code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline
if __name__ == "__main__":
__snake_case : Tuple = argparse.ArgumentParser()
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument(
'--txt2img_unclip',
default='kakaobrain/karlo-v1-alpha',
type=str,
required=False,
help='The pretrained txt2img unclip.',
)
__snake_case : int = parser.parse_args()
__snake_case : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip)
__snake_case : int = CLIPImageProcessor()
__snake_case : Any = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14')
__snake_case : List[str] = UnCLIPImageVariationPipeline(
decoder=txtaimg.decoder,
text_encoder=txtaimg.text_encoder,
tokenizer=txtaimg.tokenizer,
text_proj=txtaimg.text_proj,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
super_res_first=txtaimg.super_res_first,
super_res_last=txtaimg.super_res_last,
decoder_scheduler=txtaimg.decoder_scheduler,
super_res_scheduler=txtaimg.super_res_scheduler,
)
imgaimg.save_pretrained(args.dump_path)
| 715 |
'''simple docstring'''
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def __lowerCamelCase ( __snake_case : int ) -> Optional[int]:
"""simple docstring"""
random.seed(__snake_case )
np.random.seed(__snake_case )
torch.manual_seed(__snake_case )
torch.cuda.manual_seed_all(__snake_case )
# ^^ safe to call this function even if cuda is not available
class lowerCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Optional[Any] =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : List[str] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : int =True
if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None:
A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Union[str, Any] =kwargs["""max_value"""]
if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
A__ : Optional[Any] =kwargs["""min_value"""]
A__ : Any =list(lowerCAmelCase_ )
A__ : int =[p.clone().detach() for p in parameters]
if kwargs.get("""device""" , lowerCAmelCase_ ) is not None:
A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ )
self.to(device=kwargs["""device"""] )
A__ : Optional[int] =None
A__ : Any =decay
A__ : List[Any] =min_decay
A__ : Optional[int] =update_after_step
A__ : List[str] =use_ema_warmup
A__ : str =inv_gamma
A__ : Union[str, Any] =power
A__ : str =0
A__ : str =None # set in `step()`
A__ : List[str] =model_cls
A__ : Optional[int] =model_config
@classmethod
def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel":
'''simple docstring'''
A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ )
A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ )
A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config )
ema_model.load_state_dict(lowerCAmelCase_ )
return ema_model
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : Optional[int] =self.model_cls.from_config(self.model_config )
A__ : Optional[Any] =self.state_dict()
state_dict.pop("""shadow_params""" , lowerCAmelCase_ )
model.register_to_config(**lowerCAmelCase_ )
self.copy_to(model.parameters() )
model.save_pretrained(lowerCAmelCase_ )
def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float:
'''simple docstring'''
A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Union[str, Any] =(1 + step) / (10 + step)
A__ : str =min(lowerCAmelCase_ , self.decay )
# make sure decay is not smaller than min_decay
A__ : int =max(lowerCAmelCase_ , self.min_decay )
return cur_decay_value
@torch.no_grad()
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , torch.nn.Module ):
A__ : Any =(
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , )
A__ : Optional[int] =parameters.parameters()
A__ : Dict =list(lowerCAmelCase_ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : Any =self.get_decay(self.optimization_step )
A__ : Optional[int] =decay
A__ : List[str] =1 - decay
A__ : str =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : Optional[Any] =list(lowerCAmelCase_ )
for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ):
param.data.copy_(s_param.to(param.device ).data )
def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None:
'''simple docstring'''
A__ : str =[
p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ )
for p in self.shadow_params
]
def lowercase__ ( self : Optional[Any] ) -> dict:
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
A__ : List[str] =[param.detach().cpu().clone() for param in parameters]
def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None:
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : List[str] =None
def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None:
'''simple docstring'''
A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ )
A__ : List[Any] =state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , lowerCAmelCase_ ):
raise ValueError("""Invalid min_decay""" )
A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , lowerCAmelCase_ ):
raise ValueError("""Invalid optimization_step""" )
A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , lowerCAmelCase_ ):
raise ValueError("""Invalid update_after_step""" )
A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Tuple =state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ )
if shadow_params is not None:
A__ : List[str] =shadow_params
if not isinstance(self.shadow_params , lowerCAmelCase_ ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 687 | 0 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
__snake_case : Any = re.compile(r'\s+')
def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Any:
"""simple docstring"""
return {"hash": hashlib.mda(re.sub(__snake_case, """""", example["""content"""] ).encode("""utf-8""" ) ).hexdigest()}
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : Dict =[len(__snake_case ) for line in example["""content"""].splitlines()]
return {"line_mean": np.mean(__snake_case ), "line_max": max(__snake_case )}
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Any:
"""simple docstring"""
A__ : int =np.mean([c.isalnum() for c in example["""content"""]] )
return {"alpha_frac": alpha_frac}
def __lowerCamelCase ( __snake_case : int, __snake_case : Tuple ) -> Optional[int]:
"""simple docstring"""
if example["hash"] in uniques:
uniques.remove(example["""hash"""] )
return True
else:
return False
def __lowerCamelCase ( __snake_case : Dict, __snake_case : Tuple=5 ) -> Optional[Any]:
"""simple docstring"""
A__ : Dict =["""auto-generated""", """autogenerated""", """automatically generated"""]
A__ : Optional[Any] =example["""content"""].splitlines()
for _, line in zip(range(__snake_case ), __snake_case ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any]=5, __snake_case : int=0.05 ) -> Optional[Any]:
"""simple docstring"""
A__ : str =["""unit tests""", """test file""", """configuration file"""]
A__ : Optional[int] =example["""content"""].splitlines()
A__ : List[str] =0
A__ : int =0
# first test
for _, line in zip(range(__snake_case ), __snake_case ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
A__ : Optional[Any] =example["""content"""].count("""\n""" )
A__ : Dict =int(coeff * nlines )
for line in lines:
count_config += line.lower().count("""config""" )
count_test += line.lower().count("""test""" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def __lowerCamelCase ( __snake_case : int ) -> Any:
"""simple docstring"""
A__ : Tuple =["""def """, """class """, """for """, """while """]
A__ : List[str] =example["""content"""].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def __lowerCamelCase ( __snake_case : List[str], __snake_case : int=4 ) -> List[str]:
"""simple docstring"""
A__ : Any =example["""content"""].splitlines()
A__ : int =0
for line in lines:
counter += line.lower().count("""=""" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def __lowerCamelCase ( __snake_case : Any ) -> Any:
"""simple docstring"""
A__ : int =tokenizer(example["""content"""], truncation=__snake_case )["""input_ids"""]
A__ : Dict =len(example["""content"""] ) / len(__snake_case )
return {"ratio": ratio}
def __lowerCamelCase ( __snake_case : int ) -> Any:
"""simple docstring"""
A__ : Any ={}
results.update(get_hash(__snake_case ) )
results.update(line_stats(__snake_case ) )
results.update(alpha_stats(__snake_case ) )
results.update(char_token_ratio(__snake_case ) )
results.update(is_autogenerated(__snake_case ) )
results.update(is_config_or_test(__snake_case ) )
results.update(has_no_keywords(__snake_case ) )
results.update(has_few_assignments(__snake_case ) )
return results
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Dict ) -> Dict:
"""simple docstring"""
if not check_uniques(__snake_case, __snake_case ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def __lowerCamelCase ( __snake_case : Tuple ) -> str:
"""simple docstring"""
with open(__snake_case, """rb""" ) as f_in:
with gzip.open(str(__snake_case ) + """.gz""", """wb""", compresslevel=6 ) as f_out:
shutil.copyfileobj(__snake_case, __snake_case )
os.unlink(__snake_case )
# Settings
__snake_case : List[Any] = HfArgumentParser(PreprocessingArguments)
__snake_case : Union[str, Any] = parser.parse_args()
if args.num_workers is None:
__snake_case : Dict = multiprocessing.cpu_count()
__snake_case : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
__snake_case : str = time.time()
__snake_case : Optional[int] = load_dataset(args.dataset_name, split='train')
print(F"""Time to load dataset: {time.time()-t_start:.2f}""")
# Run preprocessing
__snake_case : Optional[int] = time.time()
__snake_case : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers)
print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""")
# Deduplicate hashes
__snake_case : str = set(ds.unique('hash'))
__snake_case : str = len(uniques) / len(ds)
print(F"""Fraction of duplicates: {1-frac:.2%}""")
# Deduplicate data and apply heuristics
__snake_case : List[Any] = time.time()
__snake_case : Dict = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args})
print(F"""Time to filter dataset: {time.time()-t_start:.2f}""")
print(F"""Size of filtered dataset: {len(ds_filter)}""")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
__snake_case : Union[str, Any] = time.time()
__snake_case : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""")
print(F"""Size of deduplicate dataset: {len(ds_filter)}""")
# Save data in batches of samples_per_file
__snake_case : List[Any] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / 'duplicate_clusters.json', 'w') as f:
json.dump(duplicate_clusters, f)
__snake_case : List[Any] = output_dir / 'data'
data_dir.mkdir(exist_ok=True)
__snake_case : Optional[Any] = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
__snake_case : List[Any] = str(data_dir / F"""file-{file_number+1:012}.json""")
__snake_case : Tuple = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
| 716 |
'''simple docstring'''
from __future__ import annotations
import requests
__snake_case : Union[str, Any] = set(
'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split()
)
def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict:
"""simple docstring"""
A__ : Union[str, Any] =wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ):
A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}"
raise ValueError(__snake_case )
A__ : Tuple =requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, )
if response.status_code == 429:
raise requests.HTTPError
A__ : Tuple =response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )}
A__ : Tuple ={}
for id_ in range(__snake_case ):
A__ : List[Any] ={
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
| 687 | 0 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
__snake_case : Optional[int] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None:
'''simple docstring'''
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase_ , )
super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
| 717 |
'''simple docstring'''
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__snake_case : Union[str, Any] = logging.getLogger(__name__)
__snake_case : int = tf.data.AUTOTUNE
def __lowerCamelCase ( ) -> List[Any]:
"""simple docstring"""
A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" )
parser.add_argument(
"""--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", )
parser.add_argument(
"""--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", )
parser.add_argument(
"""--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", )
parser.add_argument(
"""--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", )
parser.add_argument(
"""--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", )
parser.add_argument(
"""--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", )
parser.add_argument(
"""--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" )
parser.add_argument(
"""--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", )
parser.add_argument(
"""--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", )
parser.add_argument(
"""--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`"""
""" then the dataset will be loaded from a Google Cloud Storage bucket.""", )
parser.add_argument(
"""--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", )
parser.add_argument(
"""--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", )
parser.add_argument(
"""--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", )
parser.add_argument(
"""--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", )
parser.add_argument(
"""--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", )
parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" )
parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" )
A__ : Optional[Any] =parser.parse_args()
return args
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
try:
if args.tpu_name:
A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name, zone=args.tpu_zone, project=args.gcp_project )
else:
A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"""Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """
"""--gcp_project. When running on a TPU VM, use --tpu_name local.""" )
tf.config.experimental_connect_to_cluster(__snake_case )
tf.tpu.experimental.initialize_tpu_system(__snake_case )
return tpu
def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict:
"""simple docstring"""
A__ : Any =0
for file in file_list:
A__ : Optional[int] =file.split("""/""" )[-1]
A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 )
A__ : str =int(__snake_case )
num_samples += sample_count
return num_samples
def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]:
"""simple docstring"""
A__ : List[str] =count_samples(__snake_case )
A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case )
if shuffle:
A__ : Optional[int] =dataset.shuffle(len(__snake_case ) )
A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) )
A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case )
if shuffle:
assert shuffle_buffer_size is not None
A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size )
A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case )
A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case )
A__ : Tuple =dataset.prefetch(__snake_case )
return dataset
def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
if not args.no_tpu:
A__ : Dict =initialize_tpu(__snake_case )
A__ : int =tf.distribute.TPUStrategy(__snake_case )
else:
A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" )
A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer )
A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config )
A__ : Optional[Any] =tokenizer.vocab_size
A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) )
if not training_records:
raise ValueError(f"No .tfrecord files found in {args.train_dataset}." )
A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) )
if not eval_records:
raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." )
A__ : Optional[Any] =count_samples(__snake_case )
A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
A__ : str =steps_per_epoch * args.num_epochs
with strategy.scope():
A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
A__ , A__ : Optional[Any] =create_optimizer(
num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__snake_case, metrics=["""accuracy"""] )
def decode_fn(__snake_case : Tuple ):
A__ : Dict ={
"""input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
"""attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__snake_case, __snake_case )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
A__ : List[Any] =DataCollatorForLanguageModeling(
tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" )
def mask_with_collator(__snake_case : Optional[int] ):
# TF really needs an isin() function
A__ : Union[str, Any] =(
~tf.cast(batch["""attention_mask"""], tf.bool )
| (batch["""input_ids"""] == tokenizer.cls_token_id)
| (batch["""input_ids"""] == tokenizer.sep_token_id)
)
A__ , A__ : List[str] =data_collator.tf_mask_tokens(
batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, )
return batch
A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, )
A__ : List[str] =prepare_dataset(
__snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, )
A__ : Tuple =[]
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) )
model.fit(
__snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__snake_case : str = parse_args()
main(args)
| 687 | 0 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__snake_case = datasets.utils.logging.get_logger(__name__)
__snake_case = ['names', 'prefix']
__snake_case = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__snake_case = ['encoding_errors', 'on_bad_lines']
__snake_case = ['date_format']
@dataclass
class lowerCamelCase ( datasets.BuilderConfig ):
'''simple docstring'''
__snake_case = ','
__snake_case = None
__snake_case = 'infer'
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = True
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = False
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = True
__snake_case = True
__snake_case = False
__snake_case = True
__snake_case = None
__snake_case = '.'
__snake_case = None
__snake_case = '"'
__snake_case = 0
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = None
__snake_case = True
__snake_case = True
__snake_case = 0
__snake_case = True
__snake_case = False
__snake_case = None
__snake_case = 1_0000
__snake_case = None
__snake_case = 'strict'
__snake_case = 'error'
__snake_case = None
def lowercase__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
if self.delimiter is not None:
A__ : str =self.delimiter
if self.column_names is not None:
A__ : int =self.column_names
@property
def lowercase__ ( self : str ) -> int:
'''simple docstring'''
A__ : Union[str, Any] ={
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase_ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class lowerCamelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
__snake_case = CsvConfig
def lowercase__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int ) -> str:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" )
A__ : Union[str, Any] =dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase_ , (str, list, tuple) ):
A__ : Any =data_files
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : List[Any] =[files]
A__ : int =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
A__ : Optional[int] =[]
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : Tuple =[files]
A__ : Optional[Any] =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase_ , gen_kwargs={"""files""": files} ) )
return splits
def lowercase__ ( self : Dict , lowerCAmelCase_ : pa.Table ) -> pa.Table:
'''simple docstring'''
if self.config.features is not None:
A__ : Dict =self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase_ ) for feature in self.config.features.values() ):
# cheaper cast
A__ : int =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase_ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
A__ : List[Any] =table_cast(lowerCAmelCase_ , lowerCAmelCase_ )
return pa_table
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
A__ : Tuple =self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
A__ : str =(
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase_ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase_ ) ):
A__ : List[str] =pd.read_csv(lowerCAmelCase_ , iterator=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase_ ):
A__ : Dict =pa.Table.from_pandas(lowerCAmelCase_ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase_ )
except ValueError as e:
logger.error(f"Failed to read file '{file}' with error {type(lowerCAmelCase_ )}: {e}" )
raise
| 718 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__snake_case : Union[str, Any] = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Any = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 687 | 0 |
'''simple docstring'''
from typing import Any
def __lowerCamelCase ( __snake_case : list ):
"""simple docstring"""
if not input_list:
return []
A__ : int =[input_list.count(__snake_case ) for value in input_list]
A__ : Tuple =max(__snake_case ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(__snake_case ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
'''simple docstring'''
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__snake_case : Optional[int] = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__snake_case : Tuple = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"""{len(upper_files)} files contain uppercase characters:""")
print('\n'.join(upper_files) + '\n')
__snake_case : int = [file for file in filepaths if ' ' in file]
if space_files:
print(F"""{len(space_files)} files contain space characters:""")
print('\n'.join(space_files) + '\n')
__snake_case : Optional[Any] = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"""{len(hyphen_files)} files contain hyphen characters:""")
print('\n'.join(hyphen_files) + '\n')
__snake_case : Dict = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"""{len(nodir_files)} files are not in a directory:""")
print('\n'.join(nodir_files) + '\n')
__snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 687 | 0 |
'''simple docstring'''
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
__snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase ( lowercase_ ):
def __init__( self : Dict , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(
vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , )
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> Optional[int]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
A__ : Dict =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCAmelCase_ )
def lowercase__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
self.enable_attention_slicing(lowerCAmelCase_ )
@torch.no_grad()
def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , **lowerCAmelCase_ : Any , ) -> Tuple:
'''simple docstring'''
if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : List[str] =1
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : List[Any] =len(lowerCAmelCase_ )
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase_ )}" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(lowerCAmelCase_ )}." )
# get prompt text embeddings
A__ : Optional[Any] =self.tokenizer(
lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
A__ : str =text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
A__ : List[Any] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
A__ : Optional[int] =text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
A__ : Optional[int] =self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
A__ : Tuple =text_embeddings.shape
A__ : Optional[int] =text_embeddings.repeat(1 , lowerCAmelCase_ , 1 )
A__ : Dict =text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase_ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
A__ : int =guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
A__ : List[str]
if negative_prompt is None:
A__ : Union[str, Any] =[""""""]
elif type(lowerCAmelCase_ ) is not type(lowerCAmelCase_ ):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase_ )} !="
f" {type(lowerCAmelCase_ )}." )
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
A__ : List[Any] =[negative_prompt]
elif batch_size != len(lowerCAmelCase_ ):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase_ )}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
""" the batch size of `prompt`.""" )
else:
A__ : Dict =negative_prompt
A__ : int =text_input_ids.shape[-1]
A__ : Union[str, Any] =self.tokenizer(
lowerCAmelCase_ , padding="""max_length""" , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""" , )
A__ : Dict =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
A__ : Optional[int] =uncond_embeddings.shape[1]
A__ : Optional[Any] =uncond_embeddings.repeat(lowerCAmelCase_ , lowerCAmelCase_ , 1 )
A__ : int =uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase_ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
A__ : Any =torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
A__ : str =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
A__ : Optional[Any] =(batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
A__ : Any =text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
A__ : int =torch.randn(
lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to(self.device )
A__ : Tuple =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to(
self.device )
else:
A__ : str =torch.randn(
lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ )
A__ : Union[str, Any] =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ )
else:
if latents_reference.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" )
A__ : List[str] =latents_reference.to(self.device )
A__ : Union[str, Any] =latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
A__ : Union[str, Any] =(latents_shape[3] - latents_shape_reference[3]) // 2
A__ : int =(latents_shape[2] - latents_shape_reference[2]) // 2
A__ : Dict =latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
A__ : Any =latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
A__ : Optional[Any] =0 if dx < 0 else dx
A__ : Optional[Any] =0 if dy < 0 else dy
A__ : Tuple =max(-dx , 0 )
A__ : List[str] =max(-dy , 0 )
# import pdb
# pdb.set_trace()
A__ : Union[str, Any] =latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(lowerCAmelCase_ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
A__ : List[Any] =self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
A__ : Optional[Any] =latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
A__ : int ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
A__ : Dict ={}
if accepts_eta:
A__ : List[Any] =eta
for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ):
# expand the latents if we are doing classifier free guidance
A__ : Union[str, Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
A__ : Dict =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ )
# predict the noise residual
A__ : Optional[int] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample
# perform guidance
if do_classifier_free_guidance:
A__ : List[Any] =noise_pred.chunk(2 )
A__ : Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
A__ : List[Any] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
A__ : Dict =1 / 0.18215 * latents
A__ : Union[str, Any] =self.vae.decode(lowerCAmelCase_ ).sample
A__ : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if self.safety_checker is not None:
A__ : int =self.feature_extractor(self.numpy_to_pil(lowerCAmelCase_ ) , return_tensors="""pt""" ).to(
self.device )
A__ : int =self.safety_checker(
images=lowerCAmelCase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
A__ : Optional[int] =None
if output_type == "pil":
A__ : Union[str, Any] =self.numpy_to_pil(lowerCAmelCase_ )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
| 720 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case : List[Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str:
"""simple docstring"""
A__ : int =[]
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]:
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any =""""""
else:
A__ : Optional[int] ="""vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
A__ : Optional[int] =in_proj_weight[
: config.hidden_size, :
]
A__ : str =in_proj_bias[: config.hidden_size]
A__ : Optional[Any] =in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict =in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : List[Any] =in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] =in_proj_bias[-config.hidden_size :]
def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
A__ : List[Any] =["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]:
"""simple docstring"""
A__ : Dict =dct.pop(__snake_case )
A__ : Tuple =val
def __lowerCamelCase ( ) -> int:
"""simple docstring"""
A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw )
return im
@torch.no_grad()
def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str:
"""simple docstring"""
A__ : Tuple =ViTConfig()
# patch_size
if model_name[-1] == "8":
A__ : Optional[Any] =8
# set labels if required
if not base_model:
A__ : Optional[Any] =1_000
A__ : str ="""huggingface/label-files"""
A__ : Any ="""imagenet-1k-id2label.json"""
A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) )
A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()}
A__ : List[Any] =idalabel
A__ : List[Any] ={v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
A__ : str =384
A__ : Optional[Any] =1_536
A__ : Optional[Any] =12
A__ : Union[str, Any] =6
# load original model from torch hub
A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case )
original_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : List[str] =original_model.state_dict()
