code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) __snake_case : int = parser.parse_args() __snake_case : int = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __snake_case : int = CLIPImageProcessor() __snake_case : Any = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') __snake_case : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
715
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def __lowerCamelCase ( __snake_case : int ) -> Optional[int]: """simple docstring""" random.seed(__snake_case ) np.random.seed(__snake_case ) torch.manual_seed(__snake_case ) torch.cuda.manual_seed_all(__snake_case ) # ^^ safe to call this function even if cuda is not available class lowerCamelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] , lowerCAmelCase_ : float = 0.9999 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Union[float, int] = 1.0 , lowerCAmelCase_ : Union[float, int] = 2 / 3 , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict[str, Any] = None , **lowerCAmelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Optional[Any] =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : List[str] =parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : int =True if kwargs.get("""max_value""" , lowerCAmelCase_ ) is not None: A__ : Tuple ="""The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Union[str, Any] =kwargs["""max_value"""] if kwargs.get("""min_value""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) A__ : Optional[Any] =kwargs["""min_value"""] A__ : Any =list(lowerCAmelCase_ ) A__ : int =[p.clone().detach() for p in parameters] if kwargs.get("""device""" , lowerCAmelCase_ ) is not None: A__ : List[str] ="""The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) self.to(device=kwargs["""device"""] ) A__ : Optional[int] =None A__ : Any =decay A__ : List[Any] =min_decay A__ : Optional[int] =update_after_step A__ : List[str] =use_ema_warmup A__ : str =inv_gamma A__ : Union[str, Any] =power A__ : str =0 A__ : str =None # set in `step()` A__ : List[str] =model_cls A__ : Optional[int] =model_config @classmethod def lowercase__ ( cls : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict ) -> "EMAModel": '''simple docstring''' A__ , A__ : Tuple =model_cls.load_config(lowerCAmelCase_ , return_unused_kwargs=lowerCAmelCase_ ) A__ : Optional[Any] =model_cls.from_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =cls(model.parameters() , model_cls=lowerCAmelCase_ , model_config=model.config ) ema_model.load_state_dict(lowerCAmelCase_ ) return ema_model def lowercase__ ( self : List[str] , lowerCAmelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : Optional[int] =self.model_cls.from_config(self.model_config ) A__ : Optional[Any] =self.state_dict() state_dict.pop("""shadow_params""" , lowerCAmelCase_ ) model.register_to_config(**lowerCAmelCase_ ) self.copy_to(model.parameters() ) model.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : int ) -> float: '''simple docstring''' A__ : Optional[int] =max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : List[Any] =1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Union[str, Any] =(1 + step) / (10 + step) A__ : str =min(lowerCAmelCase_ , self.decay ) # make sure decay is not smaller than min_decay A__ : int =max(lowerCAmelCase_ , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , torch.nn.Module ): A__ : Any =( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ , ) A__ : Optional[int] =parameters.parameters() A__ : Dict =list(lowerCAmelCase_ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : Any =self.get_decay(self.optimization_step ) A__ : Optional[int] =decay A__ : List[str] =1 - decay A__ : str =contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : List[Any] =deepspeed.zero.GatheredParameters(lowerCAmelCase_ , modifier_rank=lowerCAmelCase_ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : Optional[Any] =list(lowerCAmelCase_ ) for s_param, param in zip(self.shadow_params , lowerCAmelCase_ ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : int , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=None ) -> None: '''simple docstring''' A__ : str =[ p.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if p.is_floating_point() else p.to(device=lowerCAmelCase_ ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] ) -> dict: '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Tuple , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' A__ : List[str] =[param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[str] , lowerCAmelCase_ : Iterable[torch.nn.Parameter] ) -> None: '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , lowerCAmelCase_ ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : List[str] =None def lowercase__ ( self : List[str] , lowerCAmelCase_ : dict ) -> None: '''simple docstring''' A__ : List[Any] =copy.deepcopy(lowerCAmelCase_ ) A__ : List[Any] =state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : List[Any] =state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , lowerCAmelCase_ ): raise ValueError("""Invalid min_decay""" ) A__ : Tuple =state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , lowerCAmelCase_ ): raise ValueError("""Invalid optimization_step""" ) A__ : Any =state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , lowerCAmelCase_ ): raise ValueError("""Invalid update_after_step""" ) A__ : str =state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , lowerCAmelCase_ ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : str =state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Tuple =state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : Tuple =state_dict.get("""shadow_params""" , lowerCAmelCase_ ) if shadow_params is not None: A__ : List[str] =shadow_params if not isinstance(self.shadow_params , lowerCAmelCase_ ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(lowerCAmelCase_ , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
687
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __snake_case : Any = re.compile(r'\s+') def __lowerCamelCase ( __snake_case : Union[str, Any] ) -> Any: """simple docstring""" return {"hash": hashlib.mda(re.sub(__snake_case, """""", example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Dict =[len(__snake_case ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(__snake_case ), "line_max": max(__snake_case )} def __lowerCamelCase ( __snake_case : Optional[int] ) -> Any: """simple docstring""" A__ : int =np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def __lowerCamelCase ( __snake_case : int, __snake_case : Tuple ) -> Optional[int]: """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def __lowerCamelCase ( __snake_case : Dict, __snake_case : Tuple=5 ) -> Optional[Any]: """simple docstring""" A__ : Dict =["""auto-generated""", """autogenerated""", """automatically generated"""] A__ : Optional[Any] =example["""content"""].splitlines() for _, line in zip(range(__snake_case ), __snake_case ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any]=5, __snake_case : int=0.05 ) -> Optional[Any]: """simple docstring""" A__ : str =["""unit tests""", """test file""", """configuration file"""] A__ : Optional[int] =example["""content"""].splitlines() A__ : List[str] =0 A__ : int =0 # first test for _, line in zip(range(__snake_case ), __snake_case ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test A__ : Optional[Any] =example["""content"""].count("""\n""" ) A__ : Dict =int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __lowerCamelCase ( __snake_case : int ) -> Any: """simple docstring""" A__ : Tuple =["""def """, """class """, """for """, """while """] A__ : List[str] =example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __lowerCamelCase ( __snake_case : List[str], __snake_case : int=4 ) -> List[str]: """simple docstring""" A__ : Any =example["""content"""].splitlines() A__ : int =0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __lowerCamelCase ( __snake_case : Any ) -> Any: """simple docstring""" A__ : int =tokenizer(example["""content"""], truncation=__snake_case )["""input_ids"""] A__ : Dict =len(example["""content"""] ) / len(__snake_case ) return {"ratio": ratio} def __lowerCamelCase ( __snake_case : int ) -> Any: """simple docstring""" A__ : Any ={} results.update(get_hash(__snake_case ) ) results.update(line_stats(__snake_case ) ) results.update(alpha_stats(__snake_case ) ) results.update(char_token_ratio(__snake_case ) ) results.update(is_autogenerated(__snake_case ) ) results.update(is_config_or_test(__snake_case ) ) results.update(has_no_keywords(__snake_case ) ) results.update(has_few_assignments(__snake_case ) ) return results def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Dict ) -> Dict: """simple docstring""" if not check_uniques(__snake_case, __snake_case ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __lowerCamelCase ( __snake_case : Tuple ) -> str: """simple docstring""" with open(__snake_case, """rb""" ) as f_in: with gzip.open(str(__snake_case ) + """.gz""", """wb""", compresslevel=6 ) as f_out: shutil.copyfileobj(__snake_case, __snake_case ) os.unlink(__snake_case ) # Settings __snake_case : List[Any] = HfArgumentParser(PreprocessingArguments) __snake_case : Union[str, Any] = parser.parse_args() if args.num_workers is None: __snake_case : Dict = multiprocessing.cpu_count() __snake_case : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __snake_case : str = time.time() __snake_case : Optional[int] = load_dataset(args.dataset_name, split='train') print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing __snake_case : Optional[int] = time.time() __snake_case : Union[str, Any] = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes __snake_case : str = set(ds.unique('hash')) __snake_case : str = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics __snake_case : List[Any] = time.time() __snake_case : Dict = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __snake_case : Union[str, Any] = time.time() __snake_case : Dict = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file __snake_case : List[Any] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) __snake_case : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) __snake_case : Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __snake_case : List[Any] = str(data_dir / F"""file-{file_number+1:012}.json""") __snake_case : Tuple = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
716
'''simple docstring''' from __future__ import annotations import requests __snake_case : Union[str, Any] = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def __lowerCamelCase ( __snake_case : str, __snake_case : int = 1, __snake_case : str = "new", __snake_case : list | None = None ) -> dict: """simple docstring""" A__ : Union[str, Any] =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): A__ : Optional[int] =f"Invalid search term: {invalid_search_terms}" raise ValueError(__snake_case ) A__ : Tuple =requests.get( f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}", headers={"""User-agent""": """A random string"""}, ) if response.status_code == 429: raise requests.HTTPError A__ : Tuple =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} A__ : Tuple ={} for id_ in range(__snake_case ): A__ : List[Any] ={ item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
687
0
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' def __init__( self : Tuple , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : int ) -> None: '''simple docstring''' warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
717
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) __snake_case : Union[str, Any] = logging.getLogger(__name__) __snake_case : int = tf.data.AUTOTUNE def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ : str =argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""", type=__snake_case, default="""roberta-base""", help="""The model config to use. Note that we don't copy the model's weights, only the config!""", ) parser.add_argument( """--tokenizer""", type=__snake_case, default="""unigram-tokenizer-wikitext""", help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size.""", ) parser.add_argument( """--per_replica_batch_size""", type=__snake_case, default=8, help="""Batch size per TPU core.""", ) parser.add_argument( """--no_tpu""", action="""store_true""", help="""If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances.""", ) parser.add_argument( """--tpu_name""", type=__snake_case, help="""Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs.""", default="""local""", ) parser.add_argument( """--tpu_zone""", type=__snake_case, help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""", ) parser.add_argument( """--gcp_project""", type=__snake_case, help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""", action="""store_true""", help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""", ) parser.add_argument( """--train_dataset""", type=__snake_case, help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--shuffle_buffer_size""", type=__snake_case, default=2**18, help="""Size of the shuffle buffer (in samples)""", ) parser.add_argument( """--eval_dataset""", type=__snake_case, help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""", ) parser.add_argument( """--num_epochs""", type=__snake_case, default=1, help="""Number of epochs to train for.""", ) parser.add_argument( """--learning_rate""", type=__snake_case, default=1E-4, help="""Learning rate to use for training.""", ) parser.add_argument( """--weight_decay_rate""", type=__snake_case, default=1E-3, help="""Weight decay rate to use for training.""", ) parser.add_argument( """--max_length""", type=__snake_case, default=512, help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""", ) parser.add_argument( """--mlm_probability""", type=__snake_case, default=0.15, help="""Fraction of tokens to mask during training.""", ) parser.add_argument("""--output_dir""", type=__snake_case, required=__snake_case, help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""", type=__snake_case, help="""Model ID to upload to on the Hugging Face Hub.""" ) A__ : Optional[Any] =parser.parse_args() return args def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" try: if args.tpu_name: A__ : List[Any] =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name, zone=args.tpu_zone, project=args.gcp_project ) else: A__ : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(__snake_case ) tf.tpu.experimental.initialize_tpu_system(__snake_case ) return tpu def __lowerCamelCase ( __snake_case : Optional[int] ) -> Dict: """simple docstring""" A__ : Any =0 for file in file_list: A__ : Optional[int] =file.split("""/""" )[-1] A__ : Union[str, Any] =re.search(r"""-\d+-(\d+)\.tfrecord""", __snake_case ).group(1 ) A__ : str =int(__snake_case ) num_samples += sample_count return num_samples def __lowerCamelCase ( __snake_case : List[str], __snake_case : int, __snake_case : Any, __snake_case : List[Any], __snake_case : int, __snake_case : List[Any]=None ) -> Optional[int]: """simple docstring""" A__ : List[str] =count_samples(__snake_case ) A__ : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__snake_case ) if shuffle: A__ : Optional[int] =dataset.shuffle(len(__snake_case ) ) A__ : List[str] =tf.data.TFRecordDataset(__snake_case, num_parallel_reads=__snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here A__ : int =dataset.apply(tf.data.experimental.assert_cardinality(__snake_case ) ) A__ : Any =dataset.map(__snake_case, num_parallel_calls=__snake_case ) if shuffle: assert shuffle_buffer_size is not None A__ : List[Any] =dataset.shuffle(args.shuffle_buffer_size ) A__ : int =dataset.batch(__snake_case, drop_remainder=__snake_case ) A__ : Optional[int] =dataset.map(__snake_case, num_parallel_calls=__snake_case ) A__ : Tuple =dataset.prefetch(__snake_case ) return dataset def __lowerCamelCase ( __snake_case : List[Any] ) -> Tuple: """simple docstring""" if not args.no_tpu: A__ : Dict =initialize_tpu(__snake_case ) A__ : int =tf.distribute.TPUStrategy(__snake_case ) else: A__ : List[str] =tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) A__ : Tuple =AutoTokenizer.from_pretrained(args.tokenizer ) A__ : List[str] =AutoConfig.from_pretrained(args.pretrained_model_config ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Tuple =tf.io.gfile.glob(os.path.join(args.train_dataset, """*.tfrecord""" ) ) if not training_records: raise ValueError(f"No .tfrecord files found in {args.train_dataset}." ) A__ : Optional[Any] =tf.io.gfile.glob(os.path.join(args.eval_dataset, """*.tfrecord""" ) ) if not eval_records: raise ValueError(f"No .tfrecord files found in {args.eval_dataset}." ) A__ : Optional[Any] =count_samples(__snake_case ) A__ : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) A__ : str =steps_per_epoch * args.num_epochs with strategy.scope(): A__ : List[str] =TFAutoModelForMaskedLM.from_config(__snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built A__ , A__ : Optional[Any] =create_optimizer( num_train_steps=__snake_case, num_warmup_steps=total_train_steps // 20, init_lr=args.learning_rate, weight_decay_rate=args.weight_decay_rate, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__snake_case, metrics=["""accuracy"""] ) def decode_fn(__snake_case : Tuple ): A__ : Dict ={ """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa, shape=(args.max_length,) ), } return tf.io.parse_single_example(__snake_case, __snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. A__ : List[Any] =DataCollatorForLanguageModeling( tokenizer=__snake_case, mlm_probability=args.mlm_probability, mlm=__snake_case, return_tensors="""tf""" ) def mask_with_collator(__snake_case : Optional[int] ): # TF really needs an isin() function A__ : Union[str, Any] =( ~tf.cast(batch["""attention_mask"""], tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) A__ , A__ : List[str] =data_collator.tf_mask_tokens( batch["""input_ids"""], vocab_size=len(__snake_case ), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=__snake_case, ) return batch A__ : List[Any] =args.per_replica_batch_size * strategy.num_replicas_in_sync A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, shuffle_buffer_size=args.shuffle_buffer_size, ) A__ : List[str] =prepare_dataset( __snake_case, decode_fn=__snake_case, mask_fn=__snake_case, batch_size=__snake_case, shuffle=__snake_case, ) A__ : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir, hub_model_id=args.hub_model_id, tokenizer=__snake_case ) ) model.fit( __snake_case, validation_data=__snake_case, epochs=args.num_epochs, callbacks=__snake_case, ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": __snake_case : str = parse_args() main(args)
687
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __snake_case = datasets.utils.logging.get_logger(__name__) __snake_case = ['names', 'prefix'] __snake_case = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __snake_case = ['encoding_errors', 'on_bad_lines'] __snake_case = ['date_format'] @dataclass class lowerCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __snake_case = ',' __snake_case = None __snake_case = 'infer' __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = True __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = False __snake_case = None __snake_case = None __snake_case = None __snake_case = True __snake_case = True __snake_case = False __snake_case = True __snake_case = None __snake_case = '.' __snake_case = None __snake_case = '"' __snake_case = 0 __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = True __snake_case = True __snake_case = 0 __snake_case = True __snake_case = False __snake_case = None __snake_case = 1_0000 __snake_case = None __snake_case = 'strict' __snake_case = 'error' __snake_case = None def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if self.delimiter is not None: A__ : str =self.delimiter if self.column_names is not None: A__ : int =self.column_names @property def lowercase__ ( self : str ) -> int: '''simple docstring''' A__ : Union[str, Any] ={ """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __snake_case = CsvConfig def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : int ) -> str: '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) A__ : Union[str, Any] =dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase_ , (str, list, tuple) ): A__ : Any =data_files if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : List[Any] =[files] A__ : int =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : Optional[int] =[] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : Tuple =[files] A__ : Optional[Any] =[dl_manager.iter_files(lowerCAmelCase_ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase_ , gen_kwargs={"""files""": files} ) ) return splits def lowercase__ ( self : Dict , lowerCAmelCase_ : pa.Table ) -> pa.Table: '''simple docstring''' if self.config.features is not None: A__ : Dict =self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase_ ) for feature in self.config.features.values() ): # cheaper cast A__ : int =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example A__ : List[Any] =table_cast(lowerCAmelCase_ , lowerCAmelCase_ ) return pa_table def lowercase__ ( self : List[Any] , lowerCAmelCase_ : int ) -> Union[str, Any]: '''simple docstring''' A__ : Tuple =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str A__ : str =( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase_ ) ): A__ : List[str] =pd.read_csv(lowerCAmelCase_ , iterator=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase_ ): A__ : Dict =pa.Table.from_pandas(lowerCAmelCase_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase_ ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(lowerCAmelCase_ )}: {e}" ) raise
