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "mask2former" lowerCAmelCase__ : Dict = ["swin"] lowerCAmelCase__ : List[str] = {"hidden_size": "hidden_dim"} def __init__( self : Dict , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : Any , ) -> Dict: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Any , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : Optional[int] ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 1000000 ) -> int: __lowercase = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , SCREAMING_SNAKE_CASE ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=99 , _UpperCAmelCase : int=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Tuple=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Any="None" , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Tuple=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = relative_attention __lowercase = position_biased_input __lowercase = pos_att_type __lowercase = scope def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : str ) -> List[Any]: """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def a__ ( self : Tuple , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> int: """simple docstring""" __lowercase = DebertaVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )[0] __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )[0] __lowercase = model(_UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowercase = DebertaVaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = DebertaVaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = DebertaVaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = DebertaVaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = DebertaVaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : str = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase__ : int = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Optional[int] = False def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = DebertaVaModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_UpperCAmelCase ) @slow def a__ ( self : Any ) -> Any: """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DebertaVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def a__ ( self : Tuple ) -> Any: """simple docstring""" pass @slow def a__ ( self : Dict ) -> List[str]: """simple docstring""" __lowercase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __lowercase = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] # compare the actual values for a slice. __lowercase = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) , f"""{output[:, 1:4, 1:4]}""" )
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
from __future__ import annotations import requests SCREAMING_SNAKE_CASE__ = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : str = "new" , SCREAMING_SNAKE_CASE : list | None = None ) -> dict: __lowercase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(SCREAMING_SNAKE_CASE ) - valid_terms ) ): __lowercase = F"""Invalid search term: {invalid_search_terms}""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = requests.get( F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'User-agent': 'A random string'} , ) if response.status_code == 429: raise requests.HTTPError __lowercase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(SCREAMING_SNAKE_CASE )} __lowercase = {} for id_ in range(SCREAMING_SNAKE_CASE ): __lowercase = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = BlenderbotSmallTokenizer lowerCAmelCase__ : Any = False def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __lowercase = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def a__ ( self : Tuple , **_UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = 'adapt act apte' __lowercase = 'adapt act apte' return input_text, output_text def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = 'adapt act apte' __lowercase = ['adapt', 'act', 'ap@@', 'te'] __lowercase = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowercase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [13_84] __lowercase = 'I am a small frog.' __lowercase = tok([src_text] , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )['input_ids'] __lowercase = tok.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __lowercase = 'I am a small frog .' __lowercase = '.' __lowercase = tok(_UpperCAmelCase )['input_ids'] __lowercase = tok(_UpperCAmelCase )['input_ids'] assert encoded[-1] == encoded_dot[0]
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A__ ( unittest.TestCase ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = inspect.getfile(accelerate.test_utils ) __lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __lowercase = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() __lowercase = [sys.executable] + distributed_args execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """TsinghuaAI/CPM-Generate""": """https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model""", } } class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[int]="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : Optional[Any]="<sep>" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : int="<cls>" , _UpperCAmelCase : str="<mask>" , _UpperCAmelCase : Any=["<eop>", "<eod>"] , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ) -> None: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __lowercase = 3 __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) __lowercase = jieba __lowercase = str.maketrans(' \n' , '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : int , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self : Any , _UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" if self.remove_space: __lowercase = ' '.join(inputs.strip().split() ) else: __lowercase = inputs __lowercase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: __lowercase = unicodedata.normalize('NFKD' , _UpperCAmelCase ) __lowercase = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: __lowercase = outputs.lower() return outputs def a__ ( self : List[str] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = self.preprocess_text(_UpperCAmelCase ) __lowercase = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) __lowercase = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): __lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase = cur_pieces[1:] else: __lowercase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def a__ ( self : Tuple , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Any ) -> Any: """simple docstring""" __lowercase = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ' ' ).strip() return out_string def a__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] return ([0] * len(_UpperCAmelCase )) + [1, 1] def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def a__ ( self : Optional[int] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = super()._decode(*_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = text.replace(' ' , '' ).replace('\u2582' , ' ' ).replace('\u2583' , '\n' ) return text