if base_model:
remove_classification_head_(__snake_case )
A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case )
for src, dest in rename_keys:
rename_key(__snake_case, __snake_case, __snake_case )
read_in_q_k_v(__snake_case, __snake_case, __snake_case )
# load HuggingFace model
if base_model:
A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval()
else:
A__ : List[str] =ViTForImageClassification(__snake_case ).eval()
model.load_state_dict(__snake_case )
# Check outputs on an image, prepared by ViTImageProcessor
A__ : Union[str, Any] =ViTImageProcessor()
A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Union[str, Any] =encoding["""pixel_values"""]
A__ : Union[str, Any] =model(__snake_case )
if base_model:
A__ : List[str] =original_model(__snake_case )
assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 )
else:
A__ : Optional[int] =original_model(__snake_case )
assert logits.shape == outputs.logits.shape
assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 )
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__snake_case )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__snake_case )
if __name__ == "__main__":
__snake_case : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__snake_case : Tuple = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 687 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__snake_case : Union[str, Any] = logging.get_logger(__name__)
def __lowerCamelCase ( __snake_case : Tuple ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(__snake_case, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(__snake_case, (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(__snake_case ):
return [[videos]]
raise ValueError(f"Could not make batched video from {videos}" )
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = ['pixel_values']
def __init__( self : Any , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase_ )
A__ : Dict =size if size is not None else {"""shortest_edge""": 2_24}
A__ : Optional[int] =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
A__ : List[Any] =crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
A__ : List[Any] =get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" )
A__ : Union[str, Any] =do_resize
A__ : Union[str, Any] =size
A__ : str =do_center_crop
A__ : Optional[int] =crop_size
A__ : str =resample
A__ : Tuple =do_rescale
A__ : Any =rescale_factor
A__ : Any =do_normalize
A__ : Dict =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A__ : int =image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
A__ : List[Any] =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
if "shortest_edge" in size:
A__ : List[str] =get_resize_output_image_size(lowerCAmelCase_ , size["""shortest_edge"""] , default_to_square=lowerCAmelCase_ )
elif "height" in size and "width" in size:
A__ : Optional[Any] =(size["""height"""], size["""width"""])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def lowercase__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
A__ : Dict =get_size_dict(lowerCAmelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def lowercase__ ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> Tuple:
'''simple docstring'''
return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ )
def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
A__ : Tuple =to_numpy_array(lowerCAmelCase_ )
if do_resize:
A__ : Dict =self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ )
if do_center_crop:
A__ : List[Any] =self.center_crop(lowerCAmelCase_ , size=lowerCAmelCase_ )
if do_rescale:
A__ : Tuple =self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ )
if do_normalize:
A__ : Tuple =self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ )
A__ : Union[str, Any] =to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ )
return image
def lowercase__ ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> PIL.Image.Image:
'''simple docstring'''
A__ : str =do_resize if do_resize is not None else self.do_resize
A__ : Optional[Any] =resample if resample is not None else self.resample
A__ : str =do_center_crop if do_center_crop is not None else self.do_center_crop
A__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale
A__ : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor
A__ : str =do_normalize if do_normalize is not None else self.do_normalize
A__ : Tuple =image_mean if image_mean is not None else self.image_mean
A__ : List[str] =image_std if image_std is not None else self.image_std
A__ : Union[str, Any] =size if size is not None else self.size
A__ : int =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ )
A__ : Optional[Any] =crop_size if crop_size is not None else self.crop_size
A__ : Union[str, Any] =get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" )
if not valid_images(lowerCAmelCase_ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
A__ : Dict =make_batched(lowerCAmelCase_ )
A__ : int =[
[
self._preprocess_image(
image=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , crop_size=lowerCAmelCase_ , do_rescale=lowerCAmelCase_ , rescale_factor=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , image_mean=lowerCAmelCase_ , image_std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , )
for img in video
]
for video in videos
]
A__ : Any ={"""pixel_values""": videos}
return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
| 721 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
__snake_case : List[Any] = logging.get_logger(__name__)
class lowerCamelCase ( lowercase_ ):
'''simple docstring'''
__snake_case = 'linear'
__snake_case = 'cosine'
__snake_case = 'cosine_with_restarts'
__snake_case = 'polynomial'
__snake_case = 'constant'
__snake_case = 'constant_with_warmup'
__snake_case = 'piecewise_constant'
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]:
"""simple docstring"""
return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1.0, __snake_case ) )
return 1.0
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]:
"""simple docstring"""
A__ : str ={}
A__ : Tuple =step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
A__ , A__ : int =rule_str.split(""":""" )
A__ : Optional[int] =int(__snake_case )
A__ : List[Any] =float(__snake_case )
A__ : Union[str, Any] =value
A__ : int =float(rule_list[-1] )
def create_rules_function(__snake_case : int, __snake_case : Dict ):
def rule_func(__snake_case : int ) -> float:
A__ : Any =sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__snake_case ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
A__ : Any =create_rules_function(__snake_case, __snake_case )
return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case )
def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : Dict ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict:
"""simple docstring"""
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) )
return LambdaLR(__snake_case, __snake_case, __snake_case )
def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]:
"""simple docstring"""
A__ : Optional[int] =optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" )
def lr_lambda(__snake_case : int ):
if current_step < num_warmup_steps:
return float(__snake_case ) / float(max(1, __snake_case ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
A__ : List[Any] =lr_init - lr_end
A__ : Any =num_training_steps - num_warmup_steps
A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps
A__ : List[str] =lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__snake_case, __snake_case, __snake_case )
__snake_case : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple:
"""simple docstring"""
A__ : Tuple =SchedulerType(__snake_case )
A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__snake_case, last_epoch=__snake_case )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, )
return schedule_func(
__snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
| 687 | 0 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 600851475143 ) -> int:
try:
__lowercase = int(SCREAMING_SNAKE_CASE )
except (TypeError, ValueError):
raise TypeError('Parameter n must be int or castable to int.' )
if n <= 0:
raise ValueError('Parameter n must be greater than or equal to one.' )
__lowercase = 2
__lowercase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
__lowercase = i
while n % i == 0:
__lowercase = n // i
i += 1
return int(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 688 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 1 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 1 |
import unittest
from transformers import AlbertTokenizer, AlbertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/spiece.model""")
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Union[str, Any] = AlbertTokenizer
lowerCAmelCase__ : str = AlbertTokenizerFast
lowerCAmelCase__ : Union[str, Any] = True
lowerCAmelCase__ : Tuple = True
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
__lowercase = AlbertTokenizer(_UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = 'this is a test'
__lowercase = 'this is a test'
return input_text, output_text
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<pad>' )
self.assertEqual(vocab_keys[1] , '<unk>' )
self.assertEqual(vocab_keys[-1] , '▁eloquent' )
self.assertEqual(len(_UpperCAmelCase ) , 3_00_00 )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 )
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer()
__lowercase = 'I was born in 92000, and this is falsé.'
__lowercase = tokenizer.tokenize(_UpperCAmelCase )
__lowercase = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
__lowercase = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.get_rust_tokenizer()
__lowercase = tokenizer.encode(_UpperCAmelCase )
__lowercase = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowercase = AlbertTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [48, 25, 21, 12_89] )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = AlbertTokenizer(_UpperCAmelCase )
__lowercase = tokenizer.encode('sequence builders' )
__lowercase = tokenizer.encode('multi-sequence build' )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
@slow
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
| 688 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 1 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class A__ :
lowerCAmelCase__ : str = MBartConfig
lowerCAmelCase__ : Optional[Any] = {}
lowerCAmelCase__ : Optional[int] = "gelu"
def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : int=2 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=20 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]=0 , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = eos_token_id
__lowercase = pad_token_id
__lowercase = bos_token_id
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowercase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowercase = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFMBartModel(config=_UpperCAmelCase ).get_decoder()
__lowercase = inputs_dict['input_ids']
__lowercase = input_ids[:1, :]
__lowercase = inputs_dict['attention_mask'][:1, :]
__lowercase = inputs_dict['head_mask']
__lowercase = 1
# first forward pass
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
__lowercase , __lowercase = outputs.to_tuple()
__lowercase = past_key_values[1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> int:
if attention_mask is None:
__lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__lowercase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
lowerCAmelCase__ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase__ : int = (
{
"conversational": TFMBartForConditionalGeneration,
"feature-extraction": TFMBartModel,
"summarization": TFMBartForConditionalGeneration,
"text2text-generation": TFMBartForConditionalGeneration,
"translation": TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : Optional[int] = True
lowerCAmelCase__ : Union[str, Any] = False
lowerCAmelCase__ : Optional[int] = False
def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> List[Any]:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = TFMBartModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = [
" UN Chief Says There Is No Military Solution in Syria",
]
lowerCAmelCase__ : List[Any] = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
]
lowerCAmelCase__ : int = "facebook/mbart-large-en-ro"
@cached_property
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def a__ ( self : Any , **_UpperCAmelCase : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.translate_src_text(**_UpperCAmelCase )
self.assertListEqual(self.expected_text , _UpperCAmelCase )
def a__ ( self : Dict , **_UpperCAmelCase : List[Any] ) -> Dict:
"""simple docstring"""
__lowercase = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' )
__lowercase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
__lowercase = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__ :
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : List[str]=[10, 20, 30, 40] , _UpperCAmelCase : Union[str, Any]=[1, 1, 2, 1] , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Optional[Any]=None , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = num_channels
__lowercase = embeddings_size
__lowercase = hidden_sizes
__lowercase = depths
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_act
__lowercase = num_labels
__lowercase = scope
__lowercase = len(_UpperCAmelCase )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.num_labels )
__lowercase = self.get_config()
return config, pixel_values, labels
def a__ ( self : int ) -> int:
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = RegNetModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = RegNetForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Union[str, Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
lowerCAmelCase__ : str = (
{"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Union[str, Any] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[Any] = False
def a__ ( self : Any ) -> str:
"""simple docstring"""
__lowercase = RegNetModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
pass
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(config=_UpperCAmelCase )
for name, module in model.named_modules():
if isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ):
__lowercase = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__lowercase = self.model_tester.num_stages
self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
__lowercase = layer_type
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = RegNetModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ) -> int:
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
@cached_property
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__lowercase = model(**_UpperCAmelCase )
# verify the logits
__lowercase = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__lowercase = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 688 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
SCREAMING_SNAKE_CASE__ = {
"""gwf-440k""": {
"""url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""",
"""sample_rate""": 4_8000,
"""sample_size""": 6_5536,
},
"""jmann-small-190k""": {
"""url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""",
"""sample_rate""": 4_8000,
"""sample_size""": 6_5536,
},
"""jmann-large-580k""": {
"""url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""",
"""sample_rate""": 4_8000,
"""sample_size""": 13_1072,
},
"""maestro-uncond-150k""": {
"""url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""",
"""sample_rate""": 1_6000,
"""sample_size""": 6_5536,
},
"""unlocked-uncond-250k""": {
"""url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""",
"""sample_rate""": 1_6000,
"""sample_size""": 6_5536,
},
"""honk-140k""": {
"""url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""",
"""sample_rate""": 1_6000,
"""sample_size""": 6_5536,
},
}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Any:
return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
__lowercase = torch.sin(t * math.pi / 2 ) ** 2
__lowercase = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : Tuple ) -> List[str]:
"""simple docstring"""
super().__init__()
__lowercase = DiffusionAttnUnetaD(_UpperCAmelCase , n_attn_layers=4 )
__lowercase = deepcopy(self.diffusion )
__lowercase = torch.quasirandom.SobolEngine(1 , scramble=_UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> str:
__lowercase = MODELS_MAP[model_name]['url']
os.system(F"""wget {url} ./""" )
return F"""./{model_name}.ckpt"""
SCREAMING_SNAKE_CASE__ = {
"""1""": """resnets.0""",
"""2""": """attentions.0""",
"""3""": """resnets.1""",
"""4""": """attentions.1""",
"""5""": """resnets.2""",
"""6""": """attentions.2""",
}
SCREAMING_SNAKE_CASE__ = {
"""8""": """resnets.0""",
"""9""": """attentions.0""",
"""10""": """resnets.1""",
"""11""": """attentions.1""",
"""12""": """resnets.2""",
"""13""": """attentions.2""",
}
SCREAMING_SNAKE_CASE__ = {
"""1""": """resnets.0""",
"""2""": """attentions.0""",
"""3""": """resnets.1""",
"""4""": """attentions.1""",
"""5""": """resnets.2""",
"""6""": """attentions.2""",
"""8""": """resnets.3""",
"""9""": """attentions.3""",
"""10""": """resnets.4""",
"""11""": """attentions.4""",
"""12""": """resnets.5""",
"""13""": """attentions.5""",
}
SCREAMING_SNAKE_CASE__ = {
"""0""": """resnets.0""",
"""1""": """resnets.1""",
"""2""": """resnets.2""",
"""4""": """resnets.0""",
"""5""": """resnets.1""",
"""6""": """resnets.2""",
}
SCREAMING_SNAKE_CASE__ = {
"""skip""": """conv_skip""",
"""main.0""": """conv_1""",
"""main.1""": """group_norm_1""",
"""main.3""": """conv_2""",
"""main.4""": """group_norm_2""",
}
SCREAMING_SNAKE_CASE__ = {
"""norm""": """group_norm""",
"""qkv_proj""": ["""query""", """key""", """value"""],
"""out_proj""": ["""proj_attn"""],
}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]:
if name.startswith('skip' ):
return name.replace('skip' , RES_CONV_MAP['skip'] )
# name has to be of format main.{digit}
if not name.startswith('main.' ):
raise ValueError(F"""ResConvBlock error with {name}""" )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
for key, value in ATTN_MAP.items():
if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif name.startswith(SCREAMING_SNAKE_CASE ):
return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value]
raise ValueError(F"""Attn error with {name}""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=13 ) -> Optional[Any]:
__lowercase = input_string
if string.split('.' )[0] == "timestep_embed":
return string.replace('timestep_embed' , 'time_proj' )
__lowercase = 0
if string.startswith('net.3.' ):
depth += 1
__lowercase = string[6:]
elif string.startswith('net.' ):
__lowercase = string[4:]
while string.startswith('main.7.' ):
depth += 1
__lowercase = string[7:]
if string.startswith('main.' ):
__lowercase = string[5:]
# mid block
if string[:2].isdigit():
__lowercase = string[:2]
__lowercase = string[2:]
else:
__lowercase = string[0]
__lowercase = string[1:]
if depth == max_depth:
__lowercase = MID_NUM_TO_LAYER[layer_num]
__lowercase = 'mid_block'
elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7:
__lowercase = DOWN_NUM_TO_LAYER[layer_num]
__lowercase = F"""down_blocks.{depth}"""
elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7:
__lowercase = UP_NUM_TO_LAYER[layer_num]
__lowercase = F"""up_blocks.{max_depth - depth - 1}"""
elif depth == 0:
__lowercase = DEPTH_0_TO_LAYER[layer_num]
__lowercase = F"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE ) > 3 else 'down_blocks.0'
if not string_left.startswith('.' ):
raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" )
__lowercase = string_left[1:]
if "resnets" in new_layer:
__lowercase = convert_resconv_naming(SCREAMING_SNAKE_CASE )
elif "attentions" in new_layer:
__lowercase = convert_attn_naming(SCREAMING_SNAKE_CASE )
__lowercase = new_string_left
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = prefix + '.' + new_layer + '.' + string_left
else:
__lowercase = [prefix + '.' + new_layer + '.' + s for s in string_left]
return new_string
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
__lowercase = {}
for k, v in state_dict.items():
if k.endswith('kernel' ):
# up- and downsample layers, don't have trainable weights
continue
__lowercase = rename(SCREAMING_SNAKE_CASE )
# check if we need to transform from Conv => Linear for attention
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
__lowercase = v
return new_state_dict
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ) -> Dict:
if len(SCREAMING_SNAKE_CASE ) == 1:
if len(v.shape ) == 3:
# weight
__lowercase = v[:, :, 0]
else:
# bias
__lowercase = v
else:
# qkv matrices
__lowercase = v.shape[0]
__lowercase = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
__lowercase = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
__lowercase = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
__lowercase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
__lowercase = args.model_path.split('/' )[-1].split('.' )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}"""
__lowercase = download(SCREAMING_SNAKE_CASE )
__lowercase = MODELS_MAP[model_name]['sample_rate']
__lowercase = MODELS_MAP[model_name]['sample_size']
__lowercase = Object()
__lowercase = sample_size
__lowercase = sample_rate
__lowercase = 0
__lowercase = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE )
__lowercase = diffusers_model.state_dict()
__lowercase = DiffusionUncond(SCREAMING_SNAKE_CASE )
orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )['state_dict'] )
__lowercase = orig_model.diffusion_ema.eval()
__lowercase = orig_model.state_dict()
__lowercase = rename_orig_weights(SCREAMING_SNAKE_CASE )
__lowercase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
__lowercase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(SCREAMING_SNAKE_CASE ) == 0, F"""Problem with {renamed_minus_diffusers}"""
assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE ) ), F"""Problem with {diffusers_minus_renamed}"""
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"""
if key == "time_proj.weight":
__lowercase = value.squeeze()
__lowercase = value
diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE )
__lowercase = 100
__lowercase = 33
__lowercase = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE )
__lowercase = torch.manual_seed(SCREAMING_SNAKE_CASE )
__lowercase = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE )
__lowercase = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1]
__lowercase = get_crash_schedule(SCREAMING_SNAKE_CASE )
__lowercase = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE )
__lowercase = torch.manual_seed(33 )
__lowercase = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios
__lowercase = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} )
__lowercase = generated.clamp(-1 , 1 )
__lowercase = (generated - audio).abs().sum()
__lowercase = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print('Diff sum' , SCREAMING_SNAKE_CASE )
print('Diff max' , SCREAMING_SNAKE_CASE )
assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/"""
print(F"""Conversion for {model_name} successful!""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
main(args)
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
SCREAMING_SNAKE_CASE__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
SCREAMING_SNAKE_CASE__ = tuple[int, int]
class A__ :
def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Node | None , ) -> None:
"""simple docstring"""
__lowercase = pos_x
__lowercase = pos_y
__lowercase = (pos_y, pos_x)
__lowercase = goal_x
__lowercase = goal_y
__lowercase = g_cost
__lowercase = parent
__lowercase = self.calculate_heuristic()
__lowercase = self.g_cost + self.h_cost
def a__ ( self : List[Any] ) -> float:
"""simple docstring"""
__lowercase = self.pos_x - self.goal_x
__lowercase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(_UpperCAmelCase ) + abs(_UpperCAmelCase )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : List[Any] , _UpperCAmelCase : Node ) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> Optional[Any]:
"""simple docstring"""
__lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCAmelCase )
__lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _UpperCAmelCase )
__lowercase = [self.start]
__lowercase = []
__lowercase = False
def a__ ( self : Tuple ) -> list[TPosition]:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__lowercase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(_UpperCAmelCase )
self.closed_nodes.append(_UpperCAmelCase )
__lowercase = self.get_successors(_UpperCAmelCase )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_UpperCAmelCase )
else:
# retrieve the best current path
__lowercase = self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_UpperCAmelCase )
else:
self.open_nodes.append(_UpperCAmelCase )
return [self.start.pos]
def a__ ( self : List[str] , _UpperCAmelCase : Node ) -> list[Node]:
"""simple docstring"""
__lowercase = []
for action in delta:
__lowercase = parent.pos_x + action[1]
__lowercase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCAmelCase , ) )
return successors
def a__ ( self : Optional[int] , _UpperCAmelCase : Node | None ) -> list[TPosition]:
"""simple docstring"""
__lowercase = node
__lowercase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__lowercase = current_node.parent
path.reverse()
return path
class A__ :
def __init__( self : List[str] , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> None:
"""simple docstring"""
__lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = False
def a__ ( self : List[Any] ) -> list[TPosition]:
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
__lowercase = self.fwd_astar.open_nodes.pop(0 )
__lowercase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
_UpperCAmelCase , _UpperCAmelCase )
self.fwd_astar.closed_nodes.append(_UpperCAmelCase )
self.bwd_astar.closed_nodes.append(_UpperCAmelCase )
__lowercase = current_bwd_node
__lowercase = current_fwd_node
__lowercase = {
self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase ),
self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(_UpperCAmelCase )
else:
# retrieve the best current path
__lowercase = astar.open_nodes.pop(
astar.open_nodes.index(_UpperCAmelCase ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(_UpperCAmelCase )
else:
astar.open_nodes.append(_UpperCAmelCase )
return [self.fwd_astar.start.pos]
def a__ ( self : Dict , _UpperCAmelCase : Node , _UpperCAmelCase : Node ) -> list[TPosition]:
"""simple docstring"""
__lowercase = self.fwd_astar.retrace_path(_UpperCAmelCase )
__lowercase = self.bwd_astar.retrace_path(_UpperCAmelCase )
bwd_path.pop()
bwd_path.reverse()
__lowercase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
SCREAMING_SNAKE_CASE__ = (0, 0)
SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
SCREAMING_SNAKE_CASE__ = time.time()
SCREAMING_SNAKE_CASE__ = AStar(init, goal)
SCREAMING_SNAKE_CASE__ = a_star.search()
SCREAMING_SNAKE_CASE__ = time.time() - start_time
print(F'''AStar execution time = {end_time:f} seconds''')
SCREAMING_SNAKE_CASE__ = time.time()
SCREAMING_SNAKE_CASE__ = BidirectionalAStar(init, goal)
SCREAMING_SNAKE_CASE__ = time.time() - bd_start_time
print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 688 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 1 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
SCREAMING_SNAKE_CASE__ = 4
SCREAMING_SNAKE_CASE__ = 3
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]:
for shard in shards:
for i in range(SCREAMING_SNAKE_CASE ):
yield {"i": i, "shard": shard}
def __SCREAMING_SNAKE_CASE ( ) -> Any:
__lowercase = int(os.environ['RANK'] )
__lowercase = int(os.environ['WORLD_SIZE'] )
__lowercase = ArgumentParser()
parser.add_argument('--streaming' , type=SCREAMING_SNAKE_CASE )
parser.add_argument('--local_rank' , type=SCREAMING_SNAKE_CASE )
parser.add_argument('--num_workers' , type=SCREAMING_SNAKE_CASE , default=0 )
__lowercase = parser.parse_args()
__lowercase = args.streaming
__lowercase = args.num_workers
__lowercase = {'shards': [F"""shard_{shard_idx}""" for shard_idx in range(SCREAMING_SNAKE_CASE )]}
__lowercase = IterableDataset.from_generator(SCREAMING_SNAKE_CASE , gen_kwargs=SCREAMING_SNAKE_CASE )
if not streaming:
__lowercase = Dataset.from_list(list(SCREAMING_SNAKE_CASE ) )
__lowercase = split_dataset_by_node(SCREAMING_SNAKE_CASE , rank=SCREAMING_SNAKE_CASE , world_size=SCREAMING_SNAKE_CASE )
__lowercase = torch.utils.data.DataLoader(SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE )
__lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD
__lowercase = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
__lowercase = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" )
if __name__ == "__main__":
main()
| 688 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 1 |
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
SCREAMING_SNAKE_CASE__ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""")
SCREAMING_SNAKE_CASE__ = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split()
SCREAMING_SNAKE_CASE__ = """|""".join(sys.argv[1:])
SCREAMING_SNAKE_CASE__ = re.compile(rF'''^({joined_dirs}).*?\.py$''')
SCREAMING_SNAKE_CASE__ = [x for x in modified_files if regex.match(x)]
print(""" """.join(relevant_modified_files), end="""""")
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 1 |
import time
import warnings
from abc import ABC
from copy import deepcopy
from typing import Optional
import torch
from ..utils import add_start_docstrings, logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax.