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __snake_case : Union[str, Any] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
'''simple docstring''' from typing import Any def __lowerCamelCase ( __snake_case : list ): """simple docstring""" if not input_list: return [] A__ : int =[input_list.count(__snake_case ) for value in input_list] A__ : Tuple =max(__snake_case ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__snake_case ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __snake_case : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __snake_case : Tuple = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') __snake_case : int = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') __snake_case : Optional[Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') __snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') __snake_case : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
687
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __snake_case : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase ( lowercase_ ): def __init__( self : Dict , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : CLIPTextModel , lowerCAmelCase_ : CLIPTokenizer , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase_ : StableDiffusionSafetyChecker , lowerCAmelCase_ : CLIPImageProcessor , ) -> str: '''simple docstring''' super().__init__() self.register_modules( vae=lowerCAmelCase_ , text_encoder=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ : Dict =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' self.enable_attention_slicing(lowerCAmelCase_ ) @torch.no_grad() def __call__( self : Optional[Any] , lowerCAmelCase_ : Union[str, List[str]] , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 5_12 , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : float = 7.5 , lowerCAmelCase_ : Optional[Union[str, List[str]]] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : Optional[torch.FloatTensor] = None , **lowerCAmelCase_ : Any , ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : List[str] =1 elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : List[Any] =len(lowerCAmelCase_ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(lowerCAmelCase_ )}." ) # get prompt text embeddings A__ : Optional[Any] =self.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) A__ : str =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ : List[Any] =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) A__ : Optional[int] =text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A__ : Optional[int] =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ : Tuple =text_embeddings.shape A__ : Optional[int] =text_embeddings.repeat(1 , lowerCAmelCase_ , 1 ) A__ : Dict =text_embeddings.view(bs_embed * num_images_per_prompt , lowerCAmelCase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ : int =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ : List[str] if negative_prompt is None: A__ : Union[str, Any] =[""""""] elif type(lowerCAmelCase_ ) is not type(lowerCAmelCase_ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase_ )} !=" f" {type(lowerCAmelCase_ )}." ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A__ : List[Any] =[negative_prompt] elif batch_size != len(lowerCAmelCase_ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase_ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" """ the batch size of `prompt`.""" ) else: A__ : Dict =negative_prompt A__ : int =text_input_ids.shape[-1] A__ : Union[str, Any] =self.tokenizer( lowerCAmelCase_ , padding="""max_length""" , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors="""pt""" , ) A__ : Dict =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ : Optional[int] =uncond_embeddings.shape[1] A__ : Optional[Any] =uncond_embeddings.repeat(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) A__ : int =uncond_embeddings.view(batch_size * num_images_per_prompt , lowerCAmelCase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ : Any =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ : str =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ : Optional[Any] =(batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A__ : Any =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ : int =torch.randn( lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to(self.device ) A__ : Tuple =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device="""cpu""" , dtype=lowerCAmelCase_ ).to( self.device ) else: A__ : str =torch.randn( lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) A__ : Union[str, Any] =torch.randn(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device , dtype=lowerCAmelCase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) A__ : List[str] =latents_reference.to(self.device ) A__ : Union[str, Any] =latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A__ : Union[str, Any] =(latents_shape[3] - latents_shape_reference[3]) // 2 A__ : int =(latents_shape[2] - latents_shape_reference[2]) // 2 A__ : Dict =latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A__ : Any =latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A__ : Optional[Any] =0 if dx < 0 else dx A__ : Optional[Any] =0 if dy < 0 else dy A__ : Tuple =max(-dx , 0 ) A__ : List[str] =max(-dy , 0 ) # import pdb # pdb.set_trace() A__ : Union[str, Any] =latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowerCAmelCase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ : List[Any] =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ : Optional[Any] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ : int ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ : Dict ={} if accepts_eta: A__ : List[Any] =eta for i, t in enumerate(self.progress_bar(lowerCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance A__ : Union[str, Any] =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ : Dict =self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) # predict the noise residual A__ : Optional[int] =self.unet(lowerCAmelCase_ , lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ ).sample # perform guidance if do_classifier_free_guidance: A__ : List[Any] =noise_pred.chunk(2 ) A__ : Union[str, Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ : List[Any] =self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Dict =1 / 0.18215 * latents A__ : Union[str, Any] =self.vae.decode(lowerCAmelCase_ ).sample A__ : Union[str, Any] =(image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ : Tuple =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A__ : int =self.feature_extractor(self.numpy_to_pil(lowerCAmelCase_ ) , return_tensors="""pt""" ).to( self.device ) A__ : int =self.safety_checker( images=lowerCAmelCase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A__ : Optional[int] =None if output_type == "pil": A__ : Union[str, Any] =self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowerCAmelCase_ , nsfw_content_detected=lowerCAmelCase_ )
720
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[str]=False ) -> str: """simple docstring""" A__ : int =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A__ : int =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Tuple=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A__ : Any ="""""" else: A__ : Optional[int] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : str =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) A__ : Optional[Any] =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict A__ : Optional[int] =in_proj_weight[ : config.hidden_size, : ] A__ : str =in_proj_bias[: config.hidden_size] A__ : Optional[Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : List[Any] =in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] =in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __snake_case : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ : List[Any] =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optional[Any], __snake_case : List[Any], __snake_case : List[str] ) -> Union[str, Any]: """simple docstring""" A__ : Dict =dct.pop(__snake_case ) A__ : Tuple =val def __lowerCamelCase ( ) -> int: """simple docstring""" A__ : Tuple ="""http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple =Image.open(requests.get(__snake_case, stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : Tuple, __snake_case : List[str]=True ) -> str: """simple docstring""" A__ : Tuple =ViTConfig() # patch_size if model_name[-1] == "8": A__ : Optional[Any] =8 # set labels if required if not base_model: A__ : Optional[Any] =1_000 A__ : str ="""huggingface/label-files""" A__ : Any ="""imagenet-1k-id2label.json""" A__ : Tuple =json.load(open(hf_hub_download(__snake_case, __snake_case, repo_type="""dataset""" ), """r""" ) ) A__ : List[str] ={int(__snake_case ): v for k, v in idalabel.items()} A__ : List[Any] =idalabel A__ : List[Any] ={v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: A__ : str =384 A__ : Optional[Any] =1_536 A__ : Optional[Any] =12 A__ : Union[str, Any] =6 # load original model from torch hub A__ : List[Any] =torch.hub.load("""facebookresearch/dino:main""", __snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys A__ : List[str] =original_model.state_dict() if base_model: remove_classification_head_(__snake_case ) A__ : Union[str, Any] =create_rename_keys(__snake_case, base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case, __snake_case ) # load HuggingFace model if base_model: A__ : List[str] =ViTModel(__snake_case, add_pooling_layer=__snake_case ).eval() else: A__ : List[str] =ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor A__ : Union[str, Any] =ViTImageProcessor() A__ : Optional[int] =image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Union[str, Any] =encoding["""pixel_values"""] A__ : Union[str, Any] =model(__snake_case ) if base_model: A__ : List[str] =original_model(__snake_case ) assert torch.allclose(__snake_case, outputs.last_hidden_state[:, 0, :], atol=1E-1 ) else: A__ : Optional[int] =original_model(__snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(__snake_case, outputs.logits, atol=1E-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __snake_case : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
687
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case : Union[str, Any] = logging.get_logger(__name__) def __lowerCamelCase ( __snake_case : Tuple ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(__snake_case, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case, (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['pixel_values'] def __init__( self : Any , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_55 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase_ : int , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) A__ : Dict =size if size is not None else {"""shortest_edge""": 2_24} A__ : Optional[int] =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) A__ : List[Any] =crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} A__ : List[Any] =get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" ) A__ : Union[str, Any] =do_resize A__ : Union[str, Any] =size A__ : str =do_center_crop A__ : Optional[int] =crop_size A__ : str =resample A__ : Tuple =do_rescale A__ : Any =rescale_factor A__ : Any =do_normalize A__ : Dict =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ : int =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: '''simple docstring''' A__ : List[Any] =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" in size: A__ : List[str] =get_resize_output_image_size(lowerCAmelCase_ , size["""shortest_edge"""] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: A__ : Optional[Any] =(size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: '''simple docstring''' A__ : Dict =get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(lowerCAmelCase_ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : List[Any] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> Tuple: '''simple docstring''' return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A__ : Tuple =to_numpy_array(lowerCAmelCase_ ) if do_resize: A__ : Dict =self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) if do_center_crop: A__ : List[Any] =self.center_crop(lowerCAmelCase_ , size=lowerCAmelCase_ ) if do_rescale: A__ : Tuple =self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) if do_normalize: A__ : Tuple =self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) A__ : Union[str, Any] =to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) return image def lowercase__ ( self : Tuple , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : float = None , lowerCAmelCase_ : bool = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[float, List[float]]] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : Union[str, Any] , ) -> PIL.Image.Image: '''simple docstring''' A__ : str =do_resize if do_resize is not None else self.do_resize A__ : Optional[Any] =resample if resample is not None else self.resample A__ : str =do_center_crop if do_center_crop is not None else self.do_center_crop A__ : List[str] =do_rescale if do_rescale is not None else self.do_rescale A__ : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor A__ : str =do_normalize if do_normalize is not None else self.do_normalize A__ : Tuple =image_mean if image_mean is not None else self.image_mean A__ : List[str] =image_std if image_std is not None else self.image_std A__ : Union[str, Any] =size if size is not None else self.size A__ : int =get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) A__ : Optional[Any] =crop_size if crop_size is not None else self.crop_size A__ : Union[str, Any] =get_size_dict(lowerCAmelCase_ , param_name="""crop_size""" ) if not valid_images(lowerCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) A__ : Dict =make_batched(lowerCAmelCase_ ) A__ : int =[ [ self._preprocess_image( image=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , crop_size=lowerCAmelCase_ , do_rescale=lowerCAmelCase_ , rescale_factor=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , image_mean=lowerCAmelCase_ , image_std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , ) for img in video ] for video in videos ] A__ : Any ={"""pixel_values""": videos} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
721
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging __snake_case : List[Any] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'linear' __snake_case = 'cosine' __snake_case = 'cosine_with_restarts' __snake_case = 'polynomial' __snake_case = 'constant' __snake_case = 'constant_with_warmup' __snake_case = 'piecewise_constant' def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int = -1 ) -> List[str]: """simple docstring""" return LambdaLR(__snake_case, lambda __snake_case : 1, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1.0, __snake_case ) ) return 1.0 return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : str, __snake_case : int = -1 ) -> Optional[Any]: """simple docstring""" A__ : str ={} A__ : Tuple =step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A__ , A__ : int =rule_str.split(""":""" ) A__ : Optional[int] =int(__snake_case ) A__ : List[Any] =float(__snake_case ) A__ : Union[str, Any] =value A__ : int =float(rule_list[-1] ) def create_rules_function(__snake_case : int, __snake_case : Dict ): def rule_func(__snake_case : int ) -> float: A__ : Any =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__snake_case ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A__ : Any =create_rules_function(__snake_case, __snake_case ) return LambdaLR(__snake_case, __snake_case, last_epoch=__snake_case ) def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : List[Any], __snake_case : Any=-1 ) -> int: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) return max( 0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : float = 0.5, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : Dict ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : List[str] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(__snake_case ) * 2.0 * progress )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : Optimizer, __snake_case : int, __snake_case : int, __snake_case : int = 1, __snake_case : int = -1 ) -> Dict: """simple docstring""" def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) A__ : Union[str, Any] =float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(__snake_case ) * progress) % 1.0) )) ) return LambdaLR(__snake_case, __snake_case, __snake_case ) def __lowerCamelCase ( __snake_case : int, __snake_case : int, __snake_case : Optional[int], __snake_case : Optional[int]=1E-7, __snake_case : List[Any]=1.0, __snake_case : Any=-1 ) -> List[Any]: """simple docstring""" A__ : Optional[int] =optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(__snake_case : int ): if current_step < num_warmup_steps: return float(__snake_case ) / float(max(1, __snake_case ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A__ : List[Any] =lr_init - lr_end A__ : Any =num_training_steps - num_warmup_steps A__ : Tuple =1 - (current_step - num_warmup_steps) / decay_steps A__ : List[str] =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__snake_case, __snake_case, __snake_case ) __snake_case : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __snake_case : Union[str, SchedulerType], __snake_case : Optimizer, __snake_case : Optional[str] = None, __snake_case : Optional[int] = None, __snake_case : Optional[int] = None, __snake_case : int = 1, __snake_case : float = 1.0, __snake_case : int = -1, ) -> Tuple: """simple docstring""" A__ : Tuple =SchedulerType(__snake_case ) A__ : List[Any] =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__snake_case, last_epoch=__snake_case ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__snake_case, step_rules=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__snake_case, num_warmup_steps=__snake_case, last_epoch=__snake_case ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, num_cycles=__snake_case, last_epoch=__snake_case, ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, power=__snake_case, last_epoch=__snake_case, ) return schedule_func( __snake_case, num_warmup_steps=__snake_case, num_training_steps=__snake_case, last_epoch=__snake_case )
687