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Dict: __lowercase = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) __lowercase = { 'repo_id': str(SCREAMING_SNAKE_CASE ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(SCREAMING_SNAKE_CASE , 'git_log.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=4 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> str: if params.n_gpu <= 0: __lowercase = 0 __lowercase = -1 __lowercase = True __lowercase = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 __lowercase = int(os.environ['WORLD_SIZE'] ) __lowercase = int(os.environ['N_GPU_NODE'] ) __lowercase = int(os.environ['RANK'] ) # number of nodes / node ID __lowercase = params.world_size // params.n_gpu_per_node __lowercase = params.global_rank // params.n_gpu_per_node __lowercase = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 __lowercase = 1 __lowercase = 0 __lowercase = 0 __lowercase = 0 __lowercase = 1 __lowercase = 1 __lowercase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __lowercase = params.node_id == 0 and params.local_rank == 0 __lowercase = params.n_nodes > 1 # summary __lowercase = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Dict: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : bytes , SCREAMING_SNAKE_CASE : int ) -> np.array: __lowercase = F"""{sampling_rate}""" __lowercase = '1' __lowercase = 'f32le' __lowercase = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowercase = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error __lowercase = output_stream[0] __lowercase = np.frombuffer(SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : str = "f32le" , ) -> List[Any]: __lowercase = F"""{sampling_rate}""" __lowercase = '1' if format_for_conversion == "s16le": __lowercase = 2 elif format_for_conversion == "f32le": __lowercase = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) __lowercase = platform.system() if system == "Linux": __lowercase = 'alsa' __lowercase = 'default' elif system == "Darwin": __lowercase = 'avfoundation' __lowercase = ':0' elif system == "Windows": __lowercase = 'dshow' __lowercase = 'default' __lowercase = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] __lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowercase = _ffmpeg_stream(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in iterator: yield item def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[Tuple[float, float], float]] = None , SCREAMING_SNAKE_CASE : str = "f32le" , ) -> Any: if stream_chunk_s is not None: __lowercase = stream_chunk_s else: __lowercase = chunk_length_s __lowercase = ffmpeg_microphone(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , format_for_conversion=SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": __lowercase = np.intaa __lowercase = 2 elif format_for_conversion == "f32le": __lowercase = np.floataa __lowercase = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: __lowercase = chunk_length_s / 6 __lowercase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE , (int, float) ): __lowercase = [stride_length_s, stride_length_s] __lowercase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowercase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowercase = datetime.datetime.now() __lowercase = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale __lowercase = np.frombuffer(item['raw'] , dtype=SCREAMING_SNAKE_CASE ) __lowercase = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) __lowercase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple[int, int] , SCREAMING_SNAKE_CASE : bool = False ) -> int: __lowercase = b'' __lowercase , __lowercase = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) __lowercase = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE ) < chunk_len: __lowercase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator __lowercase = (_stride_left, stride_right) __lowercase = {'raw': acc[:chunk_len], 'stride': stride} if stream: __lowercase = False yield item __lowercase = stride_left __lowercase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE ) > stride_left: __lowercase = {'raw': acc, 'stride': (_stride_left, 0)} if stream: __lowercase = False yield item def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ) -> Any: __lowercase = 2**24 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: __lowercase = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 32 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 16 , SCREAMING_SNAKE_CASE : str = "bert-base-cased" ) -> Union[str, Any]: __lowercase = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. __lowercase = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) __lowercase = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> str: model.eval() __lowercase = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowercase , __lowercase = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE ) - 1: __lowercase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) __lowercase = metric.compute() return eval_metric["accuracy"] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ) -> int: # Initialize accelerator __lowercase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase = config['lr'] __lowercase = int(config['num_epochs'] ) __lowercase = int(config['seed'] ) __lowercase = int(config['batch_size'] ) __lowercase = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) # Instantiate optimizer __lowercase = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: __lowercase = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: __lowercase = 1 __lowercase = (len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE , ) else: __lowercase = DummyScheduler(SCREAMING_SNAKE_CASE , total_num_steps=SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over __lowercase = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase = 0 __lowercase = evaluate.load('glue' , 'mrpc' ) __lowercase = num_epochs if args.partial_train_epoch is not None: __lowercase = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowercase = args.resume_from_checkpoint.split('epoch_' )[1] __lowercase = '' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowercase = int(SCREAMING_SNAKE_CASE ) + 1 __lowercase = evaluation_loop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.print('resumed checkpoint performance:' , SCREAMING_SNAKE_CASE ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' , lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' , optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir , F"""state_{starting_epoch-1}.json""" ) , 'r' ) as f: __lowercase = json.load(SCREAMING_SNAKE_CASE ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowercase = {} for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.loss __lowercase = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowercase = F"""epoch_{epoch}""" __lowercase = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) __lowercase = evaluation_loop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = accuracy __lowercase = lr_scheduler.get_lr()[0] __lowercase = optimizer.param_groups[0]['lr'] __lowercase = epoch __lowercase = overall_step accelerator.print(F"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"""state_{epoch}.json""" ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=SCREAMING_SNAKE_CASE , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( '--output_dir' , type=SCREAMING_SNAKE_CASE , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--partial_train_epoch' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='If passed, the training will stop after this number of epochs.' , ) parser.add_argument( '--num_epochs' , type=SCREAMING_SNAKE_CASE , default=2 , help='Number of train epochs.' , ) __lowercase = parser.parse_args() __lowercase = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "unispeech-sat" def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : Dict="group" , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[str]=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=1_28 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : str=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=0.05 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Union[str, Any]=10 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Dict=3_20 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=1_00 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : Optional[int]=2_56 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple="mean" , _UpperCAmelCase : Dict=False , _UpperCAmelCase : str=False , _UpperCAmelCase : int=2_56 , _UpperCAmelCase : Any=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase : Optional[Any]=(5, 3, 3, 1, 1) , _UpperCAmelCase : str=(1, 2, 3, 1, 1) , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[int]=5_04 , **_UpperCAmelCase : int , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) __lowercase = hidden_size __lowercase = feat_extract_norm __lowercase = feat_extract_activation __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = conv_bias __lowercase = num_conv_pos_embeddings __lowercase = num_conv_pos_embedding_groups __lowercase = len(self.conv_dim ) __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = num_attention_heads __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = feat_proj_dropout __lowercase = final_dropout __lowercase = layerdrop __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = vocab_size __lowercase = num_clusters __lowercase = do_stable_layer_norm __lowercase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase = apply_spec_augment __lowercase = mask_time_prob __lowercase = mask_time_length __lowercase = mask_time_min_masks __lowercase = mask_feature_prob __lowercase = mask_feature_length __lowercase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __lowercase = num_codevectors_per_group __lowercase = num_codevector_groups __lowercase = contrastive_logits_temperature __lowercase = feat_quantizer_dropout __lowercase = num_negatives __lowercase = codevector_dim __lowercase = proj_codevector_dim __lowercase = diversity_loss_weight # ctc loss __lowercase = ctc_loss_reduction __lowercase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) __lowercase = xvector_output_dim @property def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE__ = logging.getLogger() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : list ) -> int: __lowercase = '\n'.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('w' ).writelines(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = """patrickvonplaten/t5-tiny-random""" SCREAMING_SNAKE_CASE__ = """sshleifer/bart-tiny-random""" SCREAMING_SNAKE_CASE__ = """sshleifer/tiny-mbart""" SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class A__ ( lowerCAmelCase__ ): def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __lowercase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __lowercase = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) __lowercase = 'translation_en_to_de' if model == T5_TINY else 'summarization' __lowercase = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): run_generate() assert Path(_UpperCAmelCase ).exists() # os.remove(Path(output_file_name)) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" self.run_eval_tester(_UpperCAmelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def a__ ( self : Dict , _UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" self.run_eval_tester(_UpperCAmelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def a__ ( self : List[Any] , _UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" __lowercase = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' __lowercase = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() __lowercase = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } __lowercase = Path(self.get_auto_remove_tmp_dir() ) __lowercase = str(tmp_dir / 'scores.json' ) __lowercase = str(tmp_dir / 'val.target' ) _dump_articles(_UpperCAmelCase , text['en'] ) _dump_articles(_UpperCAmelCase , text['de'] ) __lowercase = 'translation_en_to_de' if model == T5_TINY else 'summarization' __lowercase = f""" run_eval_search.py {model} {str(_UpperCAmelCase )} {str(_UpperCAmelCase )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): with CaptureStdout() as cs: run_search() __lowercase = [' num_beams | length_penalty', model, 'Best score args'] __lowercase = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(_UpperCAmelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(_UpperCAmelCase ).exists() os.remove(Path(_UpperCAmelCase ) )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 1000 ) -> int: __lowercase = 2**power __lowercase = 0 while n: __lowercase , __lowercase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
from __future__ import annotations from math import ceil, floor, sqrt def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 2000000 ) -> int: __lowercase = [0] __lowercase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowercase = 0 # the area corresponding to the grid that gives the product closest to target __lowercase = 0 # an estimate of b, using the quadratic formula __lowercase = 42 # the largest integer less than b_estimate __lowercase = 42 # the largest integer less than b_estimate __lowercase = 42 # the triangle number corresponding to b_floor __lowercase = 42 # the triangle number corresponding to b_ceil __lowercase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowercase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowercase = floor(SCREAMING_SNAKE_CASE ) __lowercase = ceil(SCREAMING_SNAKE_CASE ) __lowercase = triangle_numbers[b_floor] __lowercase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowercase = triangle_b_first_guess * triangle_a __lowercase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowercase = triangle_b_second_guess * triangle_a __lowercase = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") SCREAMING_SNAKE_CASE__ = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) SCREAMING_SNAKE_CASE__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Dict: with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = Image.open(SCREAMING_SNAKE_CASE ) return im.convert('RGB' ) @dataclass class A__ : lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." } , ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase__ : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase__ : Optional[float] = field( default=0.15 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase__ : Optional[int] = field( default=lowerCAmelCase__ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class A__ : lowerCAmelCase__ : str = field( default="google/vit-base-patch16-224-in21k" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCAmelCase__ : Optional[str] = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase__ : str = field(default=lowerCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase__ : bool = field( default=lowerCAmelCase__ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase__ : bool = field( default=lowerCAmelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = torch.stack([example['pixel_values'] for example in examples] ) __lowercase = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __SCREAMING_SNAKE_CASE ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __lowercase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: __lowercase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowercase = {} if data_args.train_dir is not None: __lowercase = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: __lowercase = os.path.join(data_args.validation_dir , '**' ) __lowercase = load_dataset( 'imagefolder' , data_files=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0: __lowercase = dataset['train'].train_test_split(data_args.train_val_split ) __lowercase = split['train'] __lowercase = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowercase = dataset['train'].features['labels'].names __lowercase , __lowercase = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE ): __lowercase = str(SCREAMING_SNAKE_CASE ) __lowercase = label # Load the accuracy metric from the datasets package __lowercase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE : str ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) __lowercase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowercase = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) __lowercase = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: __lowercase = image_processor.size['shortest_edge'] else: __lowercase = (image_processor.size['height'], image_processor.size['width']) __lowercase = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) __lowercase = Compose( [ RandomResizedCrop(SCREAMING_SNAKE_CASE ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) __lowercase = Compose( [ Resize(SCREAMING_SNAKE_CASE ), CenterCrop(SCREAMING_SNAKE_CASE ), ToTensor(), normalize, ] ) def train_transforms(SCREAMING_SNAKE_CASE : str ): __lowercase = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(SCREAMING_SNAKE_CASE : List[str] ): __lowercase = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowercase = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(SCREAMING_SNAKE_CASE ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowercase = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(SCREAMING_SNAKE_CASE ) # Initalize our trainer __lowercase = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __lowercase = None if training_args.resume_from_checkpoint is not None: __lowercase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase = last_checkpoint __lowercase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase = trainer.evaluate() trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE ) trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __lowercase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE__ = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } SCREAMING_SNAKE_CASE__ = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ : Tuple = ["input_ids", "attention_mask"] lowerCAmelCase__ : Optional[int] = DistilBertTokenizer def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Any=True , _UpperCAmelCase : Tuple="[UNK]" , _UpperCAmelCase : str="[SEP]" , _UpperCAmelCase : str="[PAD]" , _UpperCAmelCase : List[str]="[CLS]" , _UpperCAmelCase : Union[str, Any]="[MASK]" , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Dict , ) -> Union[str, Any]: """simple docstring""" super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): __lowercase = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) __lowercase = do_lower_case __lowercase = strip_accents __lowercase = tokenize_chinese_chars __lowercase = normalizer_class(**_UpperCAmelCase ) __lowercase = do_lower_case def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=None ) -> List[str]: """simple docstring""" __lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "roformer" def __init__( self : str , _UpperCAmelCase : List[Any]=5_00_00 , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=30_72 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=15_36 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Tuple=1e-1_2 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Optional[int] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size if embedding_size is None else embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = rotary_value __lowercase = use_cache class A__ ( lowerCAmelCase__ ): @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase = {0: 'batch', 1: 'sequence'} __lowercase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class A__ ( unittest.TestCase ): def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = 0 def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = CLIPConfig() # Create a dummy config file with image_proceesor_type __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ).to_dict() config_dict.pop('image_processor_type' ) __lowercase = CLIPImageProcessor(**_UpperCAmelCase ) # save in new folder model_config.save_pretrained(_UpperCAmelCase ) config.save_pretrained(_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) # make sure private variable is not incorrectly saved __lowercase = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , 'clip-base is not a local folder and is not a valid model identifier' ): __lowercase = AutoImageProcessor.from_pretrained('clip-base' ) def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase , revision='aaaaaa' ) def a__ ( self : int ) -> str: """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __lowercase = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def a__ ( self : Tuple ) -> str: """simple docstring""" try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = Path(_UpperCAmelCase ) / 'preprocessor_config.json' __lowercase = Path(_UpperCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_UpperCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_UpperCAmelCase , 'w' ) ) __lowercase = CustomImageProcessor.from_pretrained(_UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_UpperCAmelCase ) __lowercase = AutoImageProcessor.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def a__ ( self : Optional[int] ) -> int: """simple docstring""" class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = True try: AutoConfig.register('custom' , _UpperCAmelCase ) AutoImageProcessor.register(_UpperCAmelCase , _UpperCAmelCase ) # If remote code is not set, the default is to use local __lowercase = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __lowercase = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_UpperCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = ["transformers", "torch", "note_seq"] def __init__( self : Union[str, Any] , *_UpperCAmelCase : Any , **_UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" requires_backends(self , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : Dict , *_UpperCAmelCase : Any , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] ) @classmethod def a__ ( cls : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['transformers', 'torch', 'note_seq'] )