kwargs (`Dict[str, Any]`, *optional*):
Additional stopping criteria specific kwargs.
Return:
`bool`. `False` indicates we should continue, `True` indicates we should stop.
"""
class A__ ( lowerCAmelCase__ ):
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : List[Any] , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : List[Any] ) -> bool:
"""simple docstring"""
raise NotImplementedError('StoppingCriteria needs to be subclassed' )
class A__ ( lowerCAmelCase__ ):
def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] = None ) -> Optional[Any]:
"""simple docstring"""
__lowercase = max_length
__lowercase = max_position_embeddings
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : Optional[int] , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Optional[int] ) -> bool:
"""simple docstring"""
__lowercase = input_ids.shape[-1]
__lowercase = cur_len >= self.max_length
if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings:
logger.warning_once(
'This is a friendly reminder - the current text generation call will exceed the model\'s predefined '
f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """
'exceptions, performance degradation, or nothing at all.' )
return is_done
class A__ ( lowerCAmelCase__ ):
def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
warnings.warn(
'The class `MaxNewTokensCriteria` is deprecated. '
f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """
'with `max_length = start_length + max_new_tokens` instead.' , _UpperCAmelCase , )
__lowercase = start_length
__lowercase = max_new_tokens
__lowercase = start_length + max_new_tokens
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : Dict , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Dict ) -> bool:
"""simple docstring"""
return input_ids.shape[-1] >= self.max_length
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : float , _UpperCAmelCase : Optional[float] = None ) -> int:
"""simple docstring"""
__lowercase = max_time
__lowercase = time.time() if initial_timestamp is None else initial_timestamp
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : Tuple , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : List[Any] ) -> bool:
"""simple docstring"""
return time.time() - self.initial_timestamp > self.max_time
class A__ ( lowerCAmelCase__ ):
@add_start_docstrings(_UpperCAmelCase )
def __call__( self : Tuple , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Dict ) -> bool:
"""simple docstring"""
return any(criteria(_UpperCAmelCase , _UpperCAmelCase ) for criteria in self )
@property
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
for stopping_criterium in self:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return stopping_criterium.max_length
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return stopping_criterium.max_length
return None
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : StoppingCriteriaList , SCREAMING_SNAKE_CASE : int ) -> StoppingCriteriaList:
__lowercase = stopping_criteria.max_length
__lowercase = deepcopy(SCREAMING_SNAKE_CASE )
if stopping_max_length is not None and stopping_max_length != max_length:
warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , SCREAMING_SNAKE_CASE )
elif stopping_max_length is None:
new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE ) )
return new_stopping_criteria
| 688 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 1 |
from typing import List, Optional, Union
import torch
from transformers import (
XLMRobertaTokenizer,
)
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
from .text_encoder import MultilingualCLIP
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE__ = """
Examples:
```py
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
>>> import torch
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")
>>> pipe_prior.to(\"cuda\")
>>> prompt = \"red cat, 4k photo\"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> negative_image_emb = out.negative_image_embeds
>>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")
>>> pipe.to(\"cuda\")
>>> image = pipe(
... prompt,
... image_embeds=image_emb,
... negative_image_embeds=negative_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... ).images
>>> image[0].save(\"cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=8 ) -> Optional[int]:
__lowercase = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
__lowercase = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : MultilingualCLIP , _UpperCAmelCase : XLMRobertaTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : VQModel , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
self.register_modules(
text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , )
__lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Tuple:
"""simple docstring"""
if latents is None:
__lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
__lowercase = latents.to(_UpperCAmelCase )
__lowercase = latents * scheduler.init_noise_sigma
return latents
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = len(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else 1
# get prompt text embeddings
__lowercase = self.tokenizer(
_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , max_length=77 , return_attention_mask=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' , )
__lowercase = text_inputs.input_ids
__lowercase = self.tokenizer(_UpperCAmelCase , padding='longest' , return_tensors='pt' ).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] )
logger.warning(
'The following part of your input was truncated because CLIP can only handle sequences up to'
f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
__lowercase = text_input_ids.to(_UpperCAmelCase )
__lowercase = text_inputs.attention_mask.to(_UpperCAmelCase )
__lowercase , __lowercase = self.text_encoder(
input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
__lowercase = prompt_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = text_encoder_hidden_states.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = text_mask.repeat_interleave(_UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
__lowercase = 42
if negative_prompt is None:
__lowercase = [''] * batch_size
elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ):
raise TypeError(
f"""`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !="""
f""" {type(_UpperCAmelCase )}.""" )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [negative_prompt]
elif batch_size != len(_UpperCAmelCase ):
raise ValueError(
f"""`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:"""
f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"""
' the batch size of `prompt`.' )
else:
__lowercase = negative_prompt
__lowercase = self.tokenizer(
_UpperCAmelCase , padding='max_length' , max_length=77 , truncation=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' , )
__lowercase = uncond_input.input_ids.to(_UpperCAmelCase )
__lowercase = uncond_input.attention_mask.to(_UpperCAmelCase )
__lowercase , __lowercase = self.text_encoder(
input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__lowercase = negative_prompt_embeds.shape[1]
__lowercase = negative_prompt_embeds.repeat(1 , _UpperCAmelCase )
__lowercase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _UpperCAmelCase )
__lowercase = uncond_text_encoder_hidden_states.shape[1]
__lowercase = uncond_text_encoder_hidden_states.repeat(1 , _UpperCAmelCase , 1 )
__lowercase = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt , _UpperCAmelCase , -1 )
__lowercase = uncond_text_mask.repeat_interleave(_UpperCAmelCase , dim=0 )
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([negative_prompt_embeds, prompt_embeds] )
__lowercase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] )
__lowercase = torch.cat([uncond_text_mask, text_mask] )
return prompt_embeds, text_encoder_hidden_states, text_mask
def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> List[str]:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
__lowercase = [
self.unet,
self.text_encoder,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : List[str]=0 ) -> Optional[int]:
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowercase = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]:
__lowercase , __lowercase = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase )
if self.safety_checker is not None:
__lowercase , __lowercase = cpu_offload_with_hook(self.safety_checker , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase )
# We'll offload the last model manually.
__lowercase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def a__ ( self : Any ) -> Any:
"""simple docstring"""
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_UpperCAmelCase , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_UpperCAmelCase )
def __call__( self : Optional[int] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = 1
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = len(_UpperCAmelCase )
else:
raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}""" )
__lowercase = self._execution_device
__lowercase = batch_size * num_images_per_prompt
__lowercase = guidance_scale > 1.0
__lowercase , __lowercase , __lowercase = self._encode_prompt(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = torch.cat(_UpperCAmelCase , dim=0 )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = torch.cat(_UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
__lowercase = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(
dtype=prompt_embeds.dtype , device=_UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase )
__lowercase = self.scheduler.timesteps
__lowercase = self.unet.config.in_channels
__lowercase , __lowercase = get_new_h_w(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor )
# create initial latent
__lowercase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , )
for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds}
__lowercase = self.unet(
sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0]
if do_classifier_free_guidance:
__lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 )
__lowercase , __lowercase = noise_pred.chunk(2 )
__lowercase , __lowercase = variance_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , ).prev_sample
# post-processing
__lowercase = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
__lowercase = image * 0.5 + 0.5
__lowercase = image.clamp(0 , 1 )
__lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 688 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 1 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class A__ :
@property
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
return self.get_dummy_input()
@property
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" )
def a__ ( self : Optional[Any] , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Any=False , ) -> Dict:
"""simple docstring"""
__lowercase = 4
__lowercase = 32
__lowercase = (32, 32)
__lowercase = torch.manual_seed(0 )
__lowercase = torch.device(_UpperCAmelCase )
__lowercase = (batch_size, num_channels) + sizes
__lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase )
__lowercase = {'hidden_states': hidden_states}
if include_temb:
__lowercase = 1_28
__lowercase = randn_tensor((batch_size, temb_channels) , generator=_UpperCAmelCase , device=_UpperCAmelCase )
if include_res_hidden_states_tuple:
__lowercase = torch.manual_seed(1 )
__lowercase = (randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase ),)
if include_encoder_hidden_states:
__lowercase = floats_tensor((batch_size, 32, 32) ).to(_UpperCAmelCase )
if include_skip_sample:
__lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=_UpperCAmelCase , device=_UpperCAmelCase )
return dummy_input
def a__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 1_28,
}
if self.block_type == "up":
__lowercase = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
__lowercase = self.dummy_input
return init_dict, inputs_dict
def a__ ( self : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common()
__lowercase = self.block_class(**_UpperCAmelCase )
unet_block.to(_UpperCAmelCase )
unet_block.eval()
with torch.no_grad():
__lowercase = unet_block(**_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = output[0]
self.assertEqual(output.shape , self.output_shape )
__lowercase = output[0, -1, -3:, -3:]
__lowercase = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase )
assert torch_all_close(output_slice.flatten() , _UpperCAmelCase , atol=5e-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common()
__lowercase = self.block_class(**_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.train()
__lowercase = model(**_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = output[0]
__lowercase = torch.device(_UpperCAmelCase )
__lowercase = randn_tensor(output.shape , device=_UpperCAmelCase )
__lowercase = torch.nn.functional.mse_loss(_UpperCAmelCase , _UpperCAmelCase )
loss.backward()
| 688 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 1 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE__ = """
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")
>>> repo = \"openai/shap-e-img2img\"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"
>>> image = load_image(image_url).convert(\"RGB\")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")
```
"""
@dataclass
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[PIL.Image.Image, np.ndarray]
class A__ ( lowerCAmelCase__ ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : PriorTransformer , _UpperCAmelCase : CLIPVisionModel , _UpperCAmelCase : CLIPImageProcessor , _UpperCAmelCase : HeunDiscreteScheduler , _UpperCAmelCase : ShapERenderer , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
self.register_modules(
prior=_UpperCAmelCase , image_encoder=_UpperCAmelCase , image_processor=_UpperCAmelCase , scheduler=_UpperCAmelCase , renderer=_UpperCAmelCase , )
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
if latents is None:
__lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
__lowercase = latents.to(_UpperCAmelCase )
__lowercase = latents * scheduler.init_noise_sigma
return latents
def a__ ( self : Dict , _UpperCAmelCase : Union[str, Any]=0 ) -> Optional[Any]:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
__lowercase = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_UpperCAmelCase , _UpperCAmelCase )
@property
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(_UpperCAmelCase , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(image[0] , torch.Tensor ):
__lowercase = torch.cat(_UpperCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCAmelCase , axis=0 )
if not isinstance(_UpperCAmelCase , torch.Tensor ):
__lowercase = self.image_processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 )
__lowercase = image.to(dtype=self.image_encoder.dtype , device=_UpperCAmelCase )
__lowercase = self.image_encoder(_UpperCAmelCase )['last_hidden_state']
__lowercase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
__lowercase = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
__lowercase = torch.zeros_like(_UpperCAmelCase )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__lowercase = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(_UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 25 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Any:
"""simple docstring"""
if isinstance(_UpperCAmelCase , PIL.Image.Image ):
__lowercase = 1
elif isinstance(_UpperCAmelCase , torch.Tensor ):
__lowercase = image.shape[0]
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
__lowercase = len(_UpperCAmelCase )
else:
raise ValueError(
f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCAmelCase )}""" )
__lowercase = self._execution_device
__lowercase = batch_size * num_images_per_prompt
__lowercase = guidance_scale > 1.0
__lowercase = self._encode_image(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# prior
self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase )
__lowercase = self.scheduler.timesteps
__lowercase = self.prior.config.num_embeddings
__lowercase = self.prior.config.embedding_dim
__lowercase = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
__lowercase = latents.reshape(latents.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.prior(
_UpperCAmelCase , timestep=_UpperCAmelCase , proj_embedding=_UpperCAmelCase , ).predicted_image_embedding
# remove the variance
__lowercase , __lowercase = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
__lowercase , __lowercase = noise_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
__lowercase = self.scheduler.step(
_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=_UpperCAmelCase )
__lowercase = []
for i, latent in enumerate(_UpperCAmelCase ):
print()
__lowercase = self.renderer.decode(
latent[None, :] , _UpperCAmelCase , size=_UpperCAmelCase , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , )
images.append(_UpperCAmelCase )
__lowercase = torch.stack(_UpperCAmelCase )
if output_type not in ["np", "pil"]:
raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" )
__lowercase = images.cpu().numpy()
if output_type == "pil":
__lowercase = [self.numpy_to_pil(_UpperCAmelCase ) for image in images]
# Offload last model to CPU
if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=_UpperCAmelCase )
| 688 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : bytes ) -> str:
return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> bytes:
# Check data validity, following RFC3548
# https://www.ietf.org/rfc/rfc3548.txt
if (len(SCREAMING_SNAKE_CASE ) % 2) != 0:
raise ValueError(
'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(SCREAMING_SNAKE_CASE ) <= set('0123456789ABCDEF' ):
raise ValueError(
'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 1 |
import unittest
from knapsack import greedy_knapsack as kp
class A__ ( unittest.TestCase ):
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = [10, 20, 30, 40, 50, 60]
__lowercase = [2, 4, 6, 8, 10, 12]
__lowercase = 1_00
self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_10 )
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.assertRaisesRegex(_UpperCAmelCase , 'max_weight must greater than zero.' )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertRaisesRegex(_UpperCAmelCase , 'Weight can not be negative.' )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.assertRaisesRegex(_UpperCAmelCase , 'Profit can not be negative.' )
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
self.assertRaisesRegex(_UpperCAmelCase , 'max_weight must greater than zero.' )
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.assertRaisesRegex(
_UpperCAmelCase , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 688 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "BlipImageProcessor"
lowerCAmelCase__ : List[Any] = "AutoTokenizer"
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = False
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.image_processor
def __call__( self : List[str] , _UpperCAmelCase : ImageInput = None , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Optional[int] , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None:
__lowercase = self.tokenizer
__lowercase = self.tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
return text_encoding
# add pixel_values
__lowercase = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
if text is not None:
__lowercase = self.tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
else:
__lowercase = None
if text_encoding is not None:
encoding_image_processor.update(_UpperCAmelCase )
return encoding_image_processor
def a__ ( self : List[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Any ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.tokenizer.model_input_names
__lowercase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 688 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.model"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""google/rembert""": 256,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES
lowerCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]="[CLS]" , _UpperCAmelCase : Optional[Any]="[SEP]" , _UpperCAmelCase : Any="[UNK]" , _UpperCAmelCase : Dict="[SEP]" , _UpperCAmelCase : str="[PAD]" , _UpperCAmelCase : str="[CLS]" , _UpperCAmelCase : int="[MASK]" , **_UpperCAmelCase : int , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = do_lower_case
__lowercase = remove_space
__lowercase = keep_accents
__lowercase = vocab_file
__lowercase = spm.SentencePieceProcessor()
self.sp_model.Load(_UpperCAmelCase )
@property
def a__ ( self : int ) -> Any:
"""simple docstring"""
return len(self.sp_model )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self : Dict , _UpperCAmelCase : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = d
__lowercase = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def a__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any=False ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.sp_model.EncodeAsPieces(_UpperCAmelCase )
return pieces
def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = self.sp_model.decode_pieces(_UpperCAmelCase )
return out_string
def a__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error('Vocabulary path ({}) should be a directory'.format(_UpperCAmelCase ) )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , lowerCAmelCase__ , )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = RobertaConfig
lowerCAmelCase__ : Any = "roberta"
def __init__( self : str , _UpperCAmelCase : Union[str, Any] ) -> Any:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = RobertaEmbeddings(_UpperCAmelCase )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase__ , )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = RobertaConfig
lowerCAmelCase__ : Any = "roberta"
def __init__( self : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = config.num_hidden_layers
__lowercase = DeeRobertaModel(_UpperCAmelCase )
__lowercase = nn.Dropout(config.hidden_dropout_prob )
__lowercase = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=-1 , _UpperCAmelCase : str=False , ) -> Any:
"""simple docstring"""
__lowercase = self.num_layers
try:
__lowercase = self.roberta(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , )
__lowercase = outputs[1]
__lowercase = self.dropout(_UpperCAmelCase )
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__lowercase = e.message
__lowercase = e.exit_layer
__lowercase = outputs[0]
if not self.training:
__lowercase = entropy(_UpperCAmelCase )
__lowercase = []
__lowercase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__lowercase = MSELoss()
__lowercase = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
__lowercase = []
for highway_exit in outputs[-1]:
__lowercase = highway_exit[0]
if not self.training:
highway_logits_all.append(_UpperCAmelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__lowercase = MSELoss()
__lowercase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(_UpperCAmelCase )
if train_highway:
__lowercase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__lowercase = (loss,) + outputs
if not self.training:
__lowercase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__lowercase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 688 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 1 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
__lowercase = flax_key_tuple[:-1] + ('weight',)
__lowercase = torch.permute(SCREAMING_SNAKE_CASE , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE ):
# linear layer
__lowercase = flax_key_tuple[:-1] + ('weight',)
__lowercase = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
__lowercase = flax_key_tuple[:-1] + ('weight',)
return flax_key_tuple, flax_tensor
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ) -> Tuple:
if "metadata" in layer:
__lowercase = layer.split('metadata' )
__lowercase = ''.join(split_layer[0] )[:-1]
__lowercase = [tuple(('metadata' + split_layer[1]).split('/' ) )]
elif "kvstore" in layer:
__lowercase = layer.split('kvstore' )
__lowercase = ''.join(split_layer[0] )[:-1]
__lowercase = [tuple(('kvstore' + split_layer[1]).split('/' ) )]
else:
__lowercase = layer.split('/' )
__lowercase = '/'.join(split_layer[:-1] )
__lowercase = (split_layer[-1],)
if "kvstore/path" in layer:
__lowercase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}"""
elif "kvstore/driver" in layer:
__lowercase = 'file'
else:
__lowercase = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ) -> Any:
__lowercase = rename_keys(SCREAMING_SNAKE_CASE )
__lowercase = {}
for k, v in current_block.items():
__lowercase = v
__lowercase = new_current_block
torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str = WEIGHTS_NAME ) -> str:
__lowercase = convert_file_size_to_int(SCREAMING_SNAKE_CASE )
__lowercase = []
__lowercase = {}
__lowercase = 0
__lowercase = 0
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp:
__lowercase = serialization.msgpack_restore(fp.read() )['optimizer']['target']
__lowercase = flatten_dict(SCREAMING_SNAKE_CASE , sep='/' )
__lowercase = {}
for layer in checkpoint_info.keys():
__lowercase , __lowercase , __lowercase = get_key_and_tensorstore_dict(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if curr_real_layer_name in all_layers:
__lowercase = content
else:
__lowercase = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
__lowercase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
__lowercase = torch.tensor(SCREAMING_SNAKE_CASE )
__lowercase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
__lowercase , __lowercase = rename_base_flax_keys(tuple(key.split('/' ) ) , SCREAMING_SNAKE_CASE )
__lowercase = '/'.join(SCREAMING_SNAKE_CASE )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
__lowercase = os.path.join(
SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) )
rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
sharded_state_dicts.append(current_block.keys() )