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 600851475143 ) -> int: try: __lowercase = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) __lowercase = 2 __lowercase = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowercase = i while n % i == 0: __lowercase = n // i i += 1 return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = AlbertTokenizer lowerCAmelCase__ : str = AlbertTokenizerFast lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[Any] = True def a__ ( self : str ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase = AlbertTokenizer(_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" __lowercase = 'this is a test' __lowercase = 'this is a test' return input_text, output_text def a__ ( self : str ) -> List[str]: """simple docstring""" __lowercase = '<pad>' __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : str ) -> List[str]: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(_UpperCAmelCase ) , 3_00_00 ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = 'I was born in 92000, and this is falsé.' __lowercase = tokenizer.tokenize(_UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __lowercase = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(_UpperCAmelCase ) __lowercase = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = AlbertTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [48, 25, 21, 12_89] ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = AlbertTokenizer(_UpperCAmelCase ) __lowercase = tokenizer.encode('sequence builders' ) __lowercase = tokenizer.encode('multi-sequence build' ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class A__ : lowerCAmelCase__ : str = MBartConfig lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Optional[int] = "gelu" def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : int=2 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : str=20 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]=0 , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" __lowercase = TFMBartModel(config=_UpperCAmelCase ).get_decoder() __lowercase = inputs_dict['input_ids'] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['attention_mask'][:1, :] __lowercase = inputs_dict['head_mask'] __lowercase = 1 # first forward pass __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() __lowercase = past_key_values[1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> int: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase__ : Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ : int = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : Optional[int] = False def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = TFMBartModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = [ " UN Chief Says There Is No Military Solution in Syria", ] lowerCAmelCase__ : List[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] lowerCAmelCase__ : int = "facebook/mbart-large-en-ro" @cached_property def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ ( self : Optional[int] ) -> str: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ ( self : Any , **_UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.translate_src_text(**_UpperCAmelCase ) self.assertListEqual(self.expected_text , _UpperCAmelCase ) def a__ ( self : Dict , **_UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='tf' ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __lowercase = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) return generated_words @slow def a__ ( self : Tuple ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : List[str]=[10, 20, 30, 40] , _UpperCAmelCase : Union[str, Any]=[1, 1, 2, 1] , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Optional[Any]=None , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(_UpperCAmelCase ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def a__ ( self : int ) -> int: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = RegNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = RegNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCAmelCase__ : str = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ : Any = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[Any] = False def a__ ( self : Any ) -> str: """simple docstring""" __lowercase = RegNetModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def a__ ( self : Optional[Any] ) -> int: """simple docstring""" pass def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(config=_UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): __lowercase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowercase = layer_type __lowercase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = RegNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> int: __lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def a__ ( self : Tuple ) -> Tuple: """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**_UpperCAmelCase ) # verify the logits __lowercase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __lowercase = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel SCREAMING_SNAKE_CASE__ = { """gwf-440k""": { """url""": """https://model-server.zqevans2.workers.dev/gwf-440k.ckpt""", """sample_rate""": 4_8000, """sample_size""": 6_5536, }, """jmann-small-190k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt""", """sample_rate""": 4_8000, """sample_size""": 6_5536, }, """jmann-large-580k""": { """url""": """https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt""", """sample_rate""": 4_8000, """sample_size""": 13_1072, }, """maestro-uncond-150k""": { """url""": """https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt""", """sample_rate""": 1_6000, """sample_size""": 6_5536, }, """unlocked-uncond-250k""": { """url""": """https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt""", """sample_rate""": 1_6000, """sample_size""": 6_5536, }, """honk-140k""": { """url""": """https://model-server.zqevans2.workers.dev/honk-140k.ckpt""", """sample_rate""": 1_6000, """sample_size""": 6_5536, }, } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Any: return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: __lowercase = torch.sin(t * math.pi / 2 ) ** 2 __lowercase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class A__ ( lowerCAmelCase__ ): pass class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__() __lowercase = DiffusionAttnUnetaD(_UpperCAmelCase , n_attn_layers=4 ) __lowercase = deepcopy(self.diffusion ) __lowercase = torch.quasirandom.SobolEngine(1 , scramble=_UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> str: __lowercase = MODELS_MAP[model_name]['url'] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" SCREAMING_SNAKE_CASE__ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", } SCREAMING_SNAKE_CASE__ = { """8""": """resnets.0""", """9""": """attentions.0""", """10""": """resnets.1""", """11""": """attentions.1""", """12""": """resnets.2""", """13""": """attentions.2""", } SCREAMING_SNAKE_CASE__ = { """1""": """resnets.0""", """2""": """attentions.0""", """3""": """resnets.1""", """4""": """attentions.1""", """5""": """resnets.2""", """6""": """attentions.2""", """8""": """resnets.3""", """9""": """attentions.3""", """10""": """resnets.4""", """11""": """attentions.4""", """12""": """resnets.5""", """13""": """attentions.5""", } SCREAMING_SNAKE_CASE__ = { """0""": """resnets.0""", """1""": """resnets.1""", """2""": """resnets.2""", """4""": """resnets.0""", """5""": """resnets.1""", """6""": """resnets.2""", } SCREAMING_SNAKE_CASE__ = { """skip""": """conv_skip""", """main.0""": """conv_1""", """main.1""": """group_norm_1""", """main.3""": """conv_2""", """main.4""": """group_norm_2""", } SCREAMING_SNAKE_CASE__ = { """norm""": """group_norm""", """qkv_proj""": ["""query""", """key""", """value"""], """out_proj""": ["""proj_attn"""], } def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif name.startswith(SCREAMING_SNAKE_CASE ): return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=13 ) -> Optional[Any]: __lowercase = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) __lowercase = 0 if string.startswith('net.3.' ): depth += 1 __lowercase = string[6:] elif string.startswith('net.' ): __lowercase = string[4:] while string.startswith('main.7.' ): depth += 1 __lowercase = string[7:] if string.startswith('main.' ): __lowercase = string[5:] # mid block if string[:2].isdigit(): __lowercase = string[:2] __lowercase = string[2:] else: __lowercase = string[0] __lowercase = string[1:] if depth == max_depth: __lowercase = MID_NUM_TO_LAYER[layer_num] __lowercase = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7: __lowercase = DOWN_NUM_TO_LAYER[layer_num] __lowercase = F"""down_blocks.{depth}""" elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7: __lowercase = UP_NUM_TO_LAYER[layer_num] __lowercase = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: __lowercase = DEPTH_0_TO_LAYER[layer_num] __lowercase = F"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) __lowercase = string_left[1:] if "resnets" in new_layer: __lowercase = convert_resconv_naming(SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: __lowercase = convert_attn_naming(SCREAMING_SNAKE_CASE ) __lowercase = new_string_left if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = prefix + '.' + new_layer + '.' + string_left else: __lowercase = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: __lowercase = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue __lowercase = rename(SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __lowercase = v return new_state_dict def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ) -> Dict: if len(SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight __lowercase = v[:, :, 0] else: # bias __lowercase = v else: # qkv matrices __lowercase = v.shape[0] __lowercase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __lowercase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __lowercase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: __lowercase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __lowercase = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" __lowercase = download(SCREAMING_SNAKE_CASE ) __lowercase = MODELS_MAP[model_name]['sample_rate'] __lowercase = MODELS_MAP[model_name]['sample_size'] __lowercase = Object() __lowercase = sample_size __lowercase = sample_rate __lowercase = 0 __lowercase = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE ) __lowercase = diffusers_model.state_dict() __lowercase = DiffusionUncond(SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )['state_dict'] ) __lowercase = orig_model.diffusion_ema.eval() __lowercase = orig_model.state_dict() __lowercase = rename_orig_weights(SCREAMING_SNAKE_CASE ) __lowercase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __lowercase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": __lowercase = value.squeeze() __lowercase = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowercase = 100 __lowercase = 33 __lowercase = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE ) __lowercase = torch.manual_seed(SCREAMING_SNAKE_CASE ) __lowercase = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) __lowercase = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1] __lowercase = get_crash_schedule(SCREAMING_SNAKE_CASE ) __lowercase = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) __lowercase = torch.manual_seed(33 ) __lowercase = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios __lowercase = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} ) __lowercase = generated.clamp(-1 , 1 ) __lowercase = (generated - audio).abs().sum() __lowercase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE ) print('Diff max' , SCREAMING_SNAKE_CASE ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() main(args)
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] SCREAMING_SNAKE_CASE__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right SCREAMING_SNAKE_CASE__ = tuple[int, int] class A__ : def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Node | None , ) -> None: """simple docstring""" __lowercase = pos_x __lowercase = pos_y __lowercase = (pos_y, pos_x) __lowercase = goal_x __lowercase = goal_y __lowercase = g_cost __lowercase = parent __lowercase = self.calculate_heuristic() __lowercase = self.g_cost + self.h_cost def a__ ( self : List[Any] ) -> float: """simple docstring""" __lowercase = self.pos_x - self.goal_x __lowercase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_UpperCAmelCase ) + abs(_UpperCAmelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : List[Any] , _UpperCAmelCase : Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class A__ : def __init__( self : Tuple , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> Optional[Any]: """simple docstring""" __lowercase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _UpperCAmelCase ) __lowercase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _UpperCAmelCase ) __lowercase = [self.start] __lowercase = [] __lowercase = False def a__ ( self : Tuple ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowercase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_UpperCAmelCase ) self.closed_nodes.append(_UpperCAmelCase ) __lowercase = self.get_successors(_UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_UpperCAmelCase ) else: # retrieve the best current path __lowercase = self.open_nodes.pop(self.open_nodes.index(_UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_UpperCAmelCase ) else: self.open_nodes.append(_UpperCAmelCase ) return [self.start.pos] def a__ ( self : List[str] , _UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" __lowercase = [] for action in delta: __lowercase = parent.pos_x + action[1] __lowercase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _UpperCAmelCase , _UpperCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _UpperCAmelCase , ) ) return successors def a__ ( self : Optional[int] , _UpperCAmelCase : Node | None ) -> list[TPosition]: """simple docstring""" __lowercase = node __lowercase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowercase = current_node.parent path.reverse() return path class A__ : def __init__( self : List[str] , _UpperCAmelCase : TPosition , _UpperCAmelCase : TPosition ) -> None: """simple docstring""" __lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = AStar(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = False def a__ ( self : List[Any] ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowercase = self.fwd_astar.open_nodes.pop(0 ) __lowercase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _UpperCAmelCase , _UpperCAmelCase ) self.fwd_astar.closed_nodes.append(_UpperCAmelCase ) self.bwd_astar.closed_nodes.append(_UpperCAmelCase ) __lowercase = current_bwd_node __lowercase = current_fwd_node __lowercase = { self.fwd_astar: self.fwd_astar.get_successors(_UpperCAmelCase ), self.bwd_astar: self.bwd_astar.get_successors(_UpperCAmelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_UpperCAmelCase ) else: # retrieve the best current path __lowercase = astar.open_nodes.pop( astar.open_nodes.index(_UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_UpperCAmelCase ) else: astar.open_nodes.append(_UpperCAmelCase ) return [self.fwd_astar.start.pos] def a__ ( self : Dict , _UpperCAmelCase : Node , _UpperCAmelCase : Node ) -> list[TPosition]: """simple docstring""" __lowercase = self.fwd_astar.retrace_path(_UpperCAmelCase ) __lowercase = self.bwd_astar.retrace_path(_UpperCAmelCase ) bwd_path.pop() bwd_path.reverse() __lowercase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] SCREAMING_SNAKE_CASE__ = (0, 0) SCREAMING_SNAKE_CASE__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = AStar(init, goal) SCREAMING_SNAKE_CASE__ = a_star.search() SCREAMING_SNAKE_CASE__ = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') SCREAMING_SNAKE_CASE__ = time.time() SCREAMING_SNAKE_CASE__ = BidirectionalAStar(init, goal) SCREAMING_SNAKE_CASE__ = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 3 class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: for shard in shards: for i in range(SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def __SCREAMING_SNAKE_CASE ( ) -> Any: __lowercase = int(os.environ['RANK'] ) __lowercase = int(os.environ['WORLD_SIZE'] ) __lowercase = ArgumentParser() parser.add_argument('--streaming' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('--local_rank' , type=SCREAMING_SNAKE_CASE ) parser.add_argument('--num_workers' , type=SCREAMING_SNAKE_CASE , default=0 ) __lowercase = parser.parse_args() __lowercase = args.streaming __lowercase = args.num_workers __lowercase = {'shards': [F"""shard_{shard_idx}""" for shard_idx in range(SCREAMING_SNAKE_CASE )]} __lowercase = IterableDataset.from_generator(SCREAMING_SNAKE_CASE , gen_kwargs=SCREAMING_SNAKE_CASE ) if not streaming: __lowercase = Dataset.from_list(list(SCREAMING_SNAKE_CASE ) ) __lowercase = split_dataset_by_node(SCREAMING_SNAKE_CASE , rank=SCREAMING_SNAKE_CASE , world_size=SCREAMING_SNAKE_CASE ) __lowercase = torch.utils.data.DataLoader(SCREAMING_SNAKE_CASE , num_workers=SCREAMING_SNAKE_CASE ) __lowercase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __lowercase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __lowercase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE__ = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") SCREAMING_SNAKE_CASE__ = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() SCREAMING_SNAKE_CASE__ = """|""".join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = re.compile(rF'''^({joined_dirs}).*?\.py$''') SCREAMING_SNAKE_CASE__ = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class A__ ( lowerCAmelCase__ ): @add_start_docstrings(_UpperCAmelCase ) def __call__( self : List[Any] , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : List[Any] ) -> bool: """simple docstring""" raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] = None ) -> Optional[Any]: """simple docstring""" __lowercase = max_length __lowercase = max_position_embeddings @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Optional[int] , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Optional[int] ) -> bool: """simple docstring""" __lowercase = input_ids.shape[-1] __lowercase = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ 'exceptions, performance degradation, or nothing at all.' ) return is_done class A__ ( lowerCAmelCase__ ): def __init__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ 'with `max_length = start_length + max_new_tokens` instead.' , _UpperCAmelCase , ) __lowercase = start_length __lowercase = max_new_tokens __lowercase = start_length + max_new_tokens @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Dict , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Dict ) -> bool: """simple docstring""" return input_ids.shape[-1] >= self.max_length class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : float , _UpperCAmelCase : Optional[float] = None ) -> int: """simple docstring""" __lowercase = max_time __lowercase = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Tuple , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : List[Any] ) -> bool: """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class A__ ( lowerCAmelCase__ ): @add_start_docstrings(_UpperCAmelCase ) def __call__( self : Tuple , _UpperCAmelCase : torch.LongTensor , _UpperCAmelCase : torch.FloatTensor , **_UpperCAmelCase : Dict ) -> bool: """simple docstring""" return any(criteria(_UpperCAmelCase , _UpperCAmelCase ) for criteria in self ) @property def a__ ( self : Any ) -> Optional[int]: """simple docstring""" for stopping_criterium in self: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return stopping_criterium.max_length elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return stopping_criterium.max_length return None def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : StoppingCriteriaList , SCREAMING_SNAKE_CASE : int ) -> StoppingCriteriaList: __lowercase = stopping_criteria.max_length __lowercase = deepcopy(SCREAMING_SNAKE_CASE ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , SCREAMING_SNAKE_CASE ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE ) ) return new_stopping_criteria
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any=8 ) -> Optional[int]: __lowercase = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowercase = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : MultilingualCLIP , _UpperCAmelCase : XLMRobertaTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , _UpperCAmelCase : VQModel , ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules( text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , ) __lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" if latents is None: __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowercase = latents.to(_UpperCAmelCase ) __lowercase = latents * scheduler.init_noise_sigma return latents def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = len(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else 1 # get prompt text embeddings __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase , max_length=77 , return_attention_mask=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' , ) __lowercase = text_inputs.input_ids __lowercase = self.tokenizer(_UpperCAmelCase , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowercase = text_input_ids.to(_UpperCAmelCase ) __lowercase = text_inputs.attention_mask.to(_UpperCAmelCase ) __lowercase , __lowercase = self.text_encoder( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __lowercase = prompt_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = text_encoder_hidden_states.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = text_mask.repeat_interleave(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = 42 if negative_prompt is None: __lowercase = [''] * batch_size elif type(_UpperCAmelCase ) is not type(_UpperCAmelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_UpperCAmelCase )} !=""" f""" {type(_UpperCAmelCase )}.""" ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [negative_prompt] elif batch_size != len(_UpperCAmelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_UpperCAmelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: __lowercase = negative_prompt __lowercase = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=77 , truncation=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' , ) __lowercase = uncond_input.input_ids.to(_UpperCAmelCase ) __lowercase = uncond_input.attention_mask.to(_UpperCAmelCase ) __lowercase , __lowercase = self.text_encoder( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowercase = negative_prompt_embeds.shape[1] __lowercase = negative_prompt_embeds.repeat(1 , _UpperCAmelCase ) __lowercase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _UpperCAmelCase ) __lowercase = uncond_text_encoder_hidden_states.shape[1] __lowercase = uncond_text_encoder_hidden_states.repeat(1 , _UpperCAmelCase , 1 ) __lowercase = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _UpperCAmelCase , -1 ) __lowercase = uncond_text_mask.repeat_interleave(_UpperCAmelCase , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([negative_prompt_embeds, prompt_embeds] ) __lowercase = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __lowercase = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> List[str]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) __lowercase = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : List[str]=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowercase , __lowercase = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) if self.safety_checker is not None: __lowercase , __lowercase = cpu_offload_with_hook(self.safety_checker , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase ) # We'll offload the last model manually. __lowercase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__ ( self : Any ) -> Any: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self : Optional[int] , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = 1 elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = len(_UpperCAmelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_UpperCAmelCase )}""" ) __lowercase = self._execution_device __lowercase = batch_size * num_images_per_prompt __lowercase = guidance_scale > 1.0 __lowercase , __lowercase , __lowercase = self._encode_prompt( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = torch.cat(_UpperCAmelCase , dim=0 ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = torch.cat(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) __lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) __lowercase = self.scheduler.timesteps __lowercase = self.unet.config.in_channels __lowercase , __lowercase = get_new_h_w(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor ) # create initial latent __lowercase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __lowercase = self.unet( sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0] if do_classifier_free_guidance: __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase , __lowercase = variance_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , ).prev_sample # post-processing __lowercase = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: __lowercase = image * 0.5 + 0.5 __lowercase = image.clamp(0 , 1 ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : @property def a__ ( self : List[str] ) -> List[str]: """simple docstring""" return self.get_dummy_input() @property def a__ ( self : Tuple ) -> Dict: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def a__ ( self : Optional[Any] , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Any=False , ) -> Dict: """simple docstring""" __lowercase = 4 __lowercase = 32 __lowercase = (32, 32) __lowercase = torch.manual_seed(0 ) __lowercase = torch.device(_UpperCAmelCase ) __lowercase = (batch_size, num_channels) + sizes __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase ) __lowercase = {'hidden_states': hidden_states} if include_temb: __lowercase = 1_28 __lowercase = randn_tensor((batch_size, temb_channels) , generator=_UpperCAmelCase , device=_UpperCAmelCase ) if include_res_hidden_states_tuple: __lowercase = torch.manual_seed(1 ) __lowercase = (randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase ),) if include_encoder_hidden_states: __lowercase = floats_tensor((batch_size, 32, 32) ).to(_UpperCAmelCase ) if include_skip_sample: __lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=_UpperCAmelCase , device=_UpperCAmelCase ) return dummy_input def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 1_28, } if self.block_type == "up": __lowercase = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) __lowercase = self.dummy_input return init_dict, inputs_dict def a__ ( self : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**_UpperCAmelCase ) unet_block.to(_UpperCAmelCase ) unet_block.eval() with torch.no_grad(): __lowercase = unet_block(**_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = output[0] self.assertEqual(output.shape , self.output_shape ) __lowercase = output[0, -1, -3:, -3:] __lowercase = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) assert torch_all_close(output_slice.flatten() , _UpperCAmelCase , atol=5e-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common() __lowercase = self.block_class(**_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() __lowercase = model(**_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = output[0] __lowercase = torch.device(_UpperCAmelCase ) __lowercase = randn_tensor(output.shape , device=_UpperCAmelCase ) __lowercase = torch.nn.functional.mse_loss(_UpperCAmelCase , _UpperCAmelCase ) loss.backward()
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE__ = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[PIL.Image.Image, np.ndarray] class A__ ( lowerCAmelCase__ ): def __init__( self : Union[str, Any] , _UpperCAmelCase : PriorTransformer , _UpperCAmelCase : CLIPVisionModel , _UpperCAmelCase : CLIPImageProcessor , _UpperCAmelCase : HeunDiscreteScheduler , _UpperCAmelCase : ShapERenderer , ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules( prior=_UpperCAmelCase , image_encoder=_UpperCAmelCase , image_processor=_UpperCAmelCase , scheduler=_UpperCAmelCase , renderer=_UpperCAmelCase , ) def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if latents is None: __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) __lowercase = latents.to(_UpperCAmelCase ) __lowercase = latents * scheduler.init_noise_sigma return latents def a__ ( self : Dict , _UpperCAmelCase : Union[str, Any]=0 ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowercase = torch.device(f"""cuda:{gpu_id}""" ) __lowercase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) @property def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , ) -> List[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(image[0] , torch.Tensor ): __lowercase = torch.cat(_UpperCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCAmelCase , axis=0 ) if not isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = self.image_processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) __lowercase = image.to(dtype=self.image_encoder.dtype , device=_UpperCAmelCase ) __lowercase = self.image_encoder(_UpperCAmelCase )['last_hidden_state'] __lowercase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 __lowercase = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: __lowercase = torch.zeros_like(_UpperCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 25 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Any: """simple docstring""" if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = 1 elif isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = image.shape[0] elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): __lowercase = len(_UpperCAmelCase ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCAmelCase )}""" ) __lowercase = self._execution_device __lowercase = batch_size * num_images_per_prompt __lowercase = guidance_scale > 1.0 __lowercase = self._encode_image(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # prior self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase ) __lowercase = self.scheduler.timesteps __lowercase = self.prior.config.num_embeddings __lowercase = self.prior.config.embedding_dim __lowercase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim __lowercase = latents.reshape(latents.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.prior( _UpperCAmelCase , timestep=_UpperCAmelCase , proj_embedding=_UpperCAmelCase , ).predicted_image_embedding # remove the variance __lowercase , __lowercase = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: __lowercase , __lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) __lowercase = self.scheduler.step( _UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCAmelCase ) __lowercase = [] for i, latent in enumerate(_UpperCAmelCase ): print() __lowercase = self.renderer.decode( latent[None, :] , _UpperCAmelCase , size=_UpperCAmelCase , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(_UpperCAmelCase ) __lowercase = torch.stack(_UpperCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) __lowercase = images.cpu().numpy() if output_type == "pil": __lowercase = [self.numpy_to_pil(_UpperCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCAmelCase )
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : bytes ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE )] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
import unittest from knapsack import greedy_knapsack as kp class A__ ( unittest.TestCase ): def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = [10, 20, 30, 40, 50, 60] __lowercase = [2, 4, 6, 8, 10, 12] __lowercase = 1_00 self.assertEqual(kp.calc_profit(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_10 ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" self.assertRaisesRegex(_UpperCAmelCase , 'max_weight must greater than zero.' ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertRaisesRegex(_UpperCAmelCase , 'Weight can not be negative.' ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" self.assertRaisesRegex(_UpperCAmelCase , 'Profit can not be negative.' ) def a__ ( self : List[str] ) -> Any: """simple docstring""" self.assertRaisesRegex(_UpperCAmelCase , 'max_weight must greater than zero.' ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertRaisesRegex( _UpperCAmelCase , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "BlipImageProcessor" lowerCAmelCase__ : List[Any] = "AutoTokenizer" def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" __lowercase = False super().__init__(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.image_processor def __call__( self : List[str] , _UpperCAmelCase : ImageInput = None , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowercase = self.tokenizer __lowercase = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding # add pixel_values __lowercase = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) if text is not None: __lowercase = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) else: __lowercase = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def a__ ( self : List[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : List[Any] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } SCREAMING_SNAKE_CASE__ = { """google/rembert""": 256, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES lowerCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]="[CLS]" , _UpperCAmelCase : Optional[Any]="[SEP]" , _UpperCAmelCase : Any="[UNK]" , _UpperCAmelCase : Dict="[SEP]" , _UpperCAmelCase : str="[PAD]" , _UpperCAmelCase : str="[CLS]" , _UpperCAmelCase : int="[MASK]" , **_UpperCAmelCase : int , ) -> Optional[int]: """simple docstring""" super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = do_lower_case __lowercase = remove_space __lowercase = keep_accents __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor() self.sp_model.Load(_UpperCAmelCase ) @property def a__ ( self : int ) -> Any: """simple docstring""" return len(self.sp_model ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : Dict , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = d __lowercase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def a__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any=False ) -> Optional[Any]: """simple docstring""" __lowercase = self.sp_model.EncodeAsPieces(_UpperCAmelCase ) return pieces def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" return self.sp_model.IdToPiece(_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowercase = self.sp_model.decode_pieces(_UpperCAmelCase ) return out_string def a__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(_UpperCAmelCase ) ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , lowerCAmelCase__ , ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = RobertaConfig lowerCAmelCase__ : Any = "roberta" def __init__( self : str , _UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = RobertaEmbeddings(_UpperCAmelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase__ , ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = RobertaConfig lowerCAmelCase__ : Any = "roberta" def __init__( self : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = config.num_hidden_layers __lowercase = DeeRobertaModel(_UpperCAmelCase ) __lowercase = nn.Dropout(config.hidden_dropout_prob ) __lowercase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=-1 , _UpperCAmelCase : str=False , ) -> Any: """simple docstring""" __lowercase = self.num_layers try: __lowercase = self.roberta( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , ) __lowercase = outputs[1] __lowercase = self.dropout(_UpperCAmelCase ) __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowercase = e.message __lowercase = e.exit_layer __lowercase = outputs[0] if not self.training: __lowercase = entropy(_UpperCAmelCase ) __lowercase = [] __lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowercase = [] for highway_exit in outputs[-1]: __lowercase = highway_exit[0] if not self.training: highway_logits_all.append(_UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowercase = MSELoss() __lowercase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowercase = CrossEntropyLoss() __lowercase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(_UpperCAmelCase ) if train_highway: __lowercase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowercase = (loss,) + outputs if not self.training: __lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __lowercase = flax_key_tuple[:-1] + ('weight',) __lowercase = torch.permute(SCREAMING_SNAKE_CASE , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE ): # linear layer __lowercase = flax_key_tuple[:-1] + ('weight',) __lowercase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowercase = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ) -> Tuple: if "metadata" in layer: __lowercase = layer.split('metadata' ) __lowercase = ''.join(split_layer[0] )[:-1] __lowercase = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __lowercase = layer.split('kvstore' ) __lowercase = ''.join(split_layer[0] )[:-1] __lowercase = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __lowercase = layer.split('/' ) __lowercase = '/'.join(split_layer[:-1] ) __lowercase = (split_layer[-1],) if "kvstore/path" in layer: __lowercase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __lowercase = 'file' else: __lowercase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ) -> Any: __lowercase = rename_keys(SCREAMING_SNAKE_CASE ) __lowercase = {} for k, v in current_block.items(): __lowercase = v __lowercase = new_current_block torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str = WEIGHTS_NAME ) -> str: __lowercase = convert_file_size_to_int(SCREAMING_SNAKE_CASE ) __lowercase = [] __lowercase = {} __lowercase = 0 __lowercase = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __lowercase = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __lowercase = flatten_dict(SCREAMING_SNAKE_CASE , sep='/' ) __lowercase = {} for layer in checkpoint_info.keys(): __lowercase , __lowercase , __lowercase = get_key_and_tensorstore_dict( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if curr_real_layer_name in all_layers: __lowercase = content else: __lowercase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __lowercase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __lowercase = torch.tensor(SCREAMING_SNAKE_CASE ) __lowercase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __lowercase , __lowercase = rename_base_flax_keys(tuple(key.split('/' ) ) , SCREAMING_SNAKE_CASE ) __lowercase = '/'.join(SCREAMING_SNAKE_CASE ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __lowercase = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) del current_block __lowercase = {} __lowercase = 0 __lowercase = raw_weights.to(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) current_block_size += weight_size total_size += weight_size # Add the last block __lowercase = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin""" ) ) rename_and_save_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(SCREAMING_SNAKE_CASE ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __lowercase = {} __lowercase = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): __lowercase = weights_name.replace( '.bin' , F"""-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin""" ) # len(sharded_state_dicts):05d} __lowercase = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) __lowercase = shard for key in shard: __lowercase = shard_file # Add the metadata __lowercase = {'total_size': total_size} __lowercase = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'w' , encoding='utf-8' ) as f: __lowercase = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '\n' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def __SCREAMING_SNAKE_CASE ( ) -> int: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __lowercase = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __lowercase = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __lowercase = TaTokenizer.from_pretrained('t5-small' ) __lowercase = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __lowercase = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' ).input_ids __lowercase = model.generate(SCREAMING_SNAKE_CASE , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } SCREAMING_SNAKE_CASE__ = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } SCREAMING_SNAKE_CASE__ = """▁""" class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : str = ["input_ids", "attention_mask"] def __init__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Dict="</s>" , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : List[str]="<mask>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : int , ) -> None: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) __lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __lowercase = len(self.sp_model ) - 1 __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1, 1] + ([0] * len(_UpperCAmelCase )) + [1] def a__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self : Dict ) -> Dict: """simple docstring""" return len(self.sp_model ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(_UpperCAmelCase ) return spm_id if spm_id else self.unk_token_id def a__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = [] __lowercase = '' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(_UpperCAmelCase ) __lowercase = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def __getstate__( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : str , _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger() @dataclass class A__ : lowerCAmelCase__ : nn.Module lowerCAmelCase__ : List[nn.Module] = field(default_factory=lowerCAmelCase__ ) lowerCAmelCase__ : list = field(default_factory=lowerCAmelCase__ ) def a__ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tensor , _UpperCAmelCase : Tensor ) -> List[Any]: """simple docstring""" __lowercase = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_UpperCAmelCase ) def __call__( self : Union[str, Any] , _UpperCAmelCase : Tensor ) -> Union[str, Any]: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def a__ ( self : str ) -> Optional[int]: """simple docstring""" return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A__ : lowerCAmelCase__ : nn.Module lowerCAmelCase__ : nn.Module lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List = field(default_factory=lowerCAmelCase__ ) lowerCAmelCase__ : List = field(default_factory=lowerCAmelCase__ ) lowerCAmelCase__ : bool = True def __call__( self : Any , _UpperCAmelCase : Tensor ) -> str: """simple docstring""" __lowercase = Tracker(self.dest )(_UpperCAmelCase ).parametrized __lowercase = Tracker(self.src )(_UpperCAmelCase ).parametrized __lowercase = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) ) __lowercase = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while""" f""" destination module has {len(_UpperCAmelCase )}.""" ) for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class A__ ( nn.Module ): def __init__( self : Tuple , _UpperCAmelCase : nn.Module ) -> Dict: """simple docstring""" super().__init__() __lowercase = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f"""Unexpected layer name {k}""" __lowercase = len(_UpperCAmelCase ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) __lowercase = nn.ModuleDict(_UpperCAmelCase ) def a__ ( self : List[str] , _UpperCAmelCase : Tensor ) -> List[str]: """simple docstring""" return get_trunk_forward_outputs( _UpperCAmelCase , out_feat_keys=_UpperCAmelCase , feature_blocks=self._feature_blocks , ) class A__ ( lowerCAmelCase__ ): def a__ ( self : int , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Dict , _UpperCAmelCase : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: __lowercase = self.convert_name_to_timm(_UpperCAmelCase ) __lowercase = partial(lambda: (timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval(), None) ) else: __lowercase = super().__getitem__(_UpperCAmelCase ) return val class A__ ( lowerCAmelCase__ ): def __getitem__( self : int , _UpperCAmelCase : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: __lowercase = RegNetModel else: __lowercase = RegNetForImageClassification return val def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Tuple[str, str]] ) -> str: for from_key, to_key in keys: __lowercase = from_state_dict[from_key].clone() print(F"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , SCREAMING_SNAKE_CASE : RegNetConfig , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool = True , ) -> Tuple: print(F"""Converting {name}...""" ) with torch.no_grad(): __lowercase , __lowercase = from_model_func() __lowercase = our_model_func(SCREAMING_SNAKE_CASE ).eval() __lowercase = ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE , raise_if_mismatch=SCREAMING_SNAKE_CASE ) __lowercase = torch.randn((1, 3, 224, 224) ) module_transfer(SCREAMING_SNAKE_CASE ) if from_state_dict is not None: __lowercase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __lowercase = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] __lowercase = manually_copy_vissl_head(SCREAMING_SNAKE_CASE , our_model.state_dict() , SCREAMING_SNAKE_CASE ) our_model.load_state_dict(SCREAMING_SNAKE_CASE ) __lowercase = our_model(SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE ) __lowercase = ( our_outputs.logits if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) __lowercase = from_model(SCREAMING_SNAKE_CASE ) __lowercase = from_output[-1] if type(SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __lowercase = our_outputs.hidden_states[-1] assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE , ) __lowercase = 224 if 'seer' not in name else 384 # we can use the convnext one __lowercase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE , ) print(F"""Pushed {name}""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : bool = True ) -> List[Any]: __lowercase = 'imagenet-1k-id2label.json' __lowercase = 1000 __lowercase = (1, num_labels) __lowercase = 'huggingface/label-files' __lowercase = num_labels __lowercase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) __lowercase = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } __lowercase = NameToOurModelFuncMap() __lowercase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , model_dir=str(SCREAMING_SNAKE_CASE ) , map_location='cpu' ) __lowercase = model_func() # check if we have a head, if yes add it __lowercase = files['classy_state_dict']['base_model']['model'] __lowercase = model_state_dict['trunk'] model.load_state_dict(SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __lowercase = partial( SCREAMING_SNAKE_CASE , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