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import os SCREAMING_SNAKE_CASE__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = 0 __lowercase = 0 while index < len(SCREAMING_SNAKE_CASE ) - 1: __lowercase = SYMBOLS[numerals[index]] __lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> str: __lowercase = '' __lowercase = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "/p089_roman.txt" ) -> int: __lowercase = 0 with open(os.path.dirname(SCREAMING_SNAKE_CASE ) + roman_numerals_filename ) as filea: __lowercase = filea.readlines() for line in lines: __lowercase = line.strip() __lowercase = parse_roman_numerals(SCREAMING_SNAKE_CASE ) __lowercase = generate_roman_numerals(SCREAMING_SNAKE_CASE ) savings += len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class A__ ( lowerCAmelCase__ ): def __init__( self : str , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ) -> str: """simple docstring""" super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self : str , _UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" __lowercase = {} if top_k is not None: __lowercase = top_k return {}, {}, postprocess_params def __call__( self : Tuple , _UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return super().__call__(_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" __lowercase = load_image(_UpperCAmelCase ) __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework ) return model_inputs def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model(**_UpperCAmelCase ) return model_outputs def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=5 ) -> Any: """simple docstring""" if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.softmax(-1 )[0] __lowercase , __lowercase = probs.topk(_UpperCAmelCase ) elif self.framework == "tf": __lowercase = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowercase = tf.math.top_k(_UpperCAmelCase , k=_UpperCAmelCase ) __lowercase , __lowercase = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCAmelCase , _UpperCAmelCase )]
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__ = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: __lowercase = EfficientNetConfig() __lowercase = CONFIG_MAP[model_name]['hidden_dim'] __lowercase = CONFIG_MAP[model_name]['width_coef'] __lowercase = CONFIG_MAP[model_name]['depth_coef'] __lowercase = CONFIG_MAP[model_name]['image_size'] __lowercase = CONFIG_MAP[model_name]['dropout_rate'] __lowercase = CONFIG_MAP[model_name]['dw_padding'] __lowercase = 'huggingface/label-files' __lowercase = 'imagenet-1k-id2label.json' __lowercase = 1000 __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: __lowercase = CONFIG_MAP[model_name]['image_size'] __lowercase = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=SCREAMING_SNAKE_CASE , ) return preprocessor def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: __lowercase = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] __lowercase = sorted(set(SCREAMING_SNAKE_CASE ) ) __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = {b: str(SCREAMING_SNAKE_CASE ) for b, i in zip(SCREAMING_SNAKE_CASE , range(SCREAMING_SNAKE_CASE ) )} __lowercase = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: __lowercase = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) __lowercase = {} for item in rename_keys: if item[0] in original_param_names: __lowercase = 'efficientnet.' + item[1] __lowercase = 'classifier.weight' __lowercase = 'classifier.bias' return key_mapping def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any ) -> int: for key, value in tf_params.items(): if "normalization" in key: continue __lowercase = key_mapping[key] if "_conv" in key and "kernel" in key: __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __lowercase = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE ) ) else: __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE , weights='imagenet' , input_tensor=SCREAMING_SNAKE_CASE , input_shape=SCREAMING_SNAKE_CASE , pooling=SCREAMING_SNAKE_CASE , classes=1000 , classifier_activation='softmax' , ) __lowercase = original_model.trainable_variables __lowercase = original_model.non_trainable_variables __lowercase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __lowercase = param.numpy() __lowercase = list(tf_params.keys() ) # Load HuggingFace model __lowercase = get_efficientnet_config(SCREAMING_SNAKE_CASE ) __lowercase = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() __lowercase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) __lowercase = rename_keys(SCREAMING_SNAKE_CASE ) replace_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image __lowercase = convert_image_processor(SCREAMING_SNAKE_CASE ) __lowercase = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): __lowercase = hf_model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.detach().numpy() # Original model inference __lowercase = False __lowercase = CONFIG_MAP[model_name]['image_size'] __lowercase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __lowercase = image.img_to_array(SCREAMING_SNAKE_CASE ) __lowercase = np.expand_dims(SCREAMING_SNAKE_CASE , axis=0 ) __lowercase = original_model.predict(SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.mkdir(SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) __lowercase = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class A__ ( lowerCAmelCase__ ): def __init__( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[Any]=64 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Optional[Any]=1 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = q_groups __lowercase = k_groups __lowercase = v_groups __lowercase = post_attention_groups __lowercase = intermediate_groups __lowercase = output_groups def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" __lowercase = SqueezeBertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = SqueezeBertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" __lowercase = SqueezeBertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = SqueezeBertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = self.num_labels __lowercase = SqueezeBertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = SqueezeBertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCAmelCase__ : int = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : int = False lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[int] = False def a__ ( self : List[Any] ) -> str: """simple docstring""" __lowercase = SqueezeBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , dim=37 ) def a__ ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Dict ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCAmelCase ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCAmelCase ) @slow def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = SqueezeBertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) __lowercase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-4 ) )