del current_block
__lowercase = {}
__lowercase = 0
__lowercase = raw_weights.to(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) )
rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(SCREAMING_SNAKE_CASE ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
__lowercase = {}
__lowercase = {}
for idx, shard in enumerate(SCREAMING_SNAKE_CASE ):
__lowercase = weights_name.replace(
'.bin' , F"""-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin""" ) # len(sharded_state_dicts):05d}
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) )
os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
__lowercase = shard
for key in shard:
__lowercase = shard_file
# Add the metadata
__lowercase = {'total_size': total_size}
__lowercase = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f:
__lowercase = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '\n'
f.write(SCREAMING_SNAKE_CASE )
return metadata, index
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--switch_t5x_checkpoint_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""",
type=str,
required=False,
help="""Path to a directory containing a folder per layer. Follows the original Google format.""",
)
parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""")
parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""")
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""",
type=str,
required=False,
help="""Path to the output pytorch model.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def __SCREAMING_SNAKE_CASE ( ) -> int:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
__lowercase = SwitchTransformersConfig.from_pretrained('google/switch-base-8' )
config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' )
__lowercase = SwitchTransformersForConditionalGeneration.from_pretrained(
'/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' )
__lowercase = TaTokenizer.from_pretrained('t5-small' )
__lowercase = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'
__lowercase = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids
__lowercase = model.generate(SCREAMING_SNAKE_CASE , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 688 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
}
SCREAMING_SNAKE_CASE__ = {
"""moussaKam/mbarthez""": 1024,
"""moussaKam/barthez""": 1024,
"""moussaKam/barthez-orangesum-title""": 1024,
}
SCREAMING_SNAKE_CASE__ = """▁"""
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : str = ["input_ids", "attention_mask"]
def __init__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ) -> None:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__lowercase = vocab_file
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
__lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
__lowercase = len(self.sp_model ) - 1
__lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1]
def a__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
return len(self.sp_model )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : List[Any] ) -> List[Any]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowercase = self.sp_model.PieceToId(_UpperCAmelCase )
return spm_id if spm_id else self.unk_token_id
def a__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = []
__lowercase = ''
__lowercase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCAmelCase ) + token
__lowercase = True
__lowercase = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__lowercase = False
out_string += self.sp_model.decode(_UpperCAmelCase )
return out_string.strip()
def __getstate__( self : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self : str , _UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
__lowercase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 688 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 1 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger()
@dataclass
class A__ :
lowerCAmelCase__ : nn.Module
lowerCAmelCase__ : List[nn.Module] = field(default_factory=lowerCAmelCase__ )
lowerCAmelCase__ : list = field(default_factory=lowerCAmelCase__ )
def a__ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tensor , _UpperCAmelCase : Tensor ) -> List[Any]:
"""simple docstring"""
__lowercase = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_UpperCAmelCase )
def __call__( self : Union[str, Any] , _UpperCAmelCase : Tensor ) -> Union[str, Any]:
"""simple docstring"""
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_UpperCAmelCase )
[x.remove() for x in self.handles]
return self
@property
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class A__ :
lowerCAmelCase__ : nn.Module
lowerCAmelCase__ : nn.Module
lowerCAmelCase__ : int = 1
lowerCAmelCase__ : List = field(default_factory=lowerCAmelCase__ )
lowerCAmelCase__ : List = field(default_factory=lowerCAmelCase__ )
lowerCAmelCase__ : bool = True
def __call__( self : Any , _UpperCAmelCase : Tensor ) -> str:
"""simple docstring"""
__lowercase = Tracker(self.dest )(_UpperCAmelCase ).parametrized
__lowercase = Tracker(self.src )(_UpperCAmelCase ).parametrized
__lowercase = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) )
__lowercase = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ) and self.raise_if_mismatch:
raise Exception(
f"""Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while"""
f""" destination module has {len(_UpperCAmelCase )}.""" )
for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
class A__ ( nn.Module ):
def __init__( self : Tuple , _UpperCAmelCase : nn.Module ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = []
# - get the stem
feature_blocks.append(('conv1', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('block' ), f"""Unexpected layer name {k}"""
__lowercase = len(_UpperCAmelCase ) + 1
feature_blocks.append((f"""res{block_index}""", v) )
__lowercase = nn.ModuleDict(_UpperCAmelCase )
def a__ ( self : List[str] , _UpperCAmelCase : Tensor ) -> List[str]:
"""simple docstring"""
return get_trunk_forward_outputs(
_UpperCAmelCase , out_feat_keys=_UpperCAmelCase , feature_blocks=self._feature_blocks , )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : int , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = x.split('-' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Dict , _UpperCAmelCase : str ) -> Callable[[], Tuple[nn.Module, Dict]]:
"""simple docstring"""
if x not in self:
__lowercase = self.convert_name_to_timm(_UpperCAmelCase )
__lowercase = partial(lambda: (timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval(), None) )
else:
__lowercase = super().__getitem__(_UpperCAmelCase )
return val
class A__ ( lowerCAmelCase__ ):
def __getitem__( self : int , _UpperCAmelCase : str ) -> Callable[[], nn.Module]:
"""simple docstring"""
if "seer" in x and "in1k" not in x:
__lowercase = RegNetModel
else:
__lowercase = RegNetForImageClassification
return val
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Tuple[str, str]] ) -> str:
for from_key, to_key in keys:
__lowercase = from_state_dict[from_key].clone()
print(F"""Copied key={from_key} to={to_key}""" )
return to_state_dict
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE : RegNetConfig , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool = True , ) -> Tuple:
print(F"""Converting {name}...""" )
with torch.no_grad():
__lowercase , __lowercase = from_model_func()
__lowercase = our_model_func(SCREAMING_SNAKE_CASE ).eval()
__lowercase = ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE , raise_if_mismatch=SCREAMING_SNAKE_CASE )
__lowercase = torch.randn((1, 3, 224, 224) )
module_transfer(SCREAMING_SNAKE_CASE )
if from_state_dict is not None:
__lowercase = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
__lowercase = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')]
__lowercase = manually_copy_vissl_head(SCREAMING_SNAKE_CASE , our_model.state_dict() , SCREAMING_SNAKE_CASE )
our_model.load_state_dict(SCREAMING_SNAKE_CASE )
__lowercase = our_model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE )
__lowercase = (
our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state
)
__lowercase = from_model(SCREAMING_SNAKE_CASE )
__lowercase = from_output[-1] if type(SCREAMING_SNAKE_CASE ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
__lowercase = our_outputs.hidden_states[-1]
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE , )
__lowercase = 224 if 'seer' not in name else 384
# we can use the convnext one
__lowercase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=SCREAMING_SNAKE_CASE )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE , )
print(F"""Pushed {name}""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : bool = True ) -> List[Any]:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = 1000
__lowercase = (1, num_labels)
__lowercase = 'huggingface/label-files'
__lowercase = num_labels
__lowercase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE )
__lowercase = {
'regnet-x-002': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x' ),
'regnet-x-004': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x' ),
'regnet-x-006': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x' ),
'regnet-x-008': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x' ),
'regnet-x-016': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x' ),
'regnet-x-032': ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x' ),
'regnet-x-040': ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x' ),
'regnet-x-064': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x' ),
'regnet-x-080': ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x' ),
'regnet-x-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x' ),
'regnet-x-160': ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x' ),
'regnet-x-320': ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x' ),
# y variant
'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ),
'regnet-y-004': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ),
'regnet-y-006': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ),
'regnet-y-008': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ),
'regnet-y-016': ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ),
'regnet-y-032': ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ),
'regnet-y-040': ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ),
'regnet-y-064': ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ),
'regnet-y-080': ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ),
'regnet-y-120': ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ),
'regnet-y-160': ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ),
'regnet-y-320': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
'regnet-y-1280-seer': RegNetConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
'regnet-y-2560-seer': RegNetConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
'regnet-y-10b-seer': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
# finetuned on imagenet
'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ),
'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ),
'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ),
'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ),
'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ),
}
__lowercase = NameToOurModelFuncMap()
__lowercase = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]:
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , model_dir=str(SCREAMING_SNAKE_CASE ) , map_location='cpu' )
__lowercase = model_func()
# check if we have a head, if yes add it
__lowercase = files['classy_state_dict']['base_model']['model']
__lowercase = model_state_dict['trunk']
model.load_state_dict(SCREAMING_SNAKE_CASE )
return model.eval(), model_state_dict["heads"]
# pretrained
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
# IN1K finetuned
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
__lowercase = partial(
SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , )
if model_name:
convert_weight_and_push(
SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
return config, expected_shape
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported regnet* architecture,"""
""" currently: regnetx-*, regnety-*. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 688 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 1 |
from maths.prime_factors import prime_factors
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
raise ValueError('Input must be a positive integer' )
return -1 if len(prime_factors(SCREAMING_SNAKE_CASE ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 1 |
from __future__ import annotations
from random import random
class A__ :
def __init__( self : Union[str, Any] , _UpperCAmelCase : int | None = None ) -> List[str]:
"""simple docstring"""
__lowercase = value
__lowercase = random()
__lowercase = None
__lowercase = None
def __repr__( self : Optional[Any] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return f"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 )
def __str__( self : Dict ) -> str:
"""simple docstring"""
__lowercase = str(self.value ) + ' '
__lowercase = str(self.left or '' )
__lowercase = str(self.right or '' )
return value + left + right
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> tuple[Node | None, Node | None]:
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
__lowercase , __lowercase = split(root.left , SCREAMING_SNAKE_CASE )
return left, root
else:
__lowercase , __lowercase = split(root.right , SCREAMING_SNAKE_CASE )
return root, right
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : Node | None ) -> Node | None:
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
__lowercase = merge(left.right , SCREAMING_SNAKE_CASE )
return left
else:
__lowercase = merge(SCREAMING_SNAKE_CASE , right.left )
return right
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Node | None:
__lowercase = Node(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return merge(merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Node | None:
__lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , value - 1 )
__lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> None:
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=',' )
inorder(root.right )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : str ) -> Node | None:
for arg in args.split():
if arg[0] == "+":
__lowercase = insert(SCREAMING_SNAKE_CASE , int(arg[1:] ) )
elif arg[0] == "-":
__lowercase = erase(SCREAMING_SNAKE_CASE , int(arg[1:] ) )
else:
print('Unknown command' )
return root
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = None
print(
'enter numbers to create a tree, + value to add value into treap, '
'- value to erase all nodes with value. \'q\' to quit. ' )
__lowercase = input()
while args != "q":
__lowercase = interact_treap(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print(SCREAMING_SNAKE_CASE )
__lowercase = input()
print('good by!' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 688 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
__lowercase = set()
# Replace all the whitespace in our sentence
__lowercase = input_str.replace(' ' , '' )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(SCREAMING_SNAKE_CASE ) == 26
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
__lowercase = [False] * 26
for char in input_str:
if char.islower():
__lowercase = True
elif char.isupper():
__lowercase = True
return all(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def __SCREAMING_SNAKE_CASE ( ) -> None:
from timeit import timeit
__lowercase = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest'
print(timeit('is_pangram()' , setup=SCREAMING_SNAKE_CASE ) )
print(timeit('is_pangram_faster()' , setup=SCREAMING_SNAKE_CASE ) )
print(timeit('is_pangram_fastest()' , setup=SCREAMING_SNAKE_CASE ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 688 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 1 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
SCREAMING_SNAKE_CASE__ = """ \"\"\"
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"\"\"
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
"""
class A__ ( unittest.TestCase ):
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) )
__lowercase = self.diffusers_dir
shutil.copy(
os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , )
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = 'src/diffusers'
shutil.rmtree(self.diffusers_dir )
def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=None ) -> Dict:
"""simple docstring"""
__lowercase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
__lowercase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
__lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
__lowercase = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase )
__lowercase = os.path.join(self.diffusers_dir , 'new_code.py' )
with open(_UpperCAmelCase , 'w' , newline='\n' ) as f:
f.write(_UpperCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase )
with open(_UpperCAmelCase , 'r' ) as f:
self.assertTrue(f.read() , _UpperCAmelCase )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
__lowercase = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , )
# With no empty line at the end
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
# Copy consistency with a really long name
__lowercase = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'
self.check_copy_consistency(
f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class A__ ( unittest.TestCase , lowerCAmelCase__ ):
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = load_tool('text-to-speech' )
self.tool.setup()
def a__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = self.tool('hey' )
__lowercase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = self.tool('hey' )
__lowercase = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
| 688 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class A__ ( unittest.TestCase ):
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__lowercase = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split()
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = {
'unk_token': '<unk>',
'bos_token': '<s>',
'eos_token': '</s>',
}
__lowercase = {
'feature_size': 1,
'padding_value': 0.0,
'sampling_rate': 1_60_00,
'return_attention_mask': False,
'do_normalize': True,
}
__lowercase = tempfile.mkdtemp()
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowercase = os.path.join(self.tmpdirname , _UpperCAmelCase )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + '\n' )
with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + '\n' )
# load decoder from hub
__lowercase = 'hf-internal-testing/ngram-beam-search-decoder'
def a__ ( self : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.add_kwargs_tokens_map.copy()
kwargs.update(_UpperCAmelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : Optional[int] , **_UpperCAmelCase : List[str] ) -> List[str]:
"""simple docstring"""
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : Tuple , **_UpperCAmelCase : int ) -> Dict:
"""simple docstring"""
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.get_tokenizer()
__lowercase = self.get_feature_extractor()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , _UpperCAmelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , _UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
__lowercase = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(['xx'] )
with self.assertRaisesRegex(_UpperCAmelCase , 'include' ):
WavaVecaProcessorWithLM(
tokenizer=_UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def a__ ( self : str ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
__lowercase = floats_list((3, 10_00) )
__lowercase = feature_extractor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(_UpperCAmelCase , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
__lowercase = 'This is a test string'
__lowercase = processor(text=_UpperCAmelCase )
__lowercase = tokenizer(_UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=(2, 10, 16) , _UpperCAmelCase : Optional[int]=77 ) -> List[Any]:
"""simple docstring"""
np.random.seed(_UpperCAmelCase )
return np.random.rand(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
__lowercase = self._get_dummy_logits(shape=(10, 16) , seed=13 )
__lowercase = processor.decode(_UpperCAmelCase )
__lowercase = decoder.decode_beams(_UpperCAmelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual('</s> <s> </s>' , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ['fork'], ['spawn']] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> int:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
__lowercase = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
__lowercase = processor.batch_decode(_UpperCAmelCase )
else:
with get_context(_UpperCAmelCase ).Pool() as pool:
__lowercase = processor.batch_decode(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(_UpperCAmelCase )
with get_context('fork' ).Pool() as p:
__lowercase = decoder.decode_beams_batch(_UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(_UpperCAmelCase , decoded_processor.text )
self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text )
self.assertListEqual(_UpperCAmelCase , decoded_processor.logit_score )
self.assertListEqual(_UpperCAmelCase , decoded_processor.lm_score )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
__lowercase = self._get_dummy_logits()
__lowercase = 15
__lowercase = -20.0
__lowercase = -4.0
__lowercase = processor.batch_decode(
_UpperCAmelCase , beam_width=_UpperCAmelCase , beam_prune_logp=_UpperCAmelCase , token_min_logp=_UpperCAmelCase , )
__lowercase = decoded_processor_out.text
__lowercase = list(_UpperCAmelCase )
with get_context('fork' ).Pool() as pool:
__lowercase = decoder.decode_beams_batch(
_UpperCAmelCase , _UpperCAmelCase , beam_width=_UpperCAmelCase , beam_prune_logp=_UpperCAmelCase , token_min_logp=_UpperCAmelCase , )
__lowercase = [d[0][0] for d in decoded_decoder_out]
__lowercase = [d[0][2] for d in decoded_decoder_out]
__lowercase = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , _UpperCAmelCase )
self.assertTrue(np.array_equal(_UpperCAmelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , _UpperCAmelCase , atol=1e-3 ) )
self.assertTrue(np.array_equal(_UpperCAmelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , _UpperCAmelCase , atol=1e-3 ) )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
__lowercase = self._get_dummy_logits()
__lowercase = 2.0
__lowercase = 5.0
__lowercase = -20.0
__lowercase = True
__lowercase = processor.batch_decode(
_UpperCAmelCase , alpha=_UpperCAmelCase , beta=_UpperCAmelCase , unk_score_offset=_UpperCAmelCase , lm_score_boundary=_UpperCAmelCase , )
__lowercase = decoded_processor_out.text
__lowercase = list(_UpperCAmelCase )
decoder.reset_params(
alpha=_UpperCAmelCase , beta=_UpperCAmelCase , unk_score_offset=_UpperCAmelCase , lm_score_boundary=_UpperCAmelCase , )
with get_context('fork' ).Pool() as pool:
__lowercase = decoder.decode_beams_batch(
_UpperCAmelCase , _UpperCAmelCase , )
__lowercase = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , _UpperCAmelCase )
__lowercase = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , _UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowercase = processor.decoder.model_container[processor.decoder._model_key]
__lowercase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
__lowercase = os.listdir(_UpperCAmelCase )
__lowercase = ['alphabet.json', 'language_model']
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = snapshot_download('hf-internal-testing/processor_with_lm' )
__lowercase = WavaVecaProcessorWithLM.from_pretrained(_UpperCAmelCase )
__lowercase = processor.decoder.model_container[processor.decoder._model_key]
__lowercase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute()
__lowercase = os.listdir(_UpperCAmelCase )
__lowercase = os.listdir(_UpperCAmelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str ) -> List[Any]:
"""simple docstring"""
__lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowercase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowercase = floats_list((3, 10_00) )
__lowercase = processor_wavaveca(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor_auto(_UpperCAmelCase , return_tensors='np' )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 )
__lowercase = self._get_dummy_logits()
__lowercase = processor_wavaveca.batch_decode(_UpperCAmelCase )
__lowercase = processor_auto.batch_decode(_UpperCAmelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_feature_extractor()
__lowercase = self.get_tokenizer()
__lowercase = self.get_decoder()
__lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
@staticmethod
def a__ ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = [d[key] for d in offsets]
return retrieved_list
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowercase = self._get_dummy_logits()[0]
__lowercase = processor.decode(_UpperCAmelCase , output_word_offsets=_UpperCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' )
__lowercase = self._get_dummy_logits()
__lowercase = processor.batch_decode(_UpperCAmelCase , output_word_offsets=_UpperCAmelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue('text' in outputs )
self.assertTrue('word_offsets' in outputs )
self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertListEqual(
[' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) for o in outputs['word_offsets']] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
import torch
__lowercase = load_dataset('common_voice' , 'en' , split='train' , streaming=_UpperCAmelCase )
__lowercase = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00 ) )
__lowercase = iter(_UpperCAmelCase )
__lowercase = next(_UpperCAmelCase )
__lowercase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
__lowercase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
__lowercase = processor(sample['audio']['array'] , return_tensors='pt' ).input_values
with torch.no_grad():