from maths.prime_factors import prime_factors def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(SCREAMING_SNAKE_CASE ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
from __future__ import annotations from random import random class A__ : def __init__( self : Union[str, Any] , _UpperCAmelCase : int | None = None ) -> List[str]: """simple docstring""" __lowercase = value __lowercase = random() __lowercase = None __lowercase = None def __repr__( self : Optional[Any] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Dict ) -> str: """simple docstring""" __lowercase = str(self.value ) + ' ' __lowercase = str(self.left or '' ) __lowercase = str(self.right or '' ) return value + left + right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowercase , __lowercase = split(root.left , SCREAMING_SNAKE_CASE ) return left, root else: __lowercase , __lowercase = split(root.right , SCREAMING_SNAKE_CASE ) return root, right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowercase = merge(left.right , SCREAMING_SNAKE_CASE ) return left else: __lowercase = merge(SCREAMING_SNAKE_CASE , right.left ) return right def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Node | None: __lowercase = Node(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return merge(merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : int ) -> Node | None: __lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , value - 1 ) __lowercase , __lowercase = split(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return merge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Node | None , SCREAMING_SNAKE_CASE : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": __lowercase = insert(SCREAMING_SNAKE_CASE , int(arg[1:] ) ) elif arg[0] == "-": __lowercase = erase(SCREAMING_SNAKE_CASE , int(arg[1:] ) ) else: print('Unknown command' ) return root def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) __lowercase = input() while args != "q": __lowercase = interact_treap(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) __lowercase = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __lowercase = set() # Replace all the whitespace in our sentence __lowercase = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(SCREAMING_SNAKE_CASE ) == 26 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: __lowercase = [False] * 26 for char in input_str: if char.islower(): __lowercase = True elif char.isupper(): __lowercase = True return all(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __SCREAMING_SNAKE_CASE ( ) -> None: from timeit import timeit __lowercase = 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('is_pangram_faster()' , setup=SCREAMING_SNAKE_CASE ) ) print(timeit('is_pangram_fastest()' , setup=SCREAMING_SNAKE_CASE ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE__ = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class A__ ( unittest.TestCase ): def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) __lowercase = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=None ) -> Dict: """simple docstring""" __lowercase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __lowercase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __lowercase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowercase = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) __lowercase = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(_UpperCAmelCase , 'w' , newline='\n' ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , 'r' ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , ) # Copy consistency with a really long name __lowercase = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase ) , )
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A__ ( unittest.TestCase , lowerCAmelCase__ ): def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = load_tool('text-to-speech' ) self.tool.setup() def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase = self.tool('hey' ) __lowercase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def a__ ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) __lowercase = self.tool('hey' ) __lowercase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A__ ( unittest.TestCase ): def a__ ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __lowercase = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) # load decoder from hub __lowercase = 'hf-internal-testing/ngram-beam-search-decoder' def a__ ( self : Dict , **_UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = self.add_kwargs_tokens_map.copy() kwargs.update(_UpperCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : Optional[int] , **_UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : Tuple , **_UpperCAmelCase : int ) -> Dict: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_feature_extractor() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , _UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(_UpperCAmelCase , 'include' ): WavaVecaProcessorWithLM( tokenizer=_UpperCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a__ ( self : str ) -> List[Any]: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __lowercase = floats_list((3, 10_00) ) __lowercase = feature_extractor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(_UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __lowercase = 'This is a test string' __lowercase = processor(text=_UpperCAmelCase ) __lowercase = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=(2, 10, 16) , _UpperCAmelCase : Optional[int]=77 ) -> List[Any]: """simple docstring""" np.random.seed(_UpperCAmelCase ) return np.random.rand(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __lowercase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase = processor.decode(_UpperCAmelCase ) __lowercase = decoder.decode_beams(_UpperCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __lowercase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase = processor.batch_decode(_UpperCAmelCase ) else: with get_context(_UpperCAmelCase ).Pool() as pool: __lowercase = processor.batch_decode(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(_UpperCAmelCase ) with get_context('fork' ).Pool() as p: __lowercase = decoder.decode_beams_batch(_UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(_UpperCAmelCase , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(_UpperCAmelCase , decoded_processor.logit_score ) self.assertListEqual(_UpperCAmelCase , decoded_processor.lm_score ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __lowercase = self._get_dummy_logits() __lowercase = 15 __lowercase = -20.0 __lowercase = -4.0 __lowercase = processor.batch_decode( _UpperCAmelCase , beam_width=_UpperCAmelCase , beam_prune_logp=_UpperCAmelCase , token_min_logp=_UpperCAmelCase , ) __lowercase = decoded_processor_out.text __lowercase = list(_UpperCAmelCase ) with get_context('fork' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _UpperCAmelCase , _UpperCAmelCase , beam_width=_UpperCAmelCase , beam_prune_logp=_UpperCAmelCase , token_min_logp=_UpperCAmelCase , ) __lowercase = [d[0][0] for d in decoded_decoder_out] __lowercase = [d[0][2] for d in decoded_decoder_out] __lowercase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , _UpperCAmelCase ) self.assertTrue(np.array_equal(_UpperCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , _UpperCAmelCase , atol=1e-3 ) ) self.assertTrue(np.array_equal(_UpperCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , _UpperCAmelCase , atol=1e-3 ) ) def a__ ( self : str ) -> List[str]: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) __lowercase = self._get_dummy_logits() __lowercase = 2.0 __lowercase = 5.0 __lowercase = -20.0 __lowercase = True __lowercase = processor.batch_decode( _UpperCAmelCase , alpha=_UpperCAmelCase , beta=_UpperCAmelCase , unk_score_offset=_UpperCAmelCase , lm_score_boundary=_UpperCAmelCase , ) __lowercase = decoded_processor_out.text __lowercase = list(_UpperCAmelCase ) decoder.reset_params( alpha=_UpperCAmelCase , beta=_UpperCAmelCase , unk_score_offset=_UpperCAmelCase , lm_score_boundary=_UpperCAmelCase , ) with get_context('fork' ).Pool() as pool: __lowercase = decoder.decode_beams_batch( _UpperCAmelCase , _UpperCAmelCase , ) __lowercase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , _UpperCAmelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , _UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowercase = os.listdir(_UpperCAmelCase ) __lowercase = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = snapshot_download('hf-internal-testing/processor_with_lm' ) __lowercase = WavaVecaProcessorWithLM.from_pretrained(_UpperCAmelCase ) __lowercase = processor.decoder.model_container[processor.decoder._model_key] __lowercase = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowercase = os.listdir(_UpperCAmelCase ) __lowercase = os.listdir(_UpperCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str ) -> List[Any]: """simple docstring""" __lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowercase = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowercase = floats_list((3, 10_00) ) __lowercase = processor_wavaveca(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor_auto(_UpperCAmelCase , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __lowercase = self._get_dummy_logits() __lowercase = processor_wavaveca.batch_decode(_UpperCAmelCase ) __lowercase = processor_auto.batch_decode(_UpperCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_feature_extractor() __lowercase = self.get_tokenizer() __lowercase = self.get_decoder() __lowercase = WavaVecaProcessorWithLM(tokenizer=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , decoder=_UpperCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a__ ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = [d[key] for d in offsets] return retrieved_list def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowercase = self._get_dummy_logits()[0] __lowercase = processor.decode(_UpperCAmelCase , output_word_offsets=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowercase = self._get_dummy_logits() __lowercase = processor.batch_decode(_UpperCAmelCase , output_word_offsets=_UpperCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertListEqual( [' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" import torch __lowercase = load_dataset('common_voice' , 'en' , split='train' , streaming=_UpperCAmelCase ) __lowercase = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00 ) ) __lowercase = iter(_UpperCAmelCase ) __lowercase = next(_UpperCAmelCase ) __lowercase = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __lowercase = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __lowercase = model(_UpperCAmelCase ).logits.cpu().numpy() __lowercase = processor.decode(logits[0] , output_word_offsets=_UpperCAmelCase ) __lowercase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __lowercase = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) , _UpperCAmelCase ) self.assertEqual(' '.join(self.get_from_offsets(_UpperCAmelCase , 'word' ) ) , output.text ) # output times __lowercase = torch.tensor(self.get_from_offsets(_UpperCAmelCase , 'start_time' ) ) __lowercase = torch.tensor(self.get_from_offsets(_UpperCAmelCase , 'end_time' ) ) # fmt: off __lowercase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) __lowercase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=0.01 ) )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
import colorsys from PIL import Image # type: ignore def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = x __lowercase = y for step in range(SCREAMING_SNAKE_CASE ): # noqa: B007 __lowercase = a * a - b * b + x __lowercase = 2 * a * b + y __lowercase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(SCREAMING_SNAKE_CASE , 1 , 1 ) ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800 , SCREAMING_SNAKE_CASE : int = 600 , SCREAMING_SNAKE_CASE : float = -0.6 , SCREAMING_SNAKE_CASE : float = 0 , SCREAMING_SNAKE_CASE : float = 3.2 , SCREAMING_SNAKE_CASE : int = 50 , SCREAMING_SNAKE_CASE : bool = True , ) -> Image.Image: __lowercase = Image.new('RGB' , (image_width, image_height) ) __lowercase = img.load() # loop through the image-coordinates for image_x in range(SCREAMING_SNAKE_CASE ): for image_y in range(SCREAMING_SNAKE_CASE ): # determine the figure-coordinates based on the image-coordinates __lowercase = figure_width / image_width * image_height __lowercase = figure_center_x + (image_x / image_width - 0.5) * figure_width __lowercase = figure_center_y + (image_y / image_height - 0.5) * figure_height __lowercase = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __lowercase = get_color_coded_rgb(SCREAMING_SNAKE_CASE ) else: __lowercase = get_black_and_white_rgb(SCREAMING_SNAKE_CASE ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure SCREAMING_SNAKE_CASE__ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO Update this SCREAMING_SNAKE_CASE__ = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "esm" def __init__( self : Dict , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Dict=30_72 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : List[Any]=10_26 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[str]=1e-1_2 , _UpperCAmelCase : Dict="absolute" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : int , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = emb_layer_norm_before __lowercase = token_dropout __lowercase = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowercase = EsmFoldConfig() elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = EsmFoldConfig(**_UpperCAmelCase ) __lowercase = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowercase = get_default_vocab_list() else: __lowercase = vocab_list else: __lowercase = None __lowercase = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _UpperCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def a__ ( self : int ) -> Any: """simple docstring""" __lowercase = super().to_dict() if isinstance(self.esmfold_config , _UpperCAmelCase ): __lowercase = self.esmfold_config.to_dict() return output @dataclass class A__ : lowerCAmelCase__ : str = None lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : bool = False lowerCAmelCase__ : float = 0 lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = False lowerCAmelCase__ : int = 128 lowerCAmelCase__ : "TrunkConfig" = None def a__ ( self : List[str] ) -> List[str]: """simple docstring""" if self.trunk is None: __lowercase = TrunkConfig() elif isinstance(self.trunk , _UpperCAmelCase ): __lowercase = TrunkConfig(**self.trunk ) def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase = asdict(self ) __lowercase = self.trunk.to_dict() return output @dataclass class A__ : lowerCAmelCase__ : int = 48 lowerCAmelCase__ : int = 1024 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : int = 32 lowerCAmelCase__ : float = 0 lowerCAmelCase__ : float = 0 lowerCAmelCase__ : bool = False lowerCAmelCase__ : int = 4 lowerCAmelCase__ : Optional[int] = 128 lowerCAmelCase__ : "StructureModuleConfig" = None def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" if self.structure_module is None: __lowercase = StructureModuleConfig() elif isinstance(self.structure_module , _UpperCAmelCase ): __lowercase = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __lowercase = self.sequence_state_dim // self.sequence_head_width __lowercase = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = asdict(self ) __lowercase = self.structure_module.to_dict() return output @dataclass class A__ : lowerCAmelCase__ : int = 384 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 16 lowerCAmelCase__ : int = 128 lowerCAmelCase__ : int = 12 lowerCAmelCase__ : int = 4 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : float = 0.1 lowerCAmelCase__ : int = 8 lowerCAmelCase__ : int = 1 lowerCAmelCase__ : int = 2 lowerCAmelCase__ : int = 7 lowerCAmelCase__ : int = 10 lowerCAmelCase__ : float = 1e-8 lowerCAmelCase__ : float = 1e5 def a__ ( self : List[Any] ) -> str: """simple docstring""" return asdict(self ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : List[Any] = BloomTokenizerFast lowerCAmelCase__ : Tuple = BloomTokenizerFast lowerCAmelCase__ : int = True lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = "tokenizer_file" lowerCAmelCase__ : int = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() __lowercase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] __lowercase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] __lowercase = tokenizer.batch_encode_plus(_UpperCAmelCase )['input_ids'] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : str=6 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowercase = 'This is a simple input' __lowercase = ['This is a simple input 1', 'This is a simple input 2'] __lowercase = ('This is a simple input', 'This is a pair') __lowercase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase ) tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) __lowercase = None # Hotfixing padding = None self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = self.get_rust_tokenizer() __lowercase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_UpperCAmelCase ) __lowercase = next(iter(_UpperCAmelCase ) )['premise'] # pick up one data __lowercase = list(sample_data.values() ) __lowercase = list(map(tokenizer.encode , _UpperCAmelCase ) ) __lowercase = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["image_processor", "tokenizer"] lowerCAmelCase__ : List[str] = "BridgeTowerImageProcessor" lowerCAmelCase__ : Optional[Any] = ("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" __lowercase = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel_values + pixel_mask __lowercase = self.image_processor( _UpperCAmelCase , return_tensors=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , **_UpperCAmelCase ) encoding.update(_UpperCAmelCase ) return encoding def a__ ( self : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : int ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : List[str] , *_UpperCAmelCase : str , **_UpperCAmelCase : Tuple ) -> Any: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: __lowercase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __lowercase = value else: __lowercase = value return new_state_dict def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Tuple: __lowercase = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:256, :] __lowercase = in_proj_bias[:256] __lowercase = in_proj_weight[256:512, :] __lowercase = in_proj_bias[256:512] __lowercase = in_proj_weight[-256:, :] __lowercase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:256, :] __lowercase = in_proj_bias[:256] __lowercase = in_proj_weight[256:512, :] __lowercase = in_proj_bias[256:512] __lowercase = in_proj_weight[-256:, :] __lowercase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __lowercase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowercase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowercase = in_proj_weight_cross_attn[:256, :] __lowercase = in_proj_bias_cross_attn[:256] __lowercase = in_proj_weight_cross_attn[256:512, :] __lowercase = in_proj_bias_cross_attn[256:512] __lowercase = in_proj_weight_cross_attn[-256:, :] __lowercase = in_proj_bias_cross_attn[-256:] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: __lowercase , __lowercase = image.size __lowercase = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = 800 if 'detection' in checkpoint_url else 1000 __lowercase = target_max_size / current_max_size __lowercase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: __lowercase = F.to_tensor(SCREAMING_SNAKE_CASE ) __lowercase = F.normalize(SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: logger.info('Converting model...' ) # load