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ) -> List[str]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: __lowercase = tmp_path / 'cache' __lowercase = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __lowercase = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} __lowercase = features.copy() __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = tmp_path / 'cache' __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , split=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ) -> str: if issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = jsonl_path elif issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = [jsonl_path] __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int]=("train",) ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for split in splits: __lowercase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = JsonDatasetReader({'train': jsonl_path} , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = JsonDatasetReader({'train': jsonl_path} , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: if split: __lowercase = {split: jsonl_path} else: __lowercase = 'train' __lowercase = {'train': jsonl_path, 'test': jsonl_path} __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = JsonDatasetReader(SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_json_datasetdict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: return json.load(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: return [json.loads(SCREAMING_SNAKE_CASE ) for line in buffer] class A__ : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase ).write() buffer.seek(0 ) __lowercase = load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase ).write() buffer.seek(0 ) __lowercase = load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __lowercase = load_json_function(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) assert isinstance(exported_content[0] , _UpperCAmelCase ) assert len(_UpperCAmelCase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Dict: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , lines=_UpperCAmelCase , orient=_UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) __lowercase = load_json(_UpperCAmelCase ) assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_UpperCAmelCase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_UpperCAmelCase ) == 10 def a__ ( self : str , _UpperCAmelCase : List[str] ) -> Any: """simple docstring""" with pytest.raises(_UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def a__ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" __lowercase = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" __lowercase = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_UpperCAmelCase , _UpperCAmelCase , compression=_UpperCAmelCase ).write() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: __lowercase = f.read() with fsspec.open(_UpperCAmelCase , 'rb' , compression='infer' ) as f: __lowercase = f.read() assert exported_content == original_content
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True SCREAMING_SNAKE_CASE__ = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __lowercase = [] for num in range(len(SCREAMING_SNAKE_CASE ) ): __lowercase = 0 while 2 * i * i <= odd_composites[num]: __lowercase = odd_composites[num] - 2 * i * i if is_prime(SCREAMING_SNAKE_CASE ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(SCREAMING_SNAKE_CASE ) == n: return list_nums return [] def __SCREAMING_SNAKE_CASE ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): def __init__( self : str , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ) -> None: """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : bool = False ) -> list[float]: if radian_mode: return [magnitude * cos(SCREAMING_SNAKE_CASE ), magnitude * sin(SCREAMING_SNAKE_CASE )] return [magnitude * cos(radians(SCREAMING_SNAKE_CASE ) ), magnitude * sin(radians(SCREAMING_SNAKE_CASE ) )] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : float = 10**-1 ) -> bool: __lowercase = cross(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = sum(SCREAMING_SNAKE_CASE ) return abs(SCREAMING_SNAKE_CASE ) < eps if __name__ == "__main__": # Test to check if it works SCREAMING_SNAKE_CASE__ = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) SCREAMING_SNAKE_CASE__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg SCREAMING_SNAKE_CASE__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) SCREAMING_SNAKE_CASE__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg SCREAMING_SNAKE_CASE__ = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) SCREAMING_SNAKE_CASE__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
import pprint import requests SCREAMING_SNAKE_CASE__ = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ) -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def __SCREAMING_SNAKE_CASE ( ) -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = random_quotes() pprint.pprint(response)
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["image_processor", "tokenizer"] lowerCAmelCase__ : str = "CLIPImageProcessor" lowerCAmelCase__ : Tuple = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , _UpperCAmelCase : int=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __lowercase = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: __lowercase = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : List[str] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : List[str] ) -> Any: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def a__ ( self : List[str] ) -> Tuple: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : int ) -> Any: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int]=False ) -> Union[str, Any]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "bridgetower_vision_model" def __init__( self : int , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Tuple=2_88 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[Any]=1e-0_5 , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=False , **_UpperCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def a__ ( cls : int , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[Any] ) -> "PretrainedConfig": """simple docstring""" __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if