__lowercase = model(_UpperCAmelCase ).logits.cpu().numpy()
__lowercase = processor.decode(logits[0] , output_word_offsets=_UpperCAmelCase )
__lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
__lowercase = [
{
'start_time': d['start_offset'] * time_offset,
'end_time': d['end_offset'] * time_offset,
'word': d['word'],
}
for d in output['word_offsets']
]
__lowercase = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL'
# output words
self.assertEqual(' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) , _UpperCAmelCase )
self.assertEqual(' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) , output.text )
# output times
__lowercase = torch.tensor(self.get_from_offsets(_UpperCAmelCase , 'start_time' ) )
__lowercase = torch.tensor(self.get_from_offsets(_UpperCAmelCase , 'end_time' ) )
# fmt: off
__lowercase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
__lowercase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=0.01 ) )
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=0.01 ) )
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 1 |
import colorsys
from PIL import Image # type: ignore
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = x
__lowercase = y
for step in range(SCREAMING_SNAKE_CASE ): # noqa: B007
__lowercase = a * a - b * b + x
__lowercase = 2 * a * b + y
__lowercase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(SCREAMING_SNAKE_CASE , 1 , 1 ) )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800 , SCREAMING_SNAKE_CASE : int = 600 , SCREAMING_SNAKE_CASE : float = -0.6 , SCREAMING_SNAKE_CASE : float = 0 , SCREAMING_SNAKE_CASE : float = 3.2 , SCREAMING_SNAKE_CASE : int = 50 , SCREAMING_SNAKE_CASE : bool = True , ) -> Image.Image:
__lowercase = Image.new('RGB' , (image_width, image_height) )
__lowercase = img.load()
# loop through the image-coordinates
for image_x in range(SCREAMING_SNAKE_CASE ):
for image_y in range(SCREAMING_SNAKE_CASE ):
# determine the figure-coordinates based on the image-coordinates
__lowercase = figure_width / image_width * image_height
__lowercase = figure_center_x + (image_x / image_width - 0.5) * figure_width
__lowercase = figure_center_y + (image_y / image_height - 0.5) * figure_height
__lowercase = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__lowercase = get_color_coded_rgb(SCREAMING_SNAKE_CASE )
else:
__lowercase = get_black_and_white_rgb(SCREAMING_SNAKE_CASE )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
SCREAMING_SNAKE_CASE__ = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 688 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 1 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO Update this
SCREAMING_SNAKE_CASE__ = {
"""facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "esm"
def __init__( self : Dict , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=30_72 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[Any]=10_26 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[str]=1e-1_2 , _UpperCAmelCase : Dict="absolute" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : int , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = position_embedding_type
__lowercase = use_cache
__lowercase = emb_layer_norm_before
__lowercase = token_dropout
__lowercase = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
__lowercase = EsmFoldConfig()
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = EsmFoldConfig(**_UpperCAmelCase )
__lowercase = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
__lowercase = get_default_vocab_list()
else:
__lowercase = vocab_list
else:
__lowercase = None
__lowercase = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _UpperCAmelCase ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def a__ ( self : int ) -> Any:
"""simple docstring"""
__lowercase = super().to_dict()
if isinstance(self.esmfold_config , _UpperCAmelCase ):
__lowercase = self.esmfold_config.to_dict()
return output
@dataclass
class A__ :
lowerCAmelCase__ : str = None
lowerCAmelCase__ : bool = True
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : float = 0
lowerCAmelCase__ : bool = True
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : int = 128
lowerCAmelCase__ : "TrunkConfig" = None
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
if self.trunk is None:
__lowercase = TrunkConfig()
elif isinstance(self.trunk , _UpperCAmelCase ):
__lowercase = TrunkConfig(**self.trunk )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
__lowercase = asdict(self )
__lowercase = self.trunk.to_dict()
return output
@dataclass
class A__ :
lowerCAmelCase__ : int = 48
lowerCAmelCase__ : int = 1024
lowerCAmelCase__ : int = 128
lowerCAmelCase__ : int = 32
lowerCAmelCase__ : int = 32
lowerCAmelCase__ : int = 32
lowerCAmelCase__ : float = 0
lowerCAmelCase__ : float = 0
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : int = 4
lowerCAmelCase__ : Optional[int] = 128
lowerCAmelCase__ : "StructureModuleConfig" = None
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
if self.structure_module is None:
__lowercase = StructureModuleConfig()
elif isinstance(self.structure_module , _UpperCAmelCase ):
__lowercase = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
__lowercase = self.sequence_state_dim // self.sequence_head_width
__lowercase = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = asdict(self )
__lowercase = self.structure_module.to_dict()
return output
@dataclass
class A__ :
lowerCAmelCase__ : int = 384
lowerCAmelCase__ : int = 128
lowerCAmelCase__ : int = 16
lowerCAmelCase__ : int = 128
lowerCAmelCase__ : int = 12
lowerCAmelCase__ : int = 4
lowerCAmelCase__ : int = 8
lowerCAmelCase__ : float = 0.1
lowerCAmelCase__ : int = 8
lowerCAmelCase__ : int = 1
lowerCAmelCase__ : int = 2
lowerCAmelCase__ : int = 7
lowerCAmelCase__ : int = 10
lowerCAmelCase__ : float = 1e-8
lowerCAmelCase__ : float = 1e5
def a__ ( self : List[Any] ) -> str:
"""simple docstring"""
return asdict(self )
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 688 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[Any] = None
lowerCAmelCase__ : List[Any] = BloomTokenizerFast
lowerCAmelCase__ : Tuple = BloomTokenizerFast
lowerCAmelCase__ : int = True
lowerCAmelCase__ : Optional[int] = False
lowerCAmelCase__ : List[Any] = "tokenizer_file"
lowerCAmelCase__ : int = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
__lowercase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.get_rust_tokenizer()
__lowercase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
__lowercase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
__lowercase = tokenizer.batch_encode_plus(_UpperCAmelCase )['input_ids']
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = tokenizer.batch_decode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : str=6 ) -> Any:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__lowercase = 'This is a simple input'
__lowercase = ['This is a simple input 1', 'This is a simple input 2']
__lowercase = ('This is a simple input', 'This is a pair')
__lowercase = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
except ValueError:
self.fail('Bloom Tokenizer should be able to deal with padding' )
__lowercase = None # Hotfixing padding = None
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_rust_tokenizer()
__lowercase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_UpperCAmelCase )
__lowercase = next(iter(_UpperCAmelCase ) )['premise'] # pick up one data
__lowercase = list(sample_data.values() )
__lowercase = list(map(tokenizer.encode , _UpperCAmelCase ) )
__lowercase = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 1 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : List[str] = "BridgeTowerImageProcessor"
lowerCAmelCase__ : Optional[Any] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding:
"""simple docstring"""
__lowercase = self.tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel_values + pixel_mask
__lowercase = self.image_processor(
_UpperCAmelCase , return_tensors=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , **_UpperCAmelCase )
encoding.update(_UpperCAmelCase )
return encoding
def a__ ( self : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : Tuple ) -> Any:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer.model_input_names
__lowercase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 688 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
SCREAMING_SNAKE_CASE__ = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""),
("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
]
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]:
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
__lowercase = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
__lowercase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' )
__lowercase = value
else:
__lowercase = value
return new_state_dict
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Tuple:
__lowercase = ''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
__lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowercase = in_proj_weight[:256, :]
__lowercase = in_proj_bias[:256]
__lowercase = in_proj_weight[256:512, :]
__lowercase = in_proj_bias[256:512]
__lowercase = in_proj_weight[-256:, :]
__lowercase = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
__lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
__lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowercase = in_proj_weight[:256, :]
__lowercase = in_proj_bias[:256]
__lowercase = in_proj_weight[256:512, :]
__lowercase = in_proj_bias[256:512]
__lowercase = in_proj_weight[-256:, :]
__lowercase = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
__lowercase = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
__lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
__lowercase = in_proj_weight_cross_attn[:256, :]
__lowercase = in_proj_bias_cross_attn[:256]
__lowercase = in_proj_weight_cross_attn[256:512, :]
__lowercase = in_proj_bias_cross_attn[256:512]
__lowercase = in_proj_weight_cross_attn[-256:, :]
__lowercase = in_proj_bias_cross_attn[-256:]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
__lowercase , __lowercase = image.size
__lowercase = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = 800 if 'detection' in checkpoint_url else 1000
__lowercase = target_max_size / current_max_size
__lowercase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict:
__lowercase = F.to_tensor(SCREAMING_SNAKE_CASE )
__lowercase = F.normalize(SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
logger.info('Converting model...' )
# load original state dict
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )
# rename keys
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = rename_backbone_keys(SCREAMING_SNAKE_CASE )
# query, key and value matrices need special treatment
read_in_q_k_v(SCREAMING_SNAKE_CASE )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__lowercase = 'model.'
for key in state_dict.copy().keys():
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
# create HuggingFace model and load state dict
__lowercase = TableTransformerConfig(
backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
__lowercase = 15
__lowercase = 2
__lowercase = {0: 'table', 1: 'table rotated'}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
else:
__lowercase = 125
__lowercase = 6
__lowercase = {
0: 'table',
1: 'table column',
2: 'table row',
3: 'table column header',
4: 'table projected row header',
5: 'table spanning cell',
}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = DetrImageProcessor(
format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 )
__lowercase = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
model.eval()
# verify our conversion
__lowercase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png'
__lowercase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=SCREAMING_SNAKE_CASE )
__lowercase = Image.open(SCREAMING_SNAKE_CASE ).convert('RGB' )
__lowercase = normalize(resize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ).unsqueeze(0 )
__lowercase = model(SCREAMING_SNAKE_CASE )
if "detection" in checkpoint_url:
__lowercase = (1, 15, 3)
__lowercase = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
__lowercase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
__lowercase = (1, 125, 7)
__lowercase = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
__lowercase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
model.save_pretrained(SCREAMING_SNAKE_CASE )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
# Push model to HF hub
logger.info('Pushing model to the hub...' )
__lowercase = (
'microsoft/table-transformer-detection'
if 'detection' in checkpoint_url
else 'microsoft/table-transformer-structure-recognition'
)
model.push_to_hub(SCREAMING_SNAKE_CASE )
image_processor.push_to_hub(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_url""",
default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""",
type=str,
choices=[
"""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""",
"""https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""",
],
help="""URL of the Table Transformer checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 688 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
SCREAMING_SNAKE_CASE__ = random.Random()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str=1.0 , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[str]:
if rng is None:
__lowercase = global_rng
__lowercase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class A__ ( unittest.TestCase ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Dict=4_00 , _UpperCAmelCase : Union[str, Any]=20_00 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : int=1_60_00 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=True , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = min_seq_length
__lowercase = max_seq_length
__lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__lowercase = feature_size
__lowercase = padding_value
__lowercase = sampling_rate
__lowercase = return_attention_mask
__lowercase = do_normalize
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def a__ ( self : List[Any] , _UpperCAmelCase : int=False , _UpperCAmelCase : Any=False ) -> str:
"""simple docstring"""
def _flatten(_UpperCAmelCase : Optional[Any] ):
return list(itertools.chain(*_UpperCAmelCase ) )
if equal_length:
__lowercase = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
__lowercase = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__lowercase = [np.asarray(_UpperCAmelCase ) for x in speech_inputs]
return speech_inputs
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Tuple = WavaVecaFeatureExtractor
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = WavaVecaFeatureExtractionTester(self )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__lowercase = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs]
# Test not batched input
__lowercase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
__lowercase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) )
# Test batched
__lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
__lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
__lowercase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
__lowercase = np.asarray(_UpperCAmelCase )
__lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
__lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) )
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__lowercase = ['longest', 'max_length', 'do_not_pad']
__lowercase = [None, 16_00, None]
for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self.assertTrue(input_values[0][8_00:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self.assertTrue(input_values[0][10_00:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = range(8_00 , 14_00 , 2_00 )
__lowercase = [floats_list((1, x) )[0] for x in lengths]
__lowercase = ['longest', 'max_length', 'do_not_pad']
__lowercase = [None, 16_00, None]
for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__lowercase = feat_extract(
_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding='max_length' , return_tensors='np' )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__lowercase = feat_extract(
_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding='longest' , return_tensors='np' )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 10_00) )
__lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__lowercase = feat_extract(
_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=20_00 , padding='longest' , return_tensors='np' )
__lowercase = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 12_00) )
@require_torch
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
import torch
__lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__lowercase = np.random.rand(1_00 ).astype(np.floataa )
__lowercase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__lowercase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
__lowercase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
__lowercase = WavaVecaConfig.from_pretrained(_UpperCAmelCase )
__lowercase = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
| 688 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 1 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> int:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 688 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 1 |
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict:
__lowercase , __lowercase = image.size
__lowercase , __lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
__lowercase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] )
__lowercase = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0
__lowercase = image[None].transpose(0 , 3 , 1 , 2 )
__lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE )
return 2.0 * image - 1.0
class A__ ( lowerCAmelCase__ ):
def __init__( self : Optional[Any] , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[int] = 1_00 , _UpperCAmelCase : Optional[float] = 0.0 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
if isinstance(_UpperCAmelCase , PIL.Image.Image ):
__lowercase = 1
elif isinstance(_UpperCAmelCase , torch.Tensor ):
__lowercase = image.shape[0]
else:
raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}""" )
if isinstance(_UpperCAmelCase , PIL.Image.Image ):
__lowercase = preprocess(_UpperCAmelCase )
__lowercase , __lowercase = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
__lowercase = (batch_size, self.unet.config.in_channels // 2, height, width)
__lowercase = next(self.unet.parameters() ).dtype
__lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase )
__lowercase = image.to(device=self.device , dtype=_UpperCAmelCase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(_UpperCAmelCase , device=self.device )
__lowercase = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
__lowercase = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
__lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
__lowercase = {}
if accepts_eta:
__lowercase = eta
for t in self.progress_bar(_UpperCAmelCase ):
# concat latents and low resolution image in the channel dimension.
__lowercase = torch.cat([latents, image] , dim=1 )
__lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# decode the image latents with the VQVAE
__lowercase = self.vqvae.decode(_UpperCAmelCase ).sample
__lowercase = torch.clamp(_UpperCAmelCase , -1.0 , 1.0 )
__lowercase = image / 2 + 0.5
__lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 688 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 1 |
import unittest
from knapsack import knapsack as k
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> int:
"""simple docstring"""
__lowercase = 0
__lowercase = [0]
__lowercase = [0]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 )
__lowercase = [60]
__lowercase = [10]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = 3
__lowercase = [1, 2, 3]
__lowercase = [3, 2, 1]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 5 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = 50
__lowercase = [60, 1_00, 1_20]
__lowercase = [10, 20, 30]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_20 )
if __name__ == "__main__":
unittest.main()
| 688 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 1 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class A__ ( lowerCAmelCase__ ):
@staticmethod
@abstractmethod
def a__ ( _UpperCAmelCase : ArgumentParser ) -> List[Any]:
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def a__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
raise NotImplementedError()
| 688 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int | float | str ) -> tuple[int, int]:
try:
__lowercase = float(SCREAMING_SNAKE_CASE )
except ValueError:
raise ValueError('Please enter a valid number' )
__lowercase = decimal - int(SCREAMING_SNAKE_CASE )
if fractional_part == 0:
return int(SCREAMING_SNAKE_CASE ), 1
else:
__lowercase = len(str(SCREAMING_SNAKE_CASE ).split('.' )[1] )
__lowercase = int(decimal * (10**number_of_frac_digits) )
__lowercase = 10**number_of_frac_digits
__lowercase , __lowercase = denominator, numerator
while True:
__lowercase = dividend % divisor
if remainder == 0:
break
__lowercase , __lowercase = divisor, remainder
__lowercase , __lowercase = numerator / divisor, denominator / divisor
return int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''{decimal_to_fraction(2) = }''')
print(F'''{decimal_to_fraction(89.0) = }''')
print(F'''{decimal_to_fraction("67") = }''')
print(F'''{decimal_to_fraction("45.0") = }''')
print(F'''{decimal_to_fraction(1.5) = }''')
print(F'''{decimal_to_fraction("6.25") = }''')
print(F'''{decimal_to_fraction("78td") = }''')
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import inspect
import unittest
class A__ ( unittest.TestCase ):
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
try:
import diffusers # noqa: F401
except ImportError:
assert False
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
import diffusers
from diffusers.dependency_versions_table import deps
__lowercase = inspect.getmembers(_UpperCAmelCase , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
__lowercase = 'k-diffusion'
elif backend == "invisible_watermark":
__lowercase = 'invisible-watermark'
assert backend in deps, f"""{backend} is not in the deps table!"""
| 688 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 1 |
import numpy as np
from transformers import Pipeline
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
__lowercase = np.max(SCREAMING_SNAKE_CASE , axis=-1 , keepdims=SCREAMING_SNAKE_CASE )
__lowercase = np.exp(outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Optional[int] , **_UpperCAmelCase : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = {}
if "second_text" in kwargs:
__lowercase = kwargs['second_text']
return preprocess_kwargs, {}, {}
def a__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None ) -> Tuple:
"""simple docstring"""
return self.tokenizer(_UpperCAmelCase , text_pair=_UpperCAmelCase , return_tensors=self.framework )
def a__ ( self : Optional[int] , _UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
return self.model(**_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = model_outputs.logits[0].numpy()
__lowercase = softmax(_UpperCAmelCase )
__lowercase = np.argmax(_UpperCAmelCase )
__lowercase = self.model.config.idalabel[best_class]
__lowercase = probabilities[best_class].item()
__lowercase = logits.tolist()
return {"label": label, "score": score, "logits": logits}
| 688 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , ) -> float:
__lowercase = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError('All input parameters must be positive' )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError('Relative densities cannot be greater than one' )
else:
__lowercase = 1 - (matter_density + radiation_density + dark_energy)
__lowercase = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
__lowercase = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
SCREAMING_SNAKE_CASE__ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1e-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 688 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 1 |
from __future__ import annotations
import math
from collections.abc import Callable
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int = 100 , ) -> float:
__lowercase = x_start
__lowercase = fnc(SCREAMING_SNAKE_CASE )
__lowercase = 0.0
for _ in range(SCREAMING_SNAKE_CASE ):
# Approximates curve as a sequence of linear lines and sums their length
__lowercase = (x_end - x_start) / steps + xa
__lowercase = fnc(SCREAMING_SNAKE_CASE )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
__lowercase = xa
__lowercase = fxa
return length
if __name__ == "__main__":
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]:
return math.sin(10 * x )
print("""f(x) = sin(10 * x)""")
print("""The length of the curve from x = -10 to x = 10 is:""")
SCREAMING_SNAKE_CASE__ = 10
while i <= 10_0000:
print(F'''With {i} steps: {line_length(f, -10, 10, i)}''')
i *= 10
| 688 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 1 |
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = {
'en': 'Machine learning is great, isn\'t it?',
'ru': 'Машинное обучение - это здорово, не так ли?',
'de': 'Maschinelles Lernen ist großartig, oder?',
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
__lowercase = {
'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'],
'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'],
'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'],
'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'],
}
__lowercase = F"""{src_lang}-{tgt_lang}"""
__lowercase = F"""
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt19
- facebook
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).