original state dict __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = rename_backbone_keys(SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val # create HuggingFace model and load state dict __lowercase = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __lowercase = 15 __lowercase = 2 __lowercase = {0: 'table', 1: 'table rotated'} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 125 __lowercase = 6 __lowercase = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) __lowercase = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion __lowercase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __lowercase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=SCREAMING_SNAKE_CASE ) __lowercase = Image.open(SCREAMING_SNAKE_CASE ).convert('RGB' ) __lowercase = normalize(resize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) __lowercase = model(SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: __lowercase = (1, 15, 3) __lowercase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __lowercase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __lowercase = (1, 125, 7) __lowercase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __lowercase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __lowercase = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__ = random.Random() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str=1.0 , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> List[str]: if rng is None: __lowercase = global_rng __lowercase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Dict=4_00 , _UpperCAmelCase : Union[str, Any]=20_00 , _UpperCAmelCase : Union[str, Any]=1 , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : int=1_60_00 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[int]=True , ) -> Tuple: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = min_seq_length __lowercase = max_seq_length __lowercase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase = feature_size __lowercase = padding_value __lowercase = sampling_rate __lowercase = return_attention_mask __lowercase = do_normalize def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self : List[Any] , _UpperCAmelCase : int=False , _UpperCAmelCase : Any=False ) -> str: """simple docstring""" def _flatten(_UpperCAmelCase : Optional[Any] ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __lowercase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __lowercase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Tuple = WavaVecaFeatureExtractor def a__ ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = WavaVecaFeatureExtractionTester(self ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def a__ ( self : str ) -> List[str]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __lowercase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __lowercase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test batched __lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values __lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __lowercase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __lowercase = np.asarray(_UpperCAmelCase ) __lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values __lowercase = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) ) def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = ['longest', 'max_length', 'do_not_pad'] __lowercase = [None, 16_00, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = range(8_00 , 14_00 , 2_00 ) __lowercase = [floats_list((1, x) )[0] for x in lengths] __lowercase = ['longest', 'max_length', 'do_not_pad'] __lowercase = [None, 16_00, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding='max_length' , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10_00 , padding='longest' , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) __lowercase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] __lowercase = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=20_00 , padding='longest' , return_tensors='np' ) __lowercase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" import torch __lowercase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase = np.random.rand(1_00 ).astype(np.floataa ) __lowercase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __lowercase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def a__ ( self : Tuple ) -> List[str]: """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __lowercase = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) __lowercase = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict: __lowercase , __lowercase = image.size __lowercase , __lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowercase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __lowercase = np.array(SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 __lowercase = image[None].transpose(0 , 3 , 1 , 2 ) __lowercase = torch.from_numpy(SCREAMING_SNAKE_CASE ) return 2.0 * image - 1.0 class A__ ( lowerCAmelCase__ ): def __init__( self : Optional[Any] , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: """simple docstring""" super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : str , _UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Optional[int] = 1_00 , _UpperCAmelCase : Optional[float] = 0.0 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = 1 elif isinstance(_UpperCAmelCase , torch.Tensor ): __lowercase = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) if isinstance(_UpperCAmelCase , PIL.Image.Image ): __lowercase = preprocess(_UpperCAmelCase ) __lowercase , __lowercase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowercase = (batch_size, self.unet.config.in_channels // 2, height, width) __lowercase = next(self.unet.parameters() ).dtype __lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) __lowercase = image.to(device=self.device , dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase , device=self.device ) __lowercase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. __lowercase = torch.cat([latents, image] , dim=1 ) __lowercase = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE __lowercase = self.vqvae.decode(_UpperCAmelCase ).sample __lowercase = torch.clamp(_UpperCAmelCase , -1.0 , 1.0 ) __lowercase = image / 2 + 0.5 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
import unittest from knapsack import knapsack as k class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> int: """simple docstring""" __lowercase = 0 __lowercase = [0] __lowercase = [0] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) __lowercase = [60] __lowercase = [10] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = 3 __lowercase = [1, 2, 3] __lowercase = [3, 2, 1] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 5 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = 50 __lowercase = [60, 1_00, 1_20] __lowercase = [10, 20, 30] __lowercase = len(_UpperCAmelCase ) self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_20 ) if __name__ == "__main__": unittest.main()
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( lowerCAmelCase__ ): @staticmethod @abstractmethod def a__ ( _UpperCAmelCase : ArgumentParser ) -> List[Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" raise NotImplementedError()
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int | float | str ) -> tuple[int, int]: try: __lowercase = float(SCREAMING_SNAKE_CASE ) except ValueError: raise ValueError('Please enter a valid number' ) __lowercase = decimal - int(SCREAMING_SNAKE_CASE ) if fractional_part == 0: return int(SCREAMING_SNAKE_CASE ), 1 else: __lowercase = len(str(SCREAMING_SNAKE_CASE ).split('.' )[1] ) __lowercase = int(decimal * (10**number_of_frac_digits) ) __lowercase = 10**number_of_frac_digits __lowercase , __lowercase = denominator, numerator while True: __lowercase = dividend % divisor if remainder == 0: break __lowercase , __lowercase = divisor, remainder __lowercase , __lowercase = numerator / divisor, denominator / divisor return int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import inspect import unittest class A__ ( unittest.TestCase ): def a__ ( self : str ) -> Tuple: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def a__ ( self : int ) -> Tuple: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps __lowercase = inspect.getmembers(_UpperCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase = 'k-diffusion' elif backend == "invisible_watermark": __lowercase = 'invisible-watermark' assert backend in deps, f"""{backend} is not in the deps table!"""
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
import numpy as np from transformers import Pipeline def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: __lowercase = np.max(SCREAMING_SNAKE_CASE , axis=-1 , keepdims=SCREAMING_SNAKE_CASE ) __lowercase = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Optional[int] , **_UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" __lowercase = {} if "second_text" in kwargs: __lowercase = kwargs['second_text'] return preprocess_kwargs, {}, {} def a__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" return self.tokenizer(_UpperCAmelCase , text_pair=_UpperCAmelCase , return_tensors=self.framework ) def a__ ( self : Optional[int] , _UpperCAmelCase : int ) -> List[str]: """simple docstring""" return self.model(**_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = model_outputs.logits[0].numpy() __lowercase = softmax(_UpperCAmelCase ) __lowercase = np.argmax(_UpperCAmelCase ) __lowercase = self.model.config.idalabel[best_class] __lowercase = probabilities[best_class].item() __lowercase = logits.tolist() return {"label": label, "score": score, "logits": logits}
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , ) -> float: __lowercase = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __lowercase = 1 - (matter_density + radiation_density + dark_energy) __lowercase = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowercase = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
from __future__ import annotations import math from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int | float , SCREAMING_SNAKE_CASE : int = 100 , ) -> float: __lowercase = x_start __lowercase = fnc(SCREAMING_SNAKE_CASE ) __lowercase = 0.0 for _ in range(SCREAMING_SNAKE_CASE ): # Approximates curve as a sequence of linear lines and sums their length __lowercase = (x_end - x_start) / steps + xa __lowercase = fnc(SCREAMING_SNAKE_CASE ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __lowercase = xa __lowercase = fxa return length if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[int]: return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") SCREAMING_SNAKE_CASE__ = 10 while i <= 10_0000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowercase = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __lowercase = F"""{src_lang}-{tgt_lang}""" __lowercase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'README.md' ) print(F"""Generating {path}""" ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent.parent.parent SCREAMING_SNAKE_CASE__ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = model_name.split("""-""") SCREAMING_SNAKE_CASE__ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: if digit_amount > 0: return round(number - int(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return number - int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A__ : def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int=13 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=17 , _UpperCAmelCase : List[str]=23 , _UpperCAmelCase : Dict=11 , _UpperCAmelCase : Union[str, Any]=True , ) -> Optional[int]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = act_dim __lowercase = state_dim __lowercase = hidden_size __lowercase = max_length __lowercase = is_training def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowercase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=10_00 ) __lowercase = random_attention_mask((self.batch_size, self.seq_length) ) __lowercase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , ) -> Tuple: """simple docstring""" __lowercase = DecisionTransformerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = { 'states': states, 'actions': actions, 'rewards': rewards, 'returns_to_go': returns_to_go, 'timesteps': timesteps, 'attention_mask': attention_mask, } return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ : Any = () lowerCAmelCase__ : Optional[int] = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ : Any = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ : int = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : str = False def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = DecisionTransformerModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : Tuple ) -> str: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DecisionTransformerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ 'states', 'actions', 'rewards', 'returns_to_go', 'timesteps', 'attention_mask', ] self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase = 2 # number of steps of autoregressive prediction we will perform __lowercase = 10 # defined by the RL environment, may be normalized __lowercase = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) __lowercase = model.to(_UpperCAmelCase ) __lowercase = model.config torch.manual_seed(0 ) __lowercase = torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ) # env.reset() __lowercase = torch.tensor( [[0.242_793, -0.28_693_074, 0.8_742_613], [0.67_815_274, -0.08_101_085, -0.12_952_147]] , device=_UpperCAmelCase ) __lowercase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __lowercase = state __lowercase = torch.zeros(1 , 0 , config.act_dim , device=_UpperCAmelCase , dtype=torch.floataa ) __lowercase = torch.zeros(1 , 0 , device=_UpperCAmelCase , dtype=torch.floataa ) __lowercase = torch.tensor(0 , device=_UpperCAmelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_UpperCAmelCase ): __lowercase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_UpperCAmelCase )] , dim=1 ) __lowercase = torch.cat([rewards, torch.zeros(1 , 1 , device=_UpperCAmelCase )] , dim=1 ) __lowercase = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __lowercase , __lowercase , __lowercase = model( states=_UpperCAmelCase , actions=_UpperCAmelCase , rewards=_UpperCAmelCase , returns_to_go=_UpperCAmelCase , timesteps=_UpperCAmelCase , attention_mask=_UpperCAmelCase , return_dict=_UpperCAmelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) __lowercase , __lowercase , __lowercase , __lowercase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_UpperCAmelCase , dtype=torch.floataa ), 1.0, False, {}, ) __lowercase = action_pred[0, -1] __lowercase = torch.cat([states, state] , dim=1 ) __lowercase = returns_to_go[0, -1] - reward __lowercase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __lowercase = torch.cat( [timesteps, torch.ones((1, 1) , device=_UpperCAmelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict=None ) -> Any: if subparsers is not None: __lowercase = subparsers.add_parser('test' ) else: __lowercase = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: __lowercase = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __lowercase = script_name else: __lowercase = F"""--config_file={args.config_file} {script_name}""" __lowercase = ['accelerate-launch'] + test_args.split() __lowercase = execute_subprocess_async(SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = test_command_parser() __lowercase = parser.parse_args() test_command(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMTokenizer lowerCAmelCase__ : List[Any] = LayoutLMTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : Any , **_UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Dict ) -> Dict: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def a__ ( self : Dict ) -> str: """simple docstring""" pass
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def a__ ( self : Dict ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> Dict: """simple docstring""" __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) sd_pipe.set_scheduler('sample_euler' ) __lowercase = 'A painting of a squirrel eating a burger' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowercase = np.array([0.0_447, 0.0_492, 0.0_468, 0.0_408, 0.0_383, 0.0_408, 0.0_354, 0.0_380, 0.0_339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : str ) -> str: """simple docstring""" __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) sd_pipe.set_scheduler('sample_euler' ) __lowercase = 'A painting of a squirrel eating a burger' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe([prompt] , generator=_UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowercase = np.array([0.1_237, 0.1_320, 0.1_438, 0.1_359, 0.1_390, 0.1_132, 0.1_277, 0.1_175, 0.1_112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __lowercase = 'A painting of a squirrel eating a burger' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=_UpperCAmelCase , ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowercase = np.array( [0.11_381_689, 0.12_112_921, 0.1_389_457, 0.12_549_606, 0.1_244_964, 0.10_831_517, 0.11_562_866, 0.10_867_816, 0.10_499_048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=False ) -> Union[str, Any]: __lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: __lowercase = '' else: __lowercase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) __lowercase = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[ : config.hidden_size, : ] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: __lowercase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Any: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __lowercase = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ) -> List[str]: __lowercase = dct.pop(SCREAMING_SNAKE_CASE ) __lowercase = val def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int ) -> List[Any]: __lowercase = ViTMSNConfig() __lowercase = 1000 __lowercase = 'datasets/huggingface/label-files' __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowercase = 384 __lowercase = 1536 __lowercase = 6 elif "l16" in checkpoint_url: __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = 0.1 elif "b4" in checkpoint_url: __lowercase = 4 elif "l7" in checkpoint_url: __lowercase = 7 __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = 0.1 __lowercase = ViTMSNModel(SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['target_encoder'] __lowercase = ViTImageProcessor(size=config.image_size ) remove_projection_head(SCREAMING_SNAKE_CASE ) __lowercase = create_rename_keys(SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , base_model=SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = ViTImageProcessor( size=config.image_size , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE ) __lowercase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowercase = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: __lowercase = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: __lowercase = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: __lowercase = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: __lowercase = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : list[str] | None = None , SCREAMING_SNAKE_CASE : dict[str, float] | None = None , SCREAMING_SNAKE_CASE : bool = False , ) -> tuple[int, float, str]: __lowercase = cipher_alphabet or [chr(SCREAMING_SNAKE_CASE ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __lowercase = { 'a': 0.08_497, 'b': 0.01_492, 'c': 0.02_202, 'd': 0.04_253, 'e': 0.11_162, 'f': 0.02_228, 'g': 0.02_015, 'h': 0.06_094, 'i': 0.07_546, 'j': 0.00_153, 'k': 0.01_292, 'l': 0.04_025, 'm': 0.02_406, 'n': 0.06_749, 'o': 0.07_507, 'p': 0.01_929, 'q': 0.00_095, 'r': 0.07_587, 's': 0.06_327, 't': 0.09_356, 'u': 0.02_758, 'v': 0.00_978, 'w': 0.02_560, 'x': 0.00_150, 'y': 0.01_994, 'z': 0.00_077, } else: # Custom frequencies dictionary __lowercase = frequencies_dict if not case_sensitive: __lowercase = ciphertext.lower() # Chi squared statistic values __lowercase = {} # cycle through all of the shifts for shift in range(len(SCREAMING_SNAKE_CASE ) ): __lowercase = '' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __lowercase = (alphabet_letters.index(letter.lower() ) - shift) % len( SCREAMING_SNAKE_CASE ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __lowercase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __lowercase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __lowercase = decrypted_with_shift.lower().count(SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __lowercase = decrypted_with_shift.count(SCREAMING_SNAKE_CASE ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __lowercase = frequencies[letter] * occurrences # Complete the chi squared statistic formula __lowercase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __lowercase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(SCREAMING_SNAKE_CASE : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __lowercase = min( SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __lowercase ) , ( __lowercase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : str ) -> set[str]: __lowercase , __lowercase = set(SCREAMING_SNAKE_CASE ), [start] while stack: __lowercase = stack.pop() explored.add(SCREAMING_SNAKE_CASE ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE ) return explored SCREAMING_SNAKE_CASE__ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """▁""" SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), } } SCREAMING_SNAKE_CASE__ = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : str = VOCAB_FILES_NAMES lowerCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Tuple = ["input_ids", "attention_mask"] lowerCAmelCase__ : List[int] = [] lowerCAmelCase__ : List[int] = [] def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]="<s>" , _UpperCAmelCase : List[Any]="</s>" , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Any="<s>" , _UpperCAmelCase : Any="<unk>" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ) -> Tuple: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) __lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase = 1 __lowercase = len(self.sp_model ) __lowercase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } __lowercase = {v: k for k, v in self.lang_code_to_id.items()} __lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowercase = src_lang if src_lang is not None else 'en_XX' __lowercase = self.lang_code_to_id[self._src_lang] __lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None __lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def a__ ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__ ( self : List[str] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> None: """simple docstring""" __lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowercase = src_lang __lowercase = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = self.convert_tokens_to_ids(_UpperCAmelCase ) __lowercase = tgt_lang_id return inputs def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self : Any , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ ( self : int , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self : str , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ' ' ).strip() return out_string def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def a__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : Tuple , ) -> BatchEncoding: """simple docstring""" __lowercase = src_lang __lowercase = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__ ( self : int ) -> Any: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> None: """simple docstring""" __lowercase = self.lang_code_to_id[src_lang] __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code] def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> None: """simple docstring""" __lowercase = self.lang_code_to_id[lang] __lowercase = [] __lowercase = [self.eos_token_id, self.cur_lang_code]