config_dict.get('model_type' ) == "bridgetower": __lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "bridgetower_text_model" def __init__( self : str , _UpperCAmelCase : Tuple=5_02_65 , _UpperCAmelCase : Dict=7_68 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[Any]=5_14 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=1e-0_5 , _UpperCAmelCase : int=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Optional[int]="absolute" , _UpperCAmelCase : str=True , **_UpperCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Tuple ) -> "PretrainedConfig": """simple docstring""" __lowercase , __lowercase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) if config_dict.get('model_type' ) == "bridgetower": __lowercase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "bridgetower" def __init__( self : Union[str, Any] , _UpperCAmelCase : str=True , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[str]=7_68 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : List[Any]=1e-0_5 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Tuple="add" , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : int=6 , _UpperCAmelCase : Any=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : Tuple , ) -> str: """simple docstring""" __lowercase = kwargs.pop('text_config_dict' , _UpperCAmelCase ) __lowercase = kwargs.pop('vision_config_dict' , _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: __lowercase = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) __lowercase = BridgeTowerTextConfig(**_UpperCAmelCase ) __lowercase = BridgeTowerVisionConfig(**_UpperCAmelCase ) @classmethod def a__ ( cls : Optional[Any] , _UpperCAmelCase : BridgeTowerTextConfig , _UpperCAmelCase : BridgeTowerVisionConfig , **_UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> List[Any]: __lowercase = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr __lowercase = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __lowercase = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list __lowercase = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: # Construct model if gpta_config_file == "": __lowercase = GPTaConfig() else: __lowercase = GPTaConfig.from_json_file(SCREAMING_SNAKE_CASE ) __lowercase = GPTaModel(SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowercase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowercase = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: # save results if os.path.exists(SCREAMING_SNAKE_CASE ): if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE , 'config.json' ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE , 'config.json' ) ) if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) else: os.makedirs(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str]=False ) -> str: __lowercase = 2 if unlogit: __lowercase = torch.pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = p * torch.log(SCREAMING_SNAKE_CASE ) __lowercase = 0 return -plogp.sum(dim=-1 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: logger.info('lv, h >\t' + '\t'.join(F"""{x + 1}""" for x in range(len(SCREAMING_SNAKE_CASE ) ) ) ) for row in range(len(SCREAMING_SNAKE_CASE ) ): if tensor.dtype != torch.long: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(F"""layer {row + 1}:\t""" + '\t'.join(F"""{x:d}""" for x in tensor[row].cpu().data ) ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Dict=False ) -> List[str]: __lowercase , __lowercase = model.config.num_hidden_layers, model.config.num_attention_heads __lowercase = torch.zeros(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(args.device ) __lowercase = torch.zeros(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(args.device ) if head_mask is None: __lowercase = torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(args.device ) head_mask.requires_grad_(requires_grad=SCREAMING_SNAKE_CASE ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __lowercase = None __lowercase = 0.0 __lowercase = 0.0 for step, inputs in enumerate(tqdm(SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __lowercase = tuple(t.to(args.device ) for t in inputs ) ((__lowercase) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __lowercase = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __lowercase , __lowercase , __lowercase = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(SCREAMING_SNAKE_CASE ): __lowercase = entropy(attn.detach() , SCREAMING_SNAKE_CASE ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(SCREAMING_SNAKE_CASE ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __lowercase = 2 __lowercase = torch.pow(torch.pow(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: __lowercase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(SCREAMING_SNAKE_CASE ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(SCREAMING_SNAKE_CASE ) logger.info('Head ranked by importance scores' ) __lowercase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __lowercase = torch.arange( head_importance.numel() , device=args.device ) __lowercase = head_ranks.view_as(SCREAMING_SNAKE_CASE ) print_ad_tensor(SCREAMING_SNAKE_CASE ) return attn_entropy, head_importance, total_loss def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> str: __lowercase , __lowercase , __lowercase = compute_heads_importance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE ) __lowercase = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , SCREAMING_SNAKE_CASE , original_score * args.masking_threshold ) __lowercase = torch.ones_like(SCREAMING_SNAKE_CASE ) __lowercase = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __lowercase = original_score while current_score >= original_score * args.masking_threshold: __lowercase = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __lowercase = float('Inf' ) __lowercase = head_importance.view(-1 ).sort()[1] if len(SCREAMING_SNAKE_CASE ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __lowercase = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __lowercase = new_head_mask.view(-1 ) __lowercase = 0.0 __lowercase = new_head_mask.view_as(SCREAMING_SNAKE_CASE ) __lowercase = new_head_mask.clone().detach() print_ad_tensor(SCREAMING_SNAKE_CASE ) # Compute metric and head importance again __lowercase , __lowercase , __lowercase = compute_heads_importance( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) __lowercase = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info('Final head mask' ) print_ad_tensor(SCREAMING_SNAKE_CASE ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple ) -> Any: __lowercase = datetime.now() __lowercase , __lowercase , __lowercase = compute_heads_importance( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE , compute_importance=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE ) __lowercase = 1 / loss __lowercase = datetime.now() - before_time __lowercase = sum(p.numel() for p in model.parameters() ) __lowercase = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(SCREAMING_SNAKE_CASE ) ) } for k, v in heads_to_prune.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = [ v, ] assert sum(len(SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(SCREAMING_SNAKE_CASE ) __lowercase = sum(p.numel() for p in model.parameters() ) __lowercase = datetime.now() __lowercase , __lowercase , __lowercase = compute_heads_importance( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , compute_entropy=SCREAMING_SNAKE_CASE , compute_importance=SCREAMING_SNAKE_CASE , head_mask=SCREAMING_SNAKE_CASE , actually_pruned=SCREAMING_SNAKE_CASE , ) __lowercase = 1 / loss __lowercase = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 ) save_model(SCREAMING_SNAKE_CASE , args.output_dir ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=128 , type=SCREAMING_SNAKE_CASE , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=SCREAMING_SNAKE_CASE , help='Batch size.' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--local_rank' , type=SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) __lowercase = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __lowercase = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __lowercase = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __lowercase = torch.device('cuda' , args.local_rank ) __lowercase = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __lowercase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __lowercase = nn.parallel.DistributedDataParallel( SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=SCREAMING_SNAKE_CASE ) elif args.n_gpu > 1: __lowercase = nn.DataParallel(SCREAMING_SNAKE_CASE ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE ) # Prepare dataset __lowercase = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __lowercase = (torch.from_numpy(SCREAMING_SNAKE_CASE ),) __lowercase = TensorDataset(*SCREAMING_SNAKE_CASE ) __lowercase = RandomSampler(SCREAMING_SNAKE_CASE ) __lowercase = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __lowercase = mask_heads(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) prune_heads(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/config.json""", # See all XGLM models at https://huggingface.co/models?filter=xglm } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = "xglm" lowerCAmelCase__ : str = ["past_key_values"] lowerCAmelCase__ : Tuple = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , _UpperCAmelCase : Tuple=25_60_08 , _UpperCAmelCase : Dict=20_48 , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Dict=40_96 , _UpperCAmelCase : Dict=24 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : int=2 , **_UpperCAmelCase : str , ) -> List[str]: """simple docstring""" __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = ffn_dim __lowercase = num_layers __lowercase = attention_heads __lowercase = activation_function __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = layerdrop __lowercase = init_std __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase = use_cache super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Any: monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Dict: class A__ : def __init__( self : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = metric_id class A__ : lowerCAmelCase__ : int = [MetricMock(lowerCAmelCase__ ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ) -> Tuple: if "tmp_path" in args: __lowercase = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(SCREAMING_SNAKE_CASE , match='https://huggingface.co/docs/evaluate' ): func(*SCREAMING_SNAKE_CASE )
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE ) ) ) __lowercase = 0 while arr[min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1] < x: __lowercase = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE ) ) ) if prev >= n: return -1 while arr[prev] < x: __lowercase = prev + 1 if prev == min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item) for item in user_input.split(""",""")] SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be searched:\n""")) SCREAMING_SNAKE_CASE__ = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F'''Number {x} is at index {res}''')
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=None ) -> int: """simple docstring""" super().__init__( _UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , ) __lowercase = None def a__ ( self : Tuple , _UpperCAmelCase : int ) -> Any: """simple docstring""" logger.info('initializing retrieval' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('dist initialized' ) # needs to be set manually __lowercase = self._infer_socket_ifname() # avoid clash with the NCCL port __lowercase = str(distributed_port + 1 ) __lowercase = dist.new_group(ranks=_UpperCAmelCase , backend='gloo' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('dist not initialized / main' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def a__ ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=torch.floataa ) -> int: """simple docstring""" __lowercase = torch.empty(_UpperCAmelCase , dtype=_UpperCAmelCase ) dist.scatter(_UpperCAmelCase , src=0 , scatter_list=_UpperCAmelCase , group=self.process_group ) return target_tensor def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = psutil.net_if_addrs() # a hacky way to deal with varying network interface names __lowercase = next((addr for addr in addrs if addr.startswith('e' )) , _UpperCAmelCase ) return ifname def a__ ( self : Optional[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]: """simple docstring""" if not dist.is_initialized(): __lowercase , __lowercase = self._main_retrieve(_UpperCAmelCase , _UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCAmelCase ) # distributed training __lowercase = dist.get_world_size(group=self.process_group ) # gather logic __lowercase = None if self._is_main(): __lowercase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_UpperCAmelCase )] dist.gather(torch.tensor(_UpperCAmelCase ) , dst=0 , gather_list=_UpperCAmelCase , group=self.process_group ) # scatter logic __lowercase = question_hidden_states.shape[0] __lowercase = [] __lowercase = [] if self._is_main(): assert len(_UpperCAmelCase ) == world_size __lowercase , __lowercase = self._main_retrieve(torch.cat(_UpperCAmelCase ).numpy() , _UpperCAmelCase ) __lowercase , __lowercase = torch.tensor(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase ) __lowercase = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._scattered(_UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa ) __lowercase = self._scattered(_UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCAmelCase )
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) __lowercase = AutoTokenizer.from_pretrained('xlm-roberta-base' ) __lowercase = 'The dog is cute and lives in the garden house' __lowercase = jnp.array([tokenizer.encode(_UpperCAmelCase )] ) __lowercase = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim __lowercase = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) __lowercase = model(_UpperCAmelCase )['last_hidden_state'] self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1e-3 ) )
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1