The abbreviation FSMT stands for FairSeqMachineTranslation
All four models are available:
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = \"{texts[src_lang]}\"
input_ids = tokenizer.encode(input, return_tensors=\"pt\")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)
## Training data
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).
## Eval results
pair | fairseq | transformers
-------|---------|----------
{pair} | {scores[pair][0]} | {scores[pair][1]}
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).
- re-ranking
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=15
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```bibtex
@inproceedings{{...,
year={{2020}},
title={{Facebook FAIR's WMT19 News Translation Task Submission}},
author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},
booktitle={{Proc. of WMT}},
}}
```
## TODO
- port model ensemble (fairseq uses 4 model checkpoints)
"""
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'README.md' )
print(F"""Generating {path}""" )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f:
f.write(SCREAMING_SNAKE_CASE )
# make sure we are under the root of the project
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent.parent.parent
SCREAMING_SNAKE_CASE__ = repo_dir / """model_cards"""
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = model_name.split("""-""")
SCREAMING_SNAKE_CASE__ = model_cards_dir / """facebook""" / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 688 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
if digit_amount > 0:
return round(number - int(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
return number - int(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 688 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 1 |
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class A__ :
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=17 , _UpperCAmelCase : List[str]=23 , _UpperCAmelCase : Dict=11 , _UpperCAmelCase : Union[str, Any]=True , ) -> Optional[int]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = act_dim
__lowercase = state_dim
__lowercase = hidden_size
__lowercase = max_length
__lowercase = is_training
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
__lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
__lowercase = floats_tensor((self.batch_size, self.seq_length, 1) )
__lowercase = floats_tensor((self.batch_size, self.seq_length, 1) )
__lowercase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 )
__lowercase = random_attention_mask((self.batch_size, self.seq_length) )
__lowercase = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , ) -> Tuple:
"""simple docstring"""
__lowercase = DecisionTransformerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {
'states': states,
'actions': actions,
'rewards': rewards,
'returns_to_go': returns_to_go,
'timesteps': timesteps,
'attention_mask': attention_mask,
}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else ()
lowerCAmelCase__ : Any = ()
lowerCAmelCase__ : Optional[int] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowerCAmelCase__ : Any = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowerCAmelCase__ : int = False
lowerCAmelCase__ : Union[str, Any] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : Tuple = False
lowerCAmelCase__ : Optional[int] = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : str = False
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase = DecisionTransformerModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = DecisionTransformerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = [
'states',
'actions',
'rewards',
'returns_to_go',
'timesteps',
'attention_mask',
]
self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = 2 # number of steps of autoregressive prediction we will perform
__lowercase = 10 # defined by the RL environment, may be normalized
__lowercase = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' )
__lowercase = model.to(_UpperCAmelCase )
__lowercase = model.config
torch.manual_seed(0 )
__lowercase = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset()
__lowercase = torch.tensor(
[[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_UpperCAmelCase )
__lowercase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 )
__lowercase = state
__lowercase = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa )
__lowercase = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa )
__lowercase = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 )
for step in range(_UpperCAmelCase ):
__lowercase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 )
__lowercase = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 )
__lowercase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
__lowercase , __lowercase , __lowercase = model(
states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
__lowercase , __lowercase , __lowercase , __lowercase = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ),
1.0,
False,
{},
)
__lowercase = action_pred[0, -1]
__lowercase = torch.cat([states, state] , dim=1 )
__lowercase = returns_to_go[0, -1] - reward
__lowercase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
__lowercase = torch.cat(
[timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
| 688 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict=None ) -> Any:
if subparsers is not None:
__lowercase = subparsers.add_parser('test' )
else:
__lowercase = argparse.ArgumentParser('Accelerate test command' )
parser.add_argument(
'--config_file' , default=SCREAMING_SNAKE_CASE , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , )
if subparsers is not None:
parser.set_defaults(func=SCREAMING_SNAKE_CASE )
return parser
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict:
__lowercase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] )
if args.config_file is None:
__lowercase = script_name
else:
__lowercase = F"""--config_file={args.config_file} {script_name}"""
__lowercase = ['accelerate-launch'] + test_args.split()
__lowercase = execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() )
if result.returncode == 0:
print('Test is a success! You are ready for your distributed training!' )
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = test_command_parser()
__lowercase = parser.parse_args()
test_command(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMTokenizer
lowerCAmelCase__ : List[Any] = LayoutLMTokenizerFast
lowerCAmelCase__ : str = True
lowerCAmelCase__ : Optional[int] = True
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : Any , **_UpperCAmelCase : List[str] ) -> Tuple:
"""simple docstring"""
return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Dict ) -> Dict:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
pass
| 688 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> Dict:
"""simple docstring"""
__lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' )
__lowercase = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
sd_pipe.set_scheduler('sample_euler' )
__lowercase = 'A painting of a squirrel eating a burger'
__lowercase = torch.manual_seed(0 )
__lowercase = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowercase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
__lowercase = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
sd_pipe.set_scheduler('sample_euler' )
__lowercase = 'A painting of a squirrel eating a burger'
__lowercase = torch.manual_seed(0 )
__lowercase = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowercase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' )
__lowercase = sd_pipe.to(_UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
sd_pipe.set_scheduler('sample_dpmpp_2m' )
__lowercase = 'A painting of a squirrel eating a burger'
__lowercase = torch.manual_seed(0 )
__lowercase = sd_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_UpperCAmelCase , )
__lowercase = output.images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowercase = np.array(
[0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=False ) -> Union[str, Any]:
__lowercase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('module.cls_token', 'vit.embeddings.cls_token'),
('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('module.pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('module.norm.weight', 'layernorm.weight'),
('module.norm.bias', 'layernorm.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=False ) -> Dict:
for i in range(config.num_hidden_layers ):
if base_model:
__lowercase = ''
else:
__lowercase = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowercase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" )
__lowercase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowercase = in_proj_weight[
: config.hidden_size, :
]
__lowercase = in_proj_bias[: config.hidden_size]
__lowercase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowercase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowercase = in_proj_weight[
-config.hidden_size :, :
]
__lowercase = in_proj_bias[-config.hidden_size :]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
__lowercase = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Any:
# projection head is used in the self-supervised pre-training in MSN,
# for downstream task it's not needed.
__lowercase = [
'module.fc.fc1.weight',
'module.fc.fc1.bias',
'module.fc.bn1.weight',
'module.fc.bn1.bias',
'module.fc.bn1.running_mean',
'module.fc.bn1.running_var',
'module.fc.bn1.num_batches_tracked',
'module.fc.fc2.weight',
'module.fc.fc2.bias',
'module.fc.bn2.weight',
'module.fc.bn2.bias',
'module.fc.bn2.running_mean',
'module.fc.bn2.running_var',
'module.fc.bn2.num_batches_tracked',
'module.fc.fc3.weight',
'module.fc.fc3.bias',
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ) -> List[str]:
__lowercase = dct.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int ) -> List[Any]:
__lowercase = ViTMSNConfig()
__lowercase = 1000
__lowercase = 'datasets/huggingface/label-files'
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
__lowercase = 384
__lowercase = 1536
__lowercase = 6
elif "l16" in checkpoint_url:
__lowercase = 1024
__lowercase = 4096
__lowercase = 24
__lowercase = 16
__lowercase = 0.1
elif "b4" in checkpoint_url:
__lowercase = 4
elif "l7" in checkpoint_url:
__lowercase = 7
__lowercase = 1024
__lowercase = 4096
__lowercase = 24
__lowercase = 16
__lowercase = 0.1
__lowercase = ViTMSNModel(SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['target_encoder']
__lowercase = ViTImageProcessor(size=config.image_size )
remove_projection_head(SCREAMING_SNAKE_CASE )
__lowercase = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
model.eval()
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = ViTImageProcessor(
size=config.image_size , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE )
__lowercase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
__lowercase = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] )
elif "b16" in checkpoint_url:
__lowercase = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] )
elif "l16" in checkpoint_url:
__lowercase = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] )
elif "b4" in checkpoint_url:
__lowercase = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] )
else:
__lowercase = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 688 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 1 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : list[str] | None = None , SCREAMING_SNAKE_CASE : dict[str, float] | None = None , SCREAMING_SNAKE_CASE : bool = False , ) -> tuple[int, float, str]:
__lowercase = cipher_alphabet or [chr(SCREAMING_SNAKE_CASE ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
__lowercase = {
'a': 0.08_497,
'b': 0.01_492,
'c': 0.02_202,
'd': 0.04_253,
'e': 0.11_162,
'f': 0.02_228,
'g': 0.02_015,
'h': 0.06_094,
'i': 0.07_546,
'j': 0.00_153,
'k': 0.01_292,
'l': 0.04_025,
'm': 0.02_406,
'n': 0.06_749,
'o': 0.07_507,
'p': 0.01_929,
'q': 0.00_095,
'r': 0.07_587,
's': 0.06_327,
't': 0.09_356,
'u': 0.02_758,
'v': 0.00_978,
'w': 0.02_560,
'x': 0.00_150,
'y': 0.01_994,
'z': 0.00_077,
}
else:
# Custom frequencies dictionary
__lowercase = frequencies_dict
if not case_sensitive:
__lowercase = ciphertext.lower()
# Chi squared statistic values
__lowercase = {}
# cycle through all of the shifts
for shift in range(len(SCREAMING_SNAKE_CASE ) ):
__lowercase = ''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
__lowercase = (alphabet_letters.index(letter.lower() ) - shift) % len(
SCREAMING_SNAKE_CASE )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
__lowercase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
__lowercase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
__lowercase = decrypted_with_shift.lower().count(SCREAMING_SNAKE_CASE )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__lowercase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__lowercase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
__lowercase = decrypted_with_shift.count(SCREAMING_SNAKE_CASE )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__lowercase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__lowercase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
__lowercase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(SCREAMING_SNAKE_CASE : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
__lowercase = min(
SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
__lowercase
) , (
__lowercase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : str ) -> set[str]:
__lowercase , __lowercase = set(SCREAMING_SNAKE_CASE ), [start]
while stack:
__lowercase = stack.pop()
explored.add(SCREAMING_SNAKE_CASE )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(SCREAMING_SNAKE_CASE )
return explored
SCREAMING_SNAKE_CASE__ = {
"""A""": ["""B""", """C""", """D"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F"""],
"""D""": ["""B""", """D"""],
"""E""": ["""B""", """F"""],
"""F""": ["""C""", """E""", """G"""],
"""G""": ["""F"""],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, """A"""))
| 688 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """▁"""
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
}
}
SCREAMING_SNAKE_CASE__ = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : str = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Tuple = ["input_ids", "attention_mask"]
lowerCAmelCase__ : List[int] = []
lowerCAmelCase__ : List[int] = []
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : List[Any]="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ) -> Tuple:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
__lowercase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__lowercase = 1
__lowercase = len(self.sp_model )
__lowercase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase )
}
__lowercase = {v: k for k, v in self.lang_code_to_id.items()}
__lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__lowercase = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__lowercase = src_lang if src_lang is not None else 'en_XX'
__lowercase = self.lang_code_to_id[self._src_lang]
__lowercase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
__lowercase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Any , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
__lowercase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__lowercase = [1] * len(self.prefix_tokens )
__lowercase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__lowercase = src_lang
__lowercase = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = self.convert_tokens_to_ids(_UpperCAmelCase )
__lowercase = tgt_lang_id
return inputs
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def a__ ( self : Any , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> int:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowercase = self.sp_model.PieceToId(_UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def a__ ( self : int , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def a__ ( self : str , _UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ' ' ).strip()
return out_string
def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def a__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : Tuple , ) -> BatchEncoding:
"""simple docstring"""
__lowercase = src_lang
__lowercase = tgt_lang
return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def a__ ( self : int ) -> Any:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> None:
"""simple docstring"""
__lowercase = self.lang_code_to_id[src_lang]
__lowercase = []
__lowercase = [self.eos_token_id, self.cur_lang_code]
def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
__lowercase = self.lang_code_to_id[lang]
__lowercase = []
__lowercase = [self.eos_token_id, self.cur_lang_code]
| 688 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 1 |
from itertools import permutations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : tuple ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
__lowercase = [7, 11, 13, 17]
for i, test in enumerate(SCREAMING_SNAKE_CASE ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 10 ) -> int:
return sum(
int(''.join(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) )
for num in permutations(range(SCREAMING_SNAKE_CASE ) )
if is_substring_divisible(SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 688 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 1 |
from math import pi, sqrt, tan
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float:
if side_length < 0:
raise ValueError('surface_area_cube() only accepts non-negative values' )
return 6 * side_length**2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if length < 0 or breadth < 0 or height < 0:
raise ValueError('surface_area_cuboid() only accepts non-negative values' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float:
if radius < 0:
raise ValueError('surface_area_sphere() only accepts non-negative values' )
return 4 * pi * radius**2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float:
if radius < 0:
raise ValueError('surface_area_hemisphere() only accepts non-negative values' )
return 3 * pi * radius**2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if radius < 0 or height < 0:
raise ValueError('surface_area_cone() only accepts non-negative values' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'surface_area_conical_frustum() only accepts non-negative values' )
__lowercase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if radius < 0 or height < 0:
raise ValueError('surface_area_cylinder() only accepts non-negative values' )
return 2 * pi * radius * (height + radius)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if torus_radius < 0 or tube_radius < 0:
raise ValueError('surface_area_torus() only accepts non-negative values' )
if torus_radius < tube_radius:
raise ValueError(
'surface_area_torus() does not support spindle or self intersecting tori' )
return 4 * pow(SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if length < 0 or width < 0:
raise ValueError('area_rectangle() only accepts non-negative values' )
return length * width
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float:
if side_length < 0:
raise ValueError('area_square() only accepts non-negative values' )
return side_length**2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if base < 0 or height < 0:
raise ValueError('area_triangle() only accepts non-negative values' )
return (base * height) / 2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('area_triangle_three_sides() only accepts non-negative values' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('Given three sides do not form a triangle' )
__lowercase = (sidea + sidea + sidea) / 2
__lowercase = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if base < 0 or height < 0:
raise ValueError('area_parallelogram() only accepts non-negative values' )
return base * height
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if basea < 0 or basea < 0 or height < 0:
raise ValueError('area_trapezium() only accepts non-negative values' )
return 1 / 2 * (basea + basea) * height
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float:
if radius < 0:
raise ValueError('area_circle() only accepts non-negative values' )
return pi * radius**2
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if radius_x < 0 or radius_y < 0:
raise ValueError('area_ellipse() only accepts non-negative values' )
return pi * radius_x * radius_y
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('area_rhombus() only accepts non-negative values' )
return 1 / 2 * diagonal_a * diagonal_a
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> float:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or sides < 3:
raise ValueError(
'area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides' )
elif length < 0:
raise ValueError(
'area_reg_polygon() only accepts non-negative values as \
length of a side' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("""[DEMO] Areas of various geometric shapes: \n""")
print(F'''Rectangle: {area_rectangle(10, 20) = }''')
print(F'''Square: {area_square(10) = }''')
print(F'''Triangle: {area_triangle(10, 10) = }''')
print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''')
print(F'''Parallelogram: {area_parallelogram(10, 20) = }''')
print(F'''Rhombus: {area_rhombus(10, 20) = }''')
print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''')
print(F'''Circle: {area_circle(20) = }''')
print(F'''Ellipse: {area_ellipse(10, 20) = }''')
print("""\nSurface Areas of various geometric shapes: \n""")
print(F'''Cube: {surface_area_cube(20) = }''')
print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''')
print(F'''Sphere: {surface_area_sphere(20) = }''')
print(F'''Hemisphere: {surface_area_hemisphere(20) = }''')
print(F'''Cone: {surface_area_cone(10, 20) = }''')
print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''')
print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''')
print(F'''Torus: {surface_area_torus(20, 10) = }''')
print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''')
print(F'''Square: {area_reg_polygon(4, 10) = }''')
print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
| 688 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 1 |
import contextlib
import os
import sqlitea
import pytest
from datasets import Dataset, Features, Value
from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@require_sqlalchemy
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowercase = SqlDatasetReader(
'dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read()
_check_sql_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@require_sqlalchemy
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowercase = features.copy() if features else default_expected_features
__lowercase = (
Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read()
_check_sql_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]:
with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con:
__lowercase = con.cursor()
cur.execute('SELECT * FROM dataset' )
for row in cur:
yield row
@require_sqlalchemy
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]:
__lowercase = tmp_path / 'cache'
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' )
__lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read()
SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write()
__lowercase = iter_sql_file(SCREAMING_SNAKE_CASE )
__lowercase = iter_sql_file(SCREAMING_SNAKE_CASE )
for rowa, rowa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
assert rowa == rowa
@require_sqlalchemy
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> int:
__lowercase = tmp_path / 'cache'
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' )
__lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read()
SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write()
__lowercase = iter_sql_file(SCREAMING_SNAKE_CASE )
__lowercase = iter_sql_file(SCREAMING_SNAKE_CASE )
for rowa, rowa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
assert rowa == rowa
@require_sqlalchemy
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]:
__lowercase = tmp_path / 'cache'
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' )
__lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read()
with pytest.raises(SCREAMING_SNAKE_CASE ):
SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
| 688 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 1 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
SCREAMING_SNAKE_CASE__ = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class A__ :
def __init__( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Dict=14 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Any=19 , _UpperCAmelCase : Any=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=[1, 2, 3, 4, 5] , _UpperCAmelCase : Tuple=25 , _UpperCAmelCase : List[str]=5 , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = d_model
__lowercase = parent
__lowercase = batch_size
__lowercase = prediction_length
__lowercase = context_length
__lowercase = cardinality
__lowercase = num_time_features
__lowercase = lags_sequence
__lowercase = embedding_dimension
__lowercase = is_training
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = context_length
__lowercase = prediction_length + label_length
__lowercase = label_length
__lowercase = moving_average
__lowercase = autocorrelation_factor
def a__ ( self : int ) -> Any:
"""simple docstring"""
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = config.context_length + max(config.lags_sequence )
__lowercase = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__lowercase = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__lowercase = floats_tensor([self.batch_size, _past_length] )
__lowercase = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__lowercase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__lowercase = floats_tensor([self.batch_size, config.prediction_length] )
__lowercase = {
'past_values': past_values,
'static_categorical_features': static_categorical_features,
'past_time_features': past_time_features,
'past_observed_mask': past_observed_mask,
'future_time_features': future_time_features,
'future_values': future_values,
}
return inputs_dict
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.get_config()
__lowercase = self.prepare_autoformer_inputs_dict(_UpperCAmelCase )
return config, inputs_dict
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = self.prepare_config_and_inputs()
return config, inputs_dict
def a__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoformerModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval()
__lowercase = model(**_UpperCAmelCase )
__lowercase = outputs.encoder_last_hidden_state
__lowercase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = model.get_encoder()
encoder.save_pretrained(_UpperCAmelCase )
__lowercase = AutoformerEncoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase )
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase = model.create_network_inputs(**_UpperCAmelCase )
__lowercase , __lowercase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__lowercase = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__lowercase = encoder(inputs_embeds=_UpperCAmelCase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
__lowercase = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__lowercase = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__lowercase = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__lowercase = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__lowercase = model.get_decoder()
decoder.save_pretrained(_UpperCAmelCase )
__lowercase = AutoformerDecoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase )
__lowercase = decoder(
trend=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
lowerCAmelCase__ : Dict = (AutoformerForPrediction,) if is_torch_available() else ()
lowerCAmelCase__ : Optional[int] = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
lowerCAmelCase__ : str = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Dict = False
lowerCAmelCase__ : str = False
lowerCAmelCase__ : int = False
def a__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = AutoformerModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def a__ ( self : str ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase )
__lowercase , __lowercase = model_class.from_pretrained(_UpperCAmelCase , output_loading_info=_UpperCAmelCase )
self.assertEqual(info['missing_keys'] , [] )
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*_UpperCAmelCase )
@unittest.skip(reason='Model has no tokens embeddings' )
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
pass
def a__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = inspect.signature(getattr(_UpperCAmelCase , 'forward' ) )
# The main input is the name of the argument after `self`
__lowercase = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , _UpperCAmelCase )
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = [
'past_values',
'past_time_features',
'past_observed_mask',
'static_categorical_features',
'static_real_features',
'future_values',
'future_time_features',
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append('future_observed_mask' )
expected_arg_names.extend(
[
'decoder_attention_mask',
'head_mask',
'decoder_head_mask',
'cross_attn_head_mask',
'encoder_outputs',
'past_key_values',
'output_hidden_states',
'output_attentions',
'use_cache',
'return_dict',
] )
self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase )
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'seq_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'd_model' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'num_attention_heads' , _UpperCAmelCase )
__lowercase = d_model // num_attention_heads
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = outputs.encoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__lowercase = len(_UpperCAmelCase )
__lowercase = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
# decoder attentions
__lowercase = outputs.decoder_attentions
self.assertIsInstance(_UpperCAmelCase , (list, tuple) )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__lowercase = outputs.cross_attentions
self.assertIsInstance(_UpperCAmelCase , (list, tuple) )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + 2 , len(_UpperCAmelCase ) )
__lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
super().test_retain_grad_hidden_states_attentions()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str="train-batch.pt" ) -> Dict:
__lowercase = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=SCREAMING_SNAKE_CASE , repo_type='dataset' )
__lowercase = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE )
return batch
@require_torch
@slow
class A__ ( unittest.TestCase ):
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_UpperCAmelCase )
__lowercase = prepare_batch()
with torch.no_grad():
__lowercase = model(
past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0]
__lowercase = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=_UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_UpperCAmelCase )
__lowercase = prepare_batch('val-batch.pt' )
with torch.no_grad():
__lowercase = model(
past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state
__lowercase = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=_UpperCAmelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) )
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_UpperCAmelCase )
__lowercase = prepare_batch('val-batch.pt' )
with torch.no_grad():
__lowercase = model.generate(
static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , )
__lowercase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , _UpperCAmelCase )
__lowercase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=_UpperCAmelCase )
__lowercase = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _UpperCAmelCase , rtol=1e-1 ) )
| 688 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 1 |
from collections.abc import Callable
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Callable[[float], float] , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float:
__lowercase = a
__lowercase = b
if function(SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function
return a
elif function(SCREAMING_SNAKE_CASE ) == 0:
return b
elif (
function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
__lowercase = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(SCREAMING_SNAKE_CASE ) == 0:
return mid
elif function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) < 0:
__lowercase = mid
else:
__lowercase = mid
__lowercase = start + (end - start) / 2.0
return mid
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float:
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 688 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 1 |
SCREAMING_SNAKE_CASE__ = [0, 2, 4, 6, 8]
SCREAMING_SNAKE_CASE__ = [1, 3, 5, 7, 9]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__lowercase = 0
for digit in range(10 ):
__lowercase = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return result
__lowercase = 0
for digita in range(10 ):
__lowercase = digita
if (remainder + digita) % 2 == 0:
__lowercase = ODD_DIGITS
else:
__lowercase = EVEN_DIGITS
for digita in other_parity_digits:
__lowercase = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , )
return result
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 9 ) -> int:
__lowercase = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE )
return result
if __name__ == "__main__":
print(F'''{solution() = }''')
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , ) -> tuple[str, float]:
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif stress < 0:
raise ValueError('Stress cannot be negative' )
elif tangential_force < 0:
raise ValueError('Tangential Force cannot be negative' )
elif area < 0:
raise ValueError('Area cannot be negative' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str:
__lowercase = 0
# if input_string is "aba" than new_input_string become "a|b|a"
__lowercase = ''
__lowercase = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(SCREAMING_SNAKE_CASE ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
__lowercase , __lowercase = 0, 0
# length[i] shows the length of palindromic substring with center i
__lowercase = [1 for i in range(len(SCREAMING_SNAKE_CASE ) )]
# for each character in new_string find corresponding palindromic string
__lowercase = 0
for j in range(len(SCREAMING_SNAKE_CASE ) ):
__lowercase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(SCREAMING_SNAKE_CASE )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
__lowercase = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
__lowercase = j - k + 1 # noqa: E741
__lowercase = j + k - 1
# update max_length and start position
if max_length < length[j]:
__lowercase = length[j]
__lowercase = j
# create that string
__lowercase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 1 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import (
BaseOutput,
OptionalDependencyNotAvailable,
is_flax_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_onnx_available,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
@dataclass
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray]
lowerCAmelCase__ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_cycle_diffusion import CycleDiffusionPipeline
from .pipeline_stable_diffusion import StableDiffusionPipeline
from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline
from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy
from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline
from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline
from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline
from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline
from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline
from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline
from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline
from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from .pipeline_stable_unclip import StableUnCLIPPipeline
from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline
from .safety_checker import StableDiffusionSafetyChecker
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline
else:
from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionPixaPixZeroPipeline,
)
else:
from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline
from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline
try:
if not (
is_torch_available()
and is_transformers_available()
and is_k_diffusion_available()
and is_k_diffusion_version(""">=""", """0.0.12""")
):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline
try:
if not (is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_onnx_objects import * # noqa F403
else:
from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline
from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
if is_transformers_available() and is_flax_available():
import flax
@flax.struct.dataclass
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : np.ndarray
lowerCAmelCase__ : List[bool]
from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState
from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline
from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline
from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
| 688 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> bool:
__lowercase = [int(SCREAMING_SNAKE_CASE ) for i in ip_va_address.split('.' ) if i.isdigit()]
return len(SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE ) <= 254 for octet in octets )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input().strip()
SCREAMING_SNAKE_CASE__ = """valid""" if is_ip_va_address_valid(ip) else """invalid"""
print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
| 688 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ) -> list:
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )]
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = y_points[i]
for i in range(2 , SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]:
__lowercase = DPTConfig()
if "large" in checkpoint_url:
__lowercase = 1024
__lowercase = 4096
__lowercase = 24
__lowercase = 16
__lowercase = [5, 11, 17, 23]
__lowercase = [256, 512, 1024, 1024]
__lowercase = (1, 384, 384)
if "ade" in checkpoint_url:
__lowercase = True
__lowercase = 150
__lowercase = 'huggingface/label-files'
__lowercase = 'ade20k-id2label.json'
__lowercase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = [1, 150, 480, 480]
return config, expected_shape
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple:
__lowercase = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> str:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__lowercase = name.replace('pretrained.model' , 'dpt.encoder' )
if "pretrained.model" in name:
__lowercase = name.replace('pretrained.model' , 'dpt.embeddings' )
if "patch_embed" in name:
__lowercase = name.replace('patch_embed' , 'patch_embeddings' )
if "pos_embed" in name:
__lowercase = name.replace('pos_embed' , 'position_embeddings' )
if "attn.proj" in name:
__lowercase = name.replace('attn.proj' , 'attention.output.dense' )
if "proj" in name and "project" not in name:
__lowercase = name.replace('proj' , 'projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layer' )
if "mlp.fc1" in name:
__lowercase = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__lowercase = name.replace('mlp.fc2' , 'output.dense' )
if "norm1" in name:
__lowercase = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__lowercase = name.replace('norm2' , 'layernorm_after' )
if "scratch.output_conv" in name:
__lowercase = name.replace('scratch.output_conv' , 'head' )
if "scratch" in name:
__lowercase = name.replace('scratch' , 'neck' )
if "layer1_rn" in name:
__lowercase = name.replace('layer1_rn' , 'convs.0' )
if "layer2_rn" in name:
__lowercase = name.replace('layer2_rn' , 'convs.1' )
if "layer3_rn" in name:
__lowercase = name.replace('layer3_rn' , 'convs.2' )
if "layer4_rn" in name:
__lowercase = name.replace('layer4_rn' , 'convs.3' )
if "refinenet" in name:
__lowercase = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__lowercase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" )
if "out_conv" in name:
__lowercase = name.replace('out_conv' , 'projection' )
if "resConfUnit1" in name:
__lowercase = name.replace('resConfUnit1' , 'residual_layer1' )
if "resConfUnit2" in name:
__lowercase = name.replace('resConfUnit2' , 'residual_layer2' )
if "conv1" in name:
__lowercase = name.replace('conv1' , 'convolution1' )
if "conv2" in name:
__lowercase = name.replace('conv2' , 'convolution2' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__lowercase = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' )
if "pretrained.act_postprocess2.0.project.0" in name:
__lowercase = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' )
if "pretrained.act_postprocess3.0.project.0" in name:
__lowercase = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' )
if "pretrained.act_postprocess4.0.project.0" in name:
__lowercase = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__lowercase = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' )
if "pretrained.act_postprocess1.4" in name:
__lowercase = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' )
if "pretrained.act_postprocess2.3" in name:
__lowercase = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' )
if "pretrained.act_postprocess2.4" in name:
__lowercase = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' )
if "pretrained.act_postprocess3.3" in name:
__lowercase = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' )
if "pretrained.act_postprocess4.3" in name:
__lowercase = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' )
if "pretrained.act_postprocess4.4" in name:
__lowercase = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' )
if "pretrained" in name:
__lowercase = name.replace('pretrained' , 'dpt' )
if "bn" in name:
__lowercase = name.replace('bn' , 'batch_norm' )
if "head" in name:
__lowercase = name.replace('head' , 'head.head' )
if "encoder.norm" in name:
__lowercase = name.replace('encoder.norm' , 'layernorm' )
if "auxlayer" in name:
__lowercase = name.replace('auxlayer' , 'auxiliary_head.head' )
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" )
__lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowercase = in_proj_weight[: config.hidden_size, :]
__lowercase = in_proj_bias[: config.hidden_size]
__lowercase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowercase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowercase = in_proj_weight[
-config.hidden_size :, :
]
__lowercase = in_proj_bias[-config.hidden_size :]
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
__lowercase , __lowercase = get_dpt_config(SCREAMING_SNAKE_CASE )
# load original state_dict from URL
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )
# remove certain keys
remove_ignore_keys_(SCREAMING_SNAKE_CASE )
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
# read in qkv matrices
read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# load HuggingFace model
__lowercase = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE ) if 'ade' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
model.eval()
# Check outputs on an image
__lowercase = 480 if 'ade' in checkpoint_url else 384
__lowercase = DPTImageProcessor(size=SCREAMING_SNAKE_CASE )
__lowercase = prepare_img()
__lowercase = image_processor(SCREAMING_SNAKE_CASE , return_tensors='pt' )
# forward pass
__lowercase = model(**SCREAMING_SNAKE_CASE ).logits if 'ade' in checkpoint_url else model(**SCREAMING_SNAKE_CASE ).predicted_depth
# Assert logits
__lowercase = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] )
if "ade" in checkpoint_url:
__lowercase = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] )
assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE )
assert (
torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE )
)
Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print('Pushing model to hub...' )
model.push_to_hub(
repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE , )
image_processor.push_to_hub(
repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE , )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""",
type=str,
help="""URL of the original DPT checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=str,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
)
parser.add_argument(
"""--model_name""",
default="""dpt-large""",
type=str,
help="""Name of the model, in case you're pushing to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 688 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ = {
"""configuration_informer""": [
"""INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""InformerConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""InformerForPrediction""",
"""InformerModel""",
"""InformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_informer import (
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
InformerForPrediction,
InformerModel,
InformerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import unittest
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray | None = None , ) -> np.ndarray:
__lowercase = np.shape(SCREAMING_SNAKE_CASE )
__lowercase = np.shape(SCREAMING_SNAKE_CASE )
__lowercase = np.shape(SCREAMING_SNAKE_CASE )
if shape_a[0] != shape_b[0]:
__lowercase = (
'Expected the same number of rows for A and B. '
F"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(SCREAMING_SNAKE_CASE )
if shape_b[1] != shape_c[1]:
__lowercase = (
'Expected the same number of columns for B and C. '
F"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = pseudo_inv
if a_inv is None:
try:
__lowercase = np.linalg.inv(SCREAMING_SNAKE_CASE )
except np.linalg.LinAlgError:
raise ValueError(
'Input matrix A is not invertible. Cannot compute Schur complement.' )
return mat_c - mat_b.T @ a_inv @ mat_b
class A__ ( unittest.TestCase ):
def a__ ( self : List[Any] ) -> None:
"""simple docstring"""
__lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__lowercase = np.array([[0, 3], [3, 0], [2, 3]] )
__lowercase = np.array([[2, 1], [6, 3]] )
__lowercase = schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = np.block([[a, b], [b.T, c]] )
__lowercase = np.linalg.det(_UpperCAmelCase )
__lowercase = np.linalg.det(_UpperCAmelCase )
__lowercase = np.linalg.det(_UpperCAmelCase )
self.assertAlmostEqual(_UpperCAmelCase , det_a * det_s )
def a__ ( self : Union[str, Any] ) -> None:
"""simple docstring"""
__lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__lowercase = np.array([[0, 3], [3, 0], [2, 3]] )
__lowercase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(_UpperCAmelCase ):
schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> None:
"""simple docstring"""
__lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
__lowercase = np.array([[0, 3], [3, 0], [2, 3]] )
__lowercase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(_UpperCAmelCase ):
schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 688 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
SCREAMING_SNAKE_CASE__ = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
SCREAMING_SNAKE_CASE__ = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
SCREAMING_SNAKE_CASE__ = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(64, 64)
)
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.img_to_array(test_image)
SCREAMING_SNAKE_CASE__ = np.expand_dims(test_image, axis=0)
SCREAMING_SNAKE_CASE__ = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
SCREAMING_SNAKE_CASE__ = """Normal"""
if result[0][0] == 1:
SCREAMING_SNAKE_CASE__ = """Abnormality detected"""
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 1 |
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 688 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 1 |
from statistics import mean, stdev
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 3 ) -> list:
__lowercase = min(SCREAMING_SNAKE_CASE )
__lowercase = max(SCREAMING_SNAKE_CASE )
# normalize data
return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE ) for x in data]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 3 ) -> list:
__lowercase = mean(SCREAMING_SNAKE_CASE )
__lowercase = stdev(SCREAMING_SNAKE_CASE )
# standardize data
return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE ) for x in data]
| 688 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
if num < 0:
return False
__lowercase = num
__lowercase = 0
while num > 0:
__lowercase = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTImageProcessor, OwlViTProcessor
@require_vision
class A__ ( unittest.TestCase ):
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
# fmt: off
__lowercase = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
__lowercase = {'unk_token': '<unk>'}
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_UpperCAmelCase ) )
__lowercase = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073],
'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
__lowercase = os.path.join(self.tmpdirname , _UpperCAmelCase )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Union[str, Any] , **_UpperCAmelCase : int ) -> Dict:
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_UpperCAmelCase )
def a__ ( self : Optional[int] , **_UpperCAmelCase : Dict ) -> List[str]:
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_UpperCAmelCase )
def a__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ) -> Tuple:
"""simple docstring"""
return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer()
__lowercase = self.get_image_processor()
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
processor_slow.save_pretrained(self.tmpdirname )
__lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase )
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
processor_fast.save_pretrained(self.tmpdirname )
__lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase )
self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase )
self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__lowercase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase )
__lowercase = OwlViTProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = self.get_tokenizer()
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = self.get_tokenizer()
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
__lowercase = 'lower newer'
__lowercase = processor(text=_UpperCAmelCase , return_tensors='np' )
__lowercase = tokenizer(_UpperCAmelCase , return_tensors='np' )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = self.get_tokenizer()
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
__lowercase = 'lower newer'
__lowercase = self.prepare_image_inputs()
__lowercase = processor(text=_UpperCAmelCase , images=_UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = 'google/owlvit-base-patch32'
__lowercase = OwlViTProcessor.from_pretrained(_UpperCAmelCase )
__lowercase = ['cat', 'nasa badge']
__lowercase = processor(text=_UpperCAmelCase )
__lowercase = 16
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = 'google/owlvit-base-patch32'
__lowercase = OwlViTProcessor.from_pretrained(_UpperCAmelCase )
__lowercase = [['cat', 'nasa badge'], ['person']]
__lowercase = processor(text=_UpperCAmelCase )
__lowercase = 16
__lowercase = len(_UpperCAmelCase )
__lowercase = max([len(_UpperCAmelCase ) for texts in input_texts] )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = 'google/owlvit-base-patch32'
__lowercase = OwlViTProcessor.from_pretrained(_UpperCAmelCase )
__lowercase = ['cat', 'nasa badge']
__lowercase = processor(text=_UpperCAmelCase )
__lowercase = 16
__lowercase = inputs['input_ids']
__lowercase = [
[4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] )
self.assertEqual(inputs['input_ids'].shape , (2, seq_length) )
self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] )
self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = self.get_tokenizer()
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = self.prepare_image_inputs()
__lowercase = processor(images=_UpperCAmelCase , query_images=_UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = self.get_tokenizer()
__lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase )
__lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowercase = processor.batch_decode(_UpperCAmelCase )
__lowercase = tokenizer.batch_decode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
| 688 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 1 |
import numpy as np
SCREAMING_SNAKE_CASE__ = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class A__ :
def __init__( self : Dict ) -> None:
"""simple docstring"""
__lowercase = np.array(_UpperCAmelCase )
def a__ ( self : List[str] , _UpperCAmelCase : str ) -> np.ndarray:
"""simple docstring"""
__lowercase , __lowercase = np.where(letter == self.SQUARE )
__lowercase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def a__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
__lowercase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = message.lower()
__lowercase = message.replace(' ' , '' )
__lowercase = message.replace('j' , 'i' )
__lowercase = np.empty((2, len(_UpperCAmelCase )) )
for letter_index in range(len(_UpperCAmelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape(2 * len(_UpperCAmelCase ) )
__lowercase = ''
for numbers_index in range(len(_UpperCAmelCase ) ):
__lowercase = int(second_step[numbers_index * 2] )
__lowercase = int(second_step[(numbers_index * 2) + 1] )
__lowercase = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = encoded_message + letter
return encoded_message
def a__ ( self : Any , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = message.lower()
message.replace(' ' , '' )
__lowercase = np.empty(2 * len(_UpperCAmelCase ) )
for letter_index in range(len(_UpperCAmelCase ) ):
__lowercase = self.letter_to_numbers(message[letter_index] )
__lowercase = numbers[0]
__lowercase = numbers[1]
__lowercase = first_step.reshape((2, len(_UpperCAmelCase )) )
__lowercase = ''
for numbers_index in range(len(_UpperCAmelCase ) ):
__lowercase = int(second_step[0, numbers_index] )
__lowercase = int(second_step[1, numbers_index] )
__lowercase = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = decoded_message + letter
return decoded_message
| 688 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 1 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
SCREAMING_SNAKE_CASE__ = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
SCREAMING_SNAKE_CASE__ = """https://storage.googleapis.com/cvdf-datasets/mnist/"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
__lowercase = numpy.dtype(numpy.uintaa ).newbyteorder('>' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE )[0]
@deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> int:
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream:
__lowercase = _readaa(SCREAMING_SNAKE_CASE )
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) )
__lowercase = _readaa(SCREAMING_SNAKE_CASE )
__lowercase = _readaa(SCREAMING_SNAKE_CASE )
__lowercase = _readaa(SCREAMING_SNAKE_CASE )
__lowercase = bytestream.read(rows * cols * num_images )
__lowercase = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta )
__lowercase = data.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 )
return data
@deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.one_hot on tensors.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
__lowercase = labels_dense.shape[0]
__lowercase = numpy.arange(SCREAMING_SNAKE_CASE ) * num_classes
__lowercase = numpy.zeros((num_labels, num_classes) )
__lowercase = 1
return labels_one_hot
@deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : int=10 ) -> Union[str, Any]:
print('Extracting' , f.name )
with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream:
__lowercase = _readaa(SCREAMING_SNAKE_CASE )
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) )
__lowercase = _readaa(SCREAMING_SNAKE_CASE )
__lowercase = bytestream.read(SCREAMING_SNAKE_CASE )
__lowercase = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return labels
class A__ :
@deprecated(
_UpperCAmelCase , 'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.' , )
def __init__( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Tuple=dtypes.floataa , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=None , ) -> int:
"""simple docstring"""
__lowercase , __lowercase = random_seed.get_seed(_UpperCAmelCase )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
__lowercase = dtypes.as_dtype(_UpperCAmelCase ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype )
if fake_data:
__lowercase = 1_00_00
__lowercase = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f"""images.shape: {images.shape} labels.shape: {labels.shape}"""
__lowercase = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
__lowercase = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
__lowercase = images.astype(numpy.floataa )
__lowercase = numpy.multiply(_UpperCAmelCase , 1.0 / 255.0 )
__lowercase = images
__lowercase = labels
__lowercase = 0
__lowercase = 0
@property
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
return self._images
@property
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self._labels
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self._num_examples
@property
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
return self._epochs_completed
def a__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=True ) -> List[str]:
"""simple docstring"""
if fake_data:
__lowercase = [1] * 7_84
__lowercase = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(_UpperCAmelCase )],
[fake_label for _ in range(_UpperCAmelCase )],
)
__lowercase = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
__lowercase = numpy.arange(self._num_examples )
numpy.random.shuffle(_UpperCAmelCase )
__lowercase = self.images[perma]
__lowercase = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
__lowercase = self._num_examples - start
__lowercase = self._images[start : self._num_examples]
__lowercase = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
__lowercase = numpy.arange(self._num_examples )
numpy.random.shuffle(_UpperCAmelCase )
__lowercase = self.images[perm]
__lowercase = self.labels[perm]
# Start next epoch
__lowercase = 0
__lowercase = batch_size - rest_num_examples
__lowercase = self._index_in_epoch
__lowercase = self._images[start:end]
__lowercase = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
__lowercase = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(SCREAMING_SNAKE_CASE , 'Please write your own downloading logic.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
if not gfile.Exists(SCREAMING_SNAKE_CASE ):
gfile.MakeDirs(SCREAMING_SNAKE_CASE )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if not gfile.Exists(SCREAMING_SNAKE_CASE ):
urllib.request.urlretrieve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # noqa: S310
with gfile.GFile(SCREAMING_SNAKE_CASE ) as f:
__lowercase = f.size()
print('Successfully downloaded' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'bytes.' )
return filepath
@deprecated(
SCREAMING_SNAKE_CASE , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=dtypes.floataa , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=5000 , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=DEFAULT_SOURCE_URL , ) -> Tuple:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , seed=SCREAMING_SNAKE_CASE )
__lowercase = fake()
__lowercase = fake()
__lowercase = fake()
return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE )
if not source_url: # empty string check
__lowercase = DEFAULT_SOURCE_URL
__lowercase = 'train-images-idx3-ubyte.gz'
__lowercase = 'train-labels-idx1-ubyte.gz'
__lowercase = 't10k-images-idx3-ubyte.gz'
__lowercase = 't10k-labels-idx1-ubyte.gz'
__lowercase = _maybe_download(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_images_file )
with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
__lowercase = _extract_images(SCREAMING_SNAKE_CASE )
__lowercase = _maybe_download(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_labels_file )
with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
__lowercase = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE )
__lowercase = _maybe_download(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_images_file )
with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
__lowercase = _extract_images(SCREAMING_SNAKE_CASE )
__lowercase = _maybe_download(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_labels_file )
with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
__lowercase = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE )
if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE ):
__lowercase = (
'Validation size should be between 0 and '
F"""{len(SCREAMING_SNAKE_CASE )}. Received: {validation_size}."""
)
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = train_images[:validation_size]
__lowercase = train_labels[:validation_size]
__lowercase = train_images[validation_size:]
__lowercase = train_labels[validation_size:]
__lowercase = {'dtype': dtype, 'reshape': reshape, 'seed': seed}
__lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
__lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
__lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE )
| 688 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 100 ) -> int:
__lowercase = 1
__lowercase = 2
for i in range(2 , max_n + 1 ):
__lowercase = pre_numerator
__lowercase = 2 * i // 3 if i % 3 == 0 else 1
__lowercase = cur_numerator
__lowercase = e_cont * pre_numerator + temp
return sum_digits(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 688 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 1 |
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNetaDConditionModel, UNetaDModel
SCREAMING_SNAKE_CASE__ = False
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = False
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument(
"""--repo_path""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the architecture.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = {
"""image_size""": """sample_size""",
"""num_res_blocks""": """layers_per_block""",
"""block_channels""": """block_out_channels""",
"""down_blocks""": """down_block_types""",
"""up_blocks""": """up_block_types""",
"""downscale_freq_shift""": """freq_shift""",
"""resnet_num_groups""": """norm_num_groups""",
"""resnet_act_fn""": """act_fn""",
"""resnet_eps""": """norm_eps""",
"""num_head_channels""": """attention_head_dim""",
}
SCREAMING_SNAKE_CASE__ = {
"""time_steps""": """time_proj""",
"""mid""": """mid_block""",
"""downsample_blocks""": """down_blocks""",
"""upsample_blocks""": """up_blocks""",
}
SCREAMING_SNAKE_CASE__ = """""" if has_file(args.repo_path, """config.json""") else """unet"""
with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader:
SCREAMING_SNAKE_CASE__ = reader.read()
SCREAMING_SNAKE_CASE__ = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, """config.json"""):
SCREAMING_SNAKE_CASE__ = UNetaDModel(**config)
else:
SCREAMING_SNAKE_CASE__ = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel
SCREAMING_SNAKE_CASE__ = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
SCREAMING_SNAKE_CASE__ = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
SCREAMING_SNAKE_CASE__ = config[key]
del config[key]
SCREAMING_SNAKE_CASE__ = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]]
SCREAMING_SNAKE_CASE__ = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]]
if do_only_weights:
SCREAMING_SNAKE_CASE__ = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin"""))
SCREAMING_SNAKE_CASE__ = {}
for param_key, param_value in state_dict.items():
if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""):
continue
SCREAMING_SNAKE_CASE__ = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split(""".""")[0] == key:
SCREAMING_SNAKE_CASE__ = param_value
SCREAMING_SNAKE_CASE__ = True
if not has_changed:
SCREAMING_SNAKE_CASE__ = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))
| 688 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[float] ) -> bool:
if len(SCREAMING_SNAKE_CASE ) < 2:
raise ValueError('Monogons and Digons are not polygons in the Euclidean space' )
if any(i <= 0 for i in nums ):
raise ValueError('All values must be greater than 0' )
__lowercase = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict=28123 ) -> List[Any]:
__lowercase = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
__lowercase = set()
__lowercase = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(SCREAMING_SNAKE_CASE )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 688 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 1 |
import jax.numpy as jnp
from ...utils import logging
from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel
from .configuration_mta import MTaConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """T5Config"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : jnp.array , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> jnp.ndarray:
__lowercase = jnp.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] )
__lowercase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE )
__lowercase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return shifted_input_ids
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "mt5"
lowerCAmelCase__ : List[str] = MTaConfig
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = "mt5"
lowerCAmelCase__ : Optional[Any] = MTaConfig
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = "mt5"
lowerCAmelCase__ : List[Any] = MTaConfig
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]:
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase , __lowercase = t // 3600, (t // 60) % 60, t % 60
return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=300 ) -> Any:
# docstyle-ignore
return F"""
<div>
{prefix}
<progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress>
{label}
</div>
"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]:
__lowercase = '<table border="1" class="dataframe">\n'
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F""" <th>{i}</th>\n"""
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
__lowercase = F"""{elt:.6f}""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE )
html_code += F""" <td>{elt}</td>\n"""
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class A__ :
lowerCAmelCase__ : Optional[Any] = 5
lowerCAmelCase__ : List[str] = 0.2
def __init__( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , _UpperCAmelCase : int = 3_00 , ) -> Any:
"""simple docstring"""
__lowercase = total
__lowercase = '' if prefix is None else prefix
__lowercase = leave
__lowercase = parent
__lowercase = width
__lowercase = None
__lowercase = None
__lowercase = None
def a__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : bool = False , _UpperCAmelCase : str = None ) -> List[str]:
"""simple docstring"""
__lowercase = value
if comment is not None:
__lowercase = comment
if self.last_value is None:
__lowercase = __lowercase = time.time()
__lowercase = __lowercase = value
__lowercase = __lowercase = None
__lowercase = self.warmup
__lowercase = 1
self.update_bar(_UpperCAmelCase )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
__lowercase = time.time()
__lowercase = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
__lowercase = self.elapsed_time / (value - self.start_value)
else:
__lowercase = None
if value >= self.total:
__lowercase = self.total
__lowercase = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
__lowercase = self.average_time_per_item * (self.total - value)
self.update_bar(_UpperCAmelCase )
__lowercase = value
__lowercase = current_time
if self.average_time_per_item is None:
__lowercase = 1
else:
__lowercase = max(int(self.update_every / self.average_time_per_item ) , 1 )
def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str=None ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = ' ' * (len(str(self.total ) ) - len(str(_UpperCAmelCase ) )) + str(_UpperCAmelCase )
if self.elapsed_time is None:
__lowercase = f"""[{spaced_value}/{self.total} : < :"""
elif self.predicted_remaining is None:
__lowercase = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}"""
else:
__lowercase = (
f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <"""
f""" {format_time(self.predicted_remaining )}"""
)
self.label += f""", {1/self.average_time_per_item:.2f} it/s"""
self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]"""
self.display()
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
__lowercase = disp.display(disp.HTML(self.html_code ) , display_id=_UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
if self.parent is None and self.output is not None:
self.output.update(disp.HTML('' ) )
class A__ ( lowerCAmelCase__ ):
def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=None ) -> int:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = None if column_names is None else [column_names]
__lowercase = None
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowercase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
__lowercase = disp.display(disp.HTML(self.html_code ) , display_id=_UpperCAmelCase )
else:
self.output.update(disp.HTML(self.html_code ) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
if self.inner_table is None:
__lowercase = [list(values.keys() ), list(values.values() )]
else:
__lowercase = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(_UpperCAmelCase )
__lowercase = columns
self.inner_table.append([values[c] for c in columns] )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[int]=3_00 ) -> Dict:
"""simple docstring"""
__lowercase = NotebookProgressBar(_UpperCAmelCase , prefix=_UpperCAmelCase , parent=self , width=_UpperCAmelCase )
return self.child_bar
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
__lowercase = None
self.display()
class A__ ( lowerCAmelCase__ ):
def __init__( self : int ) -> str:
"""simple docstring"""
__lowercase = None
__lowercase = None
__lowercase = False
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step'
__lowercase = 0
__lowercase = 0
__lowercase = [self.first_column] + ['Training Loss']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('Validation Loss' )
__lowercase = NotebookTrainingTracker(state.max_steps , _UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
__lowercase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}"""
self.training_tracker.update(
state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , )
__lowercase = False
def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
if not has_length(_UpperCAmelCase ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
__lowercase = self.training_tracker.add_child(len(_UpperCAmelCase ) )
else:
__lowercase = NotebookProgressBar(len(_UpperCAmelCase ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
if self.prediction_bar is not None:
self.prediction_bar.close()
__lowercase = None
def a__ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Optional[int] ) -> Optional[int]:
"""simple docstring"""
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
__lowercase = {'Training Loss': logs['loss']}
# First column is necessarily Step sine we're not in epoch eval strategy
__lowercase = state.global_step
self.training_tracker.write_line(_UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Optional[int] ) -> List[Any]:
"""simple docstring"""
if self.training_tracker is not None:
__lowercase = {'Training Loss': 'No log', 'Validation Loss': 'No log'}
for log in reversed(state.log_history ):
if "loss" in log:
__lowercase = log['loss']
break
if self.first_column == "Epoch":
__lowercase = int(state.epoch )
else:
__lowercase = state.global_step
__lowercase = 'eval'
for k in metrics:
if k.endswith('_loss' ):
__lowercase = re.sub(R'\_loss$' , '' , _UpperCAmelCase )
__lowercase = metrics.pop('total_flos' , _UpperCAmelCase )
__lowercase = metrics.pop('epoch' , _UpperCAmelCase )
__lowercase = metrics.pop(f"""{metric_key_prefix}_runtime""" , _UpperCAmelCase )
__lowercase = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , _UpperCAmelCase )
__lowercase = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , _UpperCAmelCase )
__lowercase = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , _UpperCAmelCase )
for k, v in metrics.items():
if k == f"""{metric_key_prefix}_loss""":
__lowercase = v
else:
__lowercase = k.split('_' )
__lowercase = ' '.join([part.capitalize() for part in splits[1:]] )
__lowercase = v
self.training_tracker.write_line(_UpperCAmelCase )
self.training_tracker.remove_child()
__lowercase = None
# Evaluation takes a long time so we should force the next update.
__lowercase = True
def a__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[Any] ) -> int:
"""simple docstring"""
self.training_tracker.update(
state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=_UpperCAmelCase )
__lowercase = None
| 688 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 1 |
SCREAMING_SNAKE_CASE__ = 256
# Modulus to hash a string
SCREAMING_SNAKE_CASE__ = 100_0003
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> bool:
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = len(SCREAMING_SNAKE_CASE )
if p_len > t_len:
return False
__lowercase = 0
__lowercase = 0
__lowercase = 1
# Calculating the hash of pattern and substring of text
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
__lowercase = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
__lowercase = (modulus_power * alphabet_size) % modulus
for i in range(0 , t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
__lowercase = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = 'abc1abc12'
__lowercase = 'alskfjaldsabc1abc1abc12k23adsfabcabc'
__lowercase = 'alskfjaldsk23adsfabcabc'
assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Test 2)
__lowercase = 'ABABX'
__lowercase = 'ABABZABABYABABX'
assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Test 3)
__lowercase = 'AAAB'
__lowercase = 'ABAAAAAB'
assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Test 4)
__lowercase = 'abcdabcy'
__lowercase = 'abcxabcdabxabcdabcdabcy'
assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Test 5)
__lowercase = 'Lü'
__lowercase = 'Lüsai'
assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = 'Lue'
assert not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print('Success.' )
if __name__ == "__main__":
test_rabin_karp()
| 688 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 1 |
import json
import sys
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str:
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
__lowercase = json.load(SCREAMING_SNAKE_CASE )
__lowercase = ['<details>', '<summary>Show updated benchmarks!</summary>', ' ']
for benchmark_name in sorted(SCREAMING_SNAKE_CASE ):
__lowercase = results[benchmark_name]
__lowercase = benchmark_name.split('/' )[-1]
output_md.append(F"""### Benchmark: {benchmark_file_name}""" )
__lowercase = '| metric |'
__lowercase = '|--------|'
__lowercase = '| new / old (diff) |'
for metric_name in sorted(SCREAMING_SNAKE_CASE ):
__lowercase = benchmark_res[metric_name]
__lowercase = metric_vals['new']
__lowercase = metric_vals.get('old' , SCREAMING_SNAKE_CASE )
__lowercase = metric_vals.get('diff' , SCREAMING_SNAKE_CASE )
__lowercase = F""" {new_val:f}""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else 'None'
if old_val is not None:
val_str += F""" / {old_val:f}""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None"
if dif_val is not None:
val_str += F""" ({dif_val:f})""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append('</details>' )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f:
f.writelines('\n'.join(SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = sys.argv[1]
SCREAMING_SNAKE_CASE__ = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 688 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
SCREAMING_SNAKE_CASE__ = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 1 |
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
__lowercase = ksize + 1
__lowercase = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(SCREAMING_SNAKE_CASE ):
for x in range(SCREAMING_SNAKE_CASE ):
# distance from center
__lowercase = x - ksize // 2
__lowercase = y - ksize // 2
# degree to radiant
__lowercase = theta / 180 * np.pi
__lowercase = np.cos(_theta )
__lowercase = np.sin(_theta )
# get kernel x
__lowercase = cos_theta * px + sin_theta * py
# get kernel y
__lowercase = -sin_theta * px + cos_theta * py
# fill kernel
__lowercase = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
SCREAMING_SNAKE_CASE__ = imread("""../image_data/lena.jpg""")
# turn image in gray scale value
SCREAMING_SNAKE_CASE__ = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
SCREAMING_SNAKE_CASE__ = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
SCREAMING_SNAKE_CASE__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
SCREAMING_SNAKE_CASE__ = out / out.max() * 255
SCREAMING_SNAKE_CASE__ = out.astype(np.uinta)
imshow("""Original""", gray)
imshow("""Gabor filter with 20x20 mask and 6 directions""", out)
waitKey(0)
| 688 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 0 ) -> list:
__lowercase = length or len(SCREAMING_SNAKE_CASE )
__lowercase = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
__lowercase , __lowercase = list_data[i + 1], list_data[i]
__lowercase = True
return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 1 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class A__ ( unittest.TestCase ):
def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=5_12 , _UpperCAmelCase : str=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=4 , ) -> List[str]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_attention_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_choices
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_attention_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def a__ ( self : str ) -> List[Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Union[str, Any] = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = FlaxAlbertModelTester(self )
@slow
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained('albert-base-v2' )
__lowercase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_UpperCAmelCase )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
__lowercase = FlaxAlbertModel.from_pretrained('albert-base-v2' )
__lowercase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = (1, 11, 7_68)
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = np.array(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 1 |
import logging
from transformers.configuration_utils import PretrainedConfig
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = "masked_bert"
def __init__( self : Tuple , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=5_12 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : str=1e-1_2 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Tuple="topK" , _UpperCAmelCase : Dict="constant" , _UpperCAmelCase : Tuple=0.0 , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = pruning_method
__lowercase = mask_init
__lowercase = mask_scale
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import os
import pytest
from attr import dataclass
SCREAMING_SNAKE_CASE__ = """us-east-1""" # defaults region
@dataclass
class A__ :
lowerCAmelCase__ : str
lowerCAmelCase__ : Optional[Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
lowerCAmelCase__ : Union[str, Any] = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5500,
}
lowerCAmelCase__ : Any = {**hyperparameters, "max_steps": 1000}
@property
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
return f"""{self.framework}-transfromers-test"""
@property
def a__ ( self : List[Any] ) -> str:
"""simple docstring"""
return f"""./tests/sagemaker/scripts/{self.framework}"""
@property
def a__ ( self : Dict ) -> str:
"""simple docstring"""
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]:
__lowercase = SageMakerTestEnvironment(framework=request.cls.framework )
| 688 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.