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
from itertools import permutations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : tuple ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 10 ) -> int: return sum( int(''.join(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) ) for num in permutations(range(SCREAMING_SNAKE_CASE ) ) if is_substring_divisible(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(F'''{solution() = }''')
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
from math import pi, sqrt, tan def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowercase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowercase = (sidea + sidea + sidea) / 2 __lowercase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> float: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("""\nSurface Areas of various geometric shapes: \n""") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowercase = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE , keep_in_memory=SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: __lowercase = tmp_path / 'cache' __lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowercase = features.copy() if features else default_expected_features __lowercase = ( Features({feature: Value(SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) __lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE ) ) as con: __lowercase = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: __lowercase = tmp_path / 'cache' __lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' ) __lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() __lowercase = iter_sql_file(SCREAMING_SNAKE_CASE ) __lowercase = iter_sql_file(SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> int: __lowercase = tmp_path / 'cache' __lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' ) __lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() __lowercase = iter_sql_file(SCREAMING_SNAKE_CASE ) __lowercase = iter_sql_file(SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: __lowercase = tmp_path / 'cache' __lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'tmp.sql' ) __lowercase = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE ).read() with pytest.raises(SCREAMING_SNAKE_CASE ): SqlDatasetWriter(SCREAMING_SNAKE_CASE , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE__ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class A__ : def __init__( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : Dict=14 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : Any=19 , _UpperCAmelCase : Any=5 , _UpperCAmelCase : str=4 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Union[str, Any]=[1, 2, 3, 4, 5] , _UpperCAmelCase : Tuple=25 , _UpperCAmelCase : List[str]=5 , ) -> Optional[Any]: """simple docstring""" __lowercase = d_model __lowercase = parent __lowercase = batch_size __lowercase = prediction_length __lowercase = context_length __lowercase = cardinality __lowercase = num_time_features __lowercase = lags_sequence __lowercase = embedding_dimension __lowercase = is_training __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = context_length __lowercase = prediction_length + label_length __lowercase = label_length __lowercase = moving_average __lowercase = autocorrelation_factor def a__ ( self : int ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = config.context_length + max(config.lags_sequence ) __lowercase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowercase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowercase = floats_tensor([self.batch_size, _past_length] ) __lowercase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowercase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowercase = floats_tensor([self.batch_size, config.prediction_length] ) __lowercase = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def a__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = self.get_config() __lowercase = self.prepare_autoformer_inputs_dict(_UpperCAmelCase ) return config, inputs_dict def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoformerModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __lowercase = model(**_UpperCAmelCase ) __lowercase = outputs.encoder_last_hidden_state __lowercase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = model.get_encoder() encoder.save_pretrained(_UpperCAmelCase ) __lowercase = AutoformerEncoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = model.create_network_inputs(**_UpperCAmelCase ) __lowercase , __lowercase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowercase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowercase = encoder(inputs_embeds=_UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowercase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowercase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowercase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowercase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase = model.get_decoder() decoder.save_pretrained(_UpperCAmelCase ) __lowercase = AutoformerDecoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) __lowercase = decoder( trend=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase__ : Dict = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase__ : Optional[int] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase__ : str = False lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Any = False lowerCAmelCase__ : Dict = False lowerCAmelCase__ : str = False lowerCAmelCase__ : int = False def a__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase = AutoformerModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def a__ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) __lowercase , __lowercase = model_class.from_pretrained(_UpperCAmelCase , output_loading_info=_UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def a__ ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_UpperCAmelCase ) @unittest.skip(reason='Model has no tokens embeddings' ) def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase = inspect.signature(getattr(_UpperCAmelCase , 'forward' ) ) # The main input is the name of the argument after `self` __lowercase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _UpperCAmelCase ) def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(_UpperCAmelCase )] , _UpperCAmelCase ) def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'seq_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'decoder_seq_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'd_model' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'num_attention_heads' , _UpperCAmelCase ) __lowercase = d_model // num_attention_heads for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = True __lowercase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = outputs.encoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowercase = len(_UpperCAmelCase ) __lowercase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # decoder attentions __lowercase = outputs.decoder_attentions self.assertIsInstance(_UpperCAmelCase , (list, tuple) ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowercase = outputs.cross_attentions self.assertIsInstance(_UpperCAmelCase , (list, tuple) ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(_UpperCAmelCase ) ) __lowercase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str="train-batch.pt" ) -> Dict: __lowercase = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=SCREAMING_SNAKE_CASE , repo_type='dataset' ) __lowercase = torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class A__ ( unittest.TestCase ): def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_UpperCAmelCase ) __lowercase = prepare_batch() with torch.no_grad(): __lowercase = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] __lowercase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_UpperCAmelCase ) __lowercase = prepare_batch('val-batch.pt' ) with torch.no_grad(): __lowercase = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state __lowercase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(_UpperCAmelCase ) __lowercase = prepare_batch('val-batch.pt' ) with torch.no_grad(): __lowercase = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) __lowercase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _UpperCAmelCase ) __lowercase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=_UpperCAmelCase ) __lowercase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _UpperCAmelCase , rtol=1e-1 ) )
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
from collections.abc import Callable def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Callable[[float], float] , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> float: __lowercase = a __lowercase = b if function(SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: __lowercase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(SCREAMING_SNAKE_CASE ) == 0: return mid elif function(SCREAMING_SNAKE_CASE ) * function(SCREAMING_SNAKE_CASE ) < 0: __lowercase = mid else: __lowercase = mid __lowercase = start + (end - start) / 2.0 return mid def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
SCREAMING_SNAKE_CASE__ = [0, 2, 4, 6, 8] SCREAMING_SNAKE_CASE__ = [1, 3, 5, 7, 9] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __lowercase = 0 for digit in range(10 ): __lowercase = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return result __lowercase = 0 for digita in range(10 ): __lowercase = digita if (remainder + digita) % 2 == 0: __lowercase = ODD_DIGITS else: __lowercase = EVEN_DIGITS for digita in other_parity_digits: __lowercase = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) return result def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 9 ) -> int: __lowercase = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE , 0 , [0] * length , SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(F'''{solution() = }''')
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , ) -> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str: __lowercase = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowercase = '' __lowercase = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(SCREAMING_SNAKE_CASE ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowercase , __lowercase = 0, 0 # length[i] shows the length of palindromic substring with center i __lowercase = [1 for i in range(len(SCREAMING_SNAKE_CASE ) )] # for each character in new_string find corresponding palindromic string __lowercase = 0 for j in range(len(SCREAMING_SNAKE_CASE ) ): __lowercase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(SCREAMING_SNAKE_CASE ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowercase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowercase = j - k + 1 # noqa: E741 __lowercase = j + k - 1 # update max_length and start position if max_length < length[j]: __lowercase = length[j] __lowercase = j # create that string __lowercase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase__ : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : np.ndarray lowerCAmelCase__ : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> bool: __lowercase = [int(SCREAMING_SNAKE_CASE ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(SCREAMING_SNAKE_CASE ) == 4 and all(0 <= int(SCREAMING_SNAKE_CASE ) <= 254 for octet in octets ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input().strip() SCREAMING_SNAKE_CASE__ = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ) -> list: __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = [[0] * n for i in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): __lowercase = y_points[i] for i in range(2 , SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: __lowercase = DPTConfig() if "large" in checkpoint_url: __lowercase = 1024 __lowercase = 4096 __lowercase = 24 __lowercase = 16 __lowercase = [5, 11, 17, 23] __lowercase = [256, 512, 1024, 1024] __lowercase = (1, 384, 384) if "ade" in checkpoint_url: __lowercase = True __lowercase = 150 __lowercase = 'huggingface/label-files' __lowercase = 'ade20k-id2label.json' __lowercase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = [1, 150, 480, 480] return config, expected_shape def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple: __lowercase = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __lowercase = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __lowercase = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: __lowercase = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __lowercase = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __lowercase = name.replace('proj' , 'projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __lowercase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __lowercase = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: __lowercase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __lowercase = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __lowercase = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __lowercase = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __lowercase = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __lowercase = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __lowercase = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __lowercase = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __lowercase = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: __lowercase = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __lowercase = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __lowercase = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __lowercase = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __lowercase = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __lowercase = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __lowercase = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __lowercase = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __lowercase = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __lowercase = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __lowercase = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __lowercase = name.replace('pretrained' , 'dpt' ) if "bn" in name: __lowercase = name.replace('bn' , 'batch_norm' ) if "head" in name: __lowercase = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __lowercase = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __lowercase = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) __lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]: __lowercase , __lowercase = get_dpt_config(SCREAMING_SNAKE_CASE ) # load original state_dict from URL __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE ) # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # load HuggingFace model __lowercase = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE ) if 'ade' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Check outputs on an image __lowercase = 480 if 'ade' in checkpoint_url else 384 __lowercase = DPTImageProcessor(size=SCREAMING_SNAKE_CASE ) __lowercase = prepare_img() __lowercase = image_processor(SCREAMING_SNAKE_CASE , return_tensors='pt' ) # forward pass __lowercase = model(**SCREAMING_SNAKE_CASE ).logits if 'ade' in checkpoint_url else model(**SCREAMING_SNAKE_CASE ).predicted_depth # Assert logits __lowercase = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: __lowercase = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE ) ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import unittest import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray | None = None , ) -> np.ndarray: __lowercase = np.shape(SCREAMING_SNAKE_CASE ) __lowercase = np.shape(SCREAMING_SNAKE_CASE ) __lowercase = np.shape(SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: __lowercase = ( 'Expected the same number of rows for A and B. ' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: __lowercase = ( 'Expected the same number of columns for B and C. ' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = pseudo_inv if a_inv is None: try: __lowercase = np.linalg.inv(SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class A__ ( unittest.TestCase ): def a__ ( self : List[Any] ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) __lowercase = schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = np.block([[a, b], [b.T, c]] ) __lowercase = np.linalg.det(_UpperCAmelCase ) __lowercase = np.linalg.det(_UpperCAmelCase ) __lowercase = np.linalg.det(_UpperCAmelCase ) self.assertAlmostEqual(_UpperCAmelCase , det_a * det_s ) def a__ ( self : Union[str, Any] ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_UpperCAmelCase ): schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> None: """simple docstring""" __lowercase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __lowercase = np.array([[0, 3], [3, 0], [2, 3]] ) __lowercase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_UpperCAmelCase ): schur_complement(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) SCREAMING_SNAKE_CASE__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) SCREAMING_SNAKE_CASE__ = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) SCREAMING_SNAKE_CASE__ = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.img_to_array(test_image) SCREAMING_SNAKE_CASE__ = np.expand_dims(test_image, axis=0) SCREAMING_SNAKE_CASE__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: SCREAMING_SNAKE_CASE__ = """Normal""" if result[0][0] == 1: SCREAMING_SNAKE_CASE__ = """Abnormality detected"""
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
688
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
688
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """Hello, World!""" SCREAMING_SNAKE_CASE__ = """en_XX""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]: __lowercase = Path('data_bin' ) __lowercase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE ) __lowercase = xmod.model.encoder.sentence_encoder __lowercase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE ) __lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = xmod_sent_encoder.embed_tokens.weight __lowercase = xmod_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowercase = xmod_sent_encoder.layernorm_embedding.weight __lowercase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = xmod_sent_encoder.layers[i] # self attention __lowercase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) __lowercase = xmod_layer.self_attn.q_proj.weight __lowercase = xmod_layer.self_attn.q_proj.bias __lowercase = xmod_layer.self_attn.k_proj.weight __lowercase = xmod_layer.self_attn.k_proj.bias __lowercase = xmod_layer.self_attn.v_proj.weight __lowercase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) __lowercase = xmod_layer.self_attn.out_proj.weight __lowercase = xmod_layer.self_attn.out_proj.bias __lowercase = xmod_layer.self_attn_layer_norm.weight __lowercase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowercase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias # output __lowercase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) __lowercase = xmod_layer.fca.weight __lowercase = xmod_layer.fca.bias __lowercase = xmod_layer.final_layer_norm.weight __lowercase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowercase = xmod_layer.adapter_layer_norm.weight __lowercase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowercase = bert_output.adapter_modules[lang_code] __lowercase = xmod_layer.adapter_modules[lang_code] __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias __lowercase = from_adapter.fca.weight __lowercase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowercase = xmod_sent_encoder.layer_norm.weight __lowercase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowercase = xmod.model.classification_heads['mnli'].dense.weight __lowercase = xmod.model.classification_heads['mnli'].dense.bias __lowercase = xmod.model.classification_heads['mnli'].out_proj.weight __lowercase = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head __lowercase = xmod.model.encoder.lm_head.dense.weight __lowercase = xmod.model.encoder.lm_head.dense.bias __lowercase = xmod.model.encoder.lm_head.layer_norm.weight __lowercase = xmod.model.encoder.lm_head.layer_norm.bias __lowercase = xmod.model.encoder.lm_head.weight __lowercase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE ) __lowercase = model(SCREAMING_SNAKE_CASE )[0] if classification_head: __lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) ) else: __lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
688
1
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 3 ) -> list: __lowercase = min(SCREAMING_SNAKE_CASE ) __lowercase = max(SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE ) for x in data] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 3 ) -> list: __lowercase = mean(SCREAMING_SNAKE_CASE ) __lowercase = stdev(SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE ) for x in data]
688
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float: __lowercase = u for i in range(1 , SCREAMING_SNAKE_CASE ): __lowercase = temp * (u - i) return temp def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = int(input('enter the numbers of values: ' ) ) __lowercase = [] for _ in range(SCREAMING_SNAKE_CASE ): y.append([] ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): y[i].append(SCREAMING_SNAKE_CASE ) __lowercase = 0 print('enter the values of parameters in a list: ' ) __lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(SCREAMING_SNAKE_CASE ): __lowercase = float(input() ) __lowercase = int(input('enter the value to interpolate: ' ) ) __lowercase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , SCREAMING_SNAKE_CASE ): for j in range(n - i ): __lowercase = y[j + 1][i - 1] - y[j][i - 1] __lowercase = y[0][0] for i in range(1 , SCREAMING_SNAKE_CASE ): summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE ) print(F"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: if num < 0: return False __lowercase = num __lowercase = 0 while num > 0: __lowercase = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
688
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: __lowercase = F"""Input value of [number={number}] must be > 0""" raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = 1 for i in range(1 , SCREAMING_SNAKE_CASE ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class A__ ( unittest.TestCase ): def a__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __lowercase = {'unk_token': '<unk>'} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) __lowercase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } __lowercase = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Union[str, Any] , **_UpperCAmelCase : int ) -> Dict: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_UpperCAmelCase ) def a__ ( self : Optional[int] , **_UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_UpperCAmelCase ) def a__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = self.get_image_processor() __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase ) __lowercase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __lowercase = 'lower newer' __lowercase = processor(text=_UpperCAmelCase , return_tensors='np' ) __lowercase = tokenizer(_UpperCAmelCase , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __lowercase = 'lower newer' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = 'google/owlvit-base-patch32' __lowercase = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) __lowercase = ['cat', 'nasa badge'] __lowercase = processor(text=_UpperCAmelCase ) __lowercase = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def a__ ( self : str ) -> str: """simple docstring""" __lowercase = 'google/owlvit-base-patch32' __lowercase = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) __lowercase = [['cat', 'nasa badge'], ['person']] __lowercase = processor(text=_UpperCAmelCase ) __lowercase = 16 __lowercase = len(_UpperCAmelCase ) __lowercase = max([len(_UpperCAmelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = 'google/owlvit-base-patch32' __lowercase = OwlViTProcessor.from_pretrained(_UpperCAmelCase ) __lowercase = ['cat', 'nasa badge'] __lowercase = processor(text=_UpperCAmelCase ) __lowercase = 16 __lowercase = inputs['input_ids'] __lowercase = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = self.prepare_image_inputs() __lowercase = processor(images=_UpperCAmelCase , query_images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(_UpperCAmelCase ) __lowercase = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
688
from argparse import ArgumentParser from .env import EnvironmentCommand def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) __lowercase = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE ) # Let's go __lowercase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , 'func' ): parser.print_help() exit(1 ) # Run __lowercase = args.func(SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
688
1
import numpy as np SCREAMING_SNAKE_CASE__ = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class A__ : def __init__( self : Dict ) -> None: """simple docstring""" __lowercase = np.array(_UpperCAmelCase ) def a__ ( self : List[str] , _UpperCAmelCase : str ) -> np.ndarray: """simple docstring""" __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def a__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = message.lower() __lowercase = message.replace(' ' , '' ) __lowercase = message.replace('j' , 'i' ) __lowercase = np.empty((2, len(_UpperCAmelCase )) ) for letter_index in range(len(_UpperCAmelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(_UpperCAmelCase ) ) __lowercase = '' for numbers_index in range(len(_UpperCAmelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = encoded_message + letter return encoded_message def a__ ( self : Any , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = message.lower() message.replace(' ' , '' ) __lowercase = np.empty(2 * len(_UpperCAmelCase ) ) for letter_index in range(len(_UpperCAmelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(_UpperCAmelCase )) ) __lowercase = '' for numbers_index in range(len(_UpperCAmelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = decoded_message + letter return decoded_message
688
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ProphetNetTokenizer lowerCAmelCase__ : str = False def a__ ( self : str ) -> Tuple: """simple docstring""" super().setUp() __lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = 'UNwant\u00E9d,running' __lowercase = 'unwanted, running' return input_text, output_text def a__ ( self : Any ) -> Any: """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def a__ ( self : int ) -> List[str]: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def a__ ( self : str ) -> str: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def a__ ( self : Any ) -> int: """simple docstring""" __lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __lowercase = {} for i, token in enumerate(_UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] __lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def a__ ( self : int ) -> Dict: """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def a__ ( self : Any ) -> List[str]: """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def a__ ( self : List[str] ) -> str: """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
688
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated SCREAMING_SNAKE_CASE__ = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ SCREAMING_SNAKE_CASE__ = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: __lowercase = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE )[0] @deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> int: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(SCREAMING_SNAKE_CASE ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(rows * cols * num_images ) __lowercase = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) __lowercase = data.reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.one_hot on tensors.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]: __lowercase = labels_dense.shape[0] __lowercase = numpy.arange(SCREAMING_SNAKE_CASE ) * num_classes __lowercase = numpy.zeros((num_labels, num_classes) ) __lowercase = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : int=10 ) -> Union[str, Any]: print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(SCREAMING_SNAKE_CASE ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __lowercase = _readaa(SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(SCREAMING_SNAKE_CASE ) __lowercase = numpy.frombuffer(SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return labels class A__ : @deprecated( _UpperCAmelCase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Tuple=dtypes.floataa , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=None , ) -> int: """simple docstring""" __lowercase , __lowercase = random_seed.get_seed(_UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowercase = dtypes.as_dtype(_UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __lowercase = 1_00_00 __lowercase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowercase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowercase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowercase = images.astype(numpy.floataa ) __lowercase = numpy.multiply(_UpperCAmelCase , 1.0 / 255.0 ) __lowercase = images __lowercase = labels __lowercase = 0 __lowercase = 0 @property def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" return self._images @property def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self._labels @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self._num_examples @property def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self._epochs_completed def a__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=True ) -> List[str]: """simple docstring""" if fake_data: __lowercase = [1] * 7_84 __lowercase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_UpperCAmelCase )], [fake_label for _ in range(_UpperCAmelCase )], ) __lowercase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) __lowercase = self.images[perma] __lowercase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowercase = self._num_examples - start __lowercase = self._images[start : self._num_examples] __lowercase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(_UpperCAmelCase ) __lowercase = self.images[perm] __lowercase = self.labels[perm] # Start next epoch __lowercase = 0 __lowercase = batch_size - rest_num_examples __lowercase = self._index_in_epoch __lowercase = self._images[start:end] __lowercase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowercase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE , 'Please write your own downloading logic.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> List[Any]: if not gfile.Exists(SCREAMING_SNAKE_CASE ): gfile.MakeDirs(SCREAMING_SNAKE_CASE ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not gfile.Exists(SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE ) as f: __lowercase = f.size() print('Successfully downloaded' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 'bytes.' ) return filepath @deprecated( SCREAMING_SNAKE_CASE , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : int=dtypes.floataa , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Optional[int]=5000 , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=DEFAULT_SOURCE_URL , ) -> Tuple: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE , seed=SCREAMING_SNAKE_CASE ) __lowercase = fake() __lowercase = fake() __lowercase = fake() return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE ) if not source_url: # empty string check __lowercase = DEFAULT_SOURCE_URL __lowercase = 'train-images-idx3-ubyte.gz' __lowercase = 'train-labels-idx1-ubyte.gz' __lowercase = 't10k-images-idx3-ubyte.gz' __lowercase = 't10k-labels-idx1-ubyte.gz' __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_images(SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_images(SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE , 'rb' ) as f: __lowercase = _extract_labels(SCREAMING_SNAKE_CASE , one_hot=SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE ): __lowercase = ( 'Validation size should be between 0 and ' F"""{len(SCREAMING_SNAKE_CASE )}. Received: {validation_size}.""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __lowercase = train_images[:validation_size] __lowercase = train_labels[:validation_size] __lowercase = train_images[validation_size:] __lowercase = train_labels[validation_size:] __lowercase = {'dtype': dtype, 'reshape': reshape, 'seed': seed} __lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) return _Datasets(train=SCREAMING_SNAKE_CASE , validation=SCREAMING_SNAKE_CASE , test=SCREAMING_SNAKE_CASE )
688
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } SCREAMING_SNAKE_CASE__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } SCREAMING_SNAKE_CASE__ = { """jukebox""": 512, } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ : Any = ["input_ids", "attention_mask"] def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" __lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = version __lowercase = max_n_lyric_tokens __lowercase = n_genres with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase = json.load(_UpperCAmelCase ) __lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase = oov.replace(R'\-\'' , R'\-+\'' ) __lowercase = regex.compile(_UpperCAmelCase ) __lowercase = {v: k for k, v in self.artists_encoder.items()} __lowercase = {v: k for k, v in self.genres_encoder.items()} __lowercase = {v: k for k, v in self.lyrics_encoder.items()} @property def a__ ( self : List[Any] ) -> Any: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists] for genres in range(len(_UpperCAmelCase ) ): __lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]] __lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" return list(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = self._tokenize(_UpperCAmelCase ) return artist, genre, lyrics def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase = artists[idx].lower() __lowercase = [genres[idx].lower()] else: __lowercase = self._normalize(artists[idx] ) + '.v2' __lowercase = [ self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) __lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' __lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )} __lowercase = 0 __lowercase = len(_UpperCAmelCase ) + 1 __lowercase = self.vocab __lowercase = {v: k for k, v in self.vocab.items()} __lowercase = '' else: __lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) __lowercase = self._run_strip_accents(_UpperCAmelCase ) __lowercase = lyrics.replace('\\' , '\n' ) __lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], [] return artists, genres, lyrics def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase ) __lowercase = [] for char in text: __lowercase = unicodedata.category(_UpperCAmelCase ) if cat == "Mn": continue output.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : str ) -> str: """simple docstring""" __lowercase = ( [chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) __lowercase = frozenset(_UpperCAmelCase ) __lowercase = re.compile(R'_+' ) __lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] ) __lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' ) return text def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" return " ".join(_UpperCAmelCase ) def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = TensorType(_UpperCAmelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf __lowercase = tf.constant __lowercase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch __lowercase = torch.tensor __lowercase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 __lowercase = jnp.array __lowercase = _is_jax else: __lowercase = np.asarray __lowercase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase = [inputs] if not is_tensor(_UpperCAmelCase ): __lowercase = as_tensor(_UpperCAmelCase ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding: """simple docstring""" __lowercase = [0, 0, 0] __lowercase = [artist] * len(self.version ) __lowercase = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = [-INFINITY] * len(full_tokens[-1] ) __lowercase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) ) __lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) ) return (artists_file, genres_file, lyrics_file) def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.artists_decoder.get(_UpperCAmelCase ) __lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index] __lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index] return artist, genres, lyrics
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 100 ) -> int: __lowercase = 1 __lowercase = 2 for i in range(2 , max_n + 1 ): __lowercase = pre_numerator __lowercase = 2 * i // 3 if i % 3 == 0 else 1 __lowercase = cur_numerator __lowercase = e_cont * pre_numerator + temp return sum_digits(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'''{solution() = }''')
688
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = embedding_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_hidden_groups __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope def a__ ( self : Any ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" __lowercase = AlbertModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple: """simple docstring""" __lowercase = AlbertForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = AlbertForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int: """simple docstring""" __lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = self.num_labels __lowercase = AlbertForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" __lowercase = self.num_choices __lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ : Dict = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase__ : Optional[Any] = True def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple: """simple docstring""" __lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def a__ ( self : str ) -> str: """simple docstring""" __lowercase = AlbertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Any ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Tuple ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) @slow def a__ ( self : int ) -> Any: """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = AlbertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch class A__ ( unittest.TestCase ): @slow def a__ ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase = AlbertModel.from_pretrained('albert-base-v2' ) __lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = torch.tensor( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } SCREAMING_SNAKE_CASE__ = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } SCREAMING_SNAKE_CASE__ = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: SCREAMING_SNAKE_CASE__ = reader.read() SCREAMING_SNAKE_CASE__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE__ = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE__ = config[key] del config[key] SCREAMING_SNAKE_CASE__ = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] SCREAMING_SNAKE_CASE__ = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: SCREAMING_SNAKE_CASE__ = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) SCREAMING_SNAKE_CASE__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue SCREAMING_SNAKE_CASE__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: SCREAMING_SNAKE_CASE__ = param_value SCREAMING_SNAKE_CASE__ = True if not has_changed: SCREAMING_SNAKE_CASE__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A__ ( lowerCAmelCase__ ): def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]: """simple docstring""" __lowercase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __lowercase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowercase = token_dict['token'] __lowercase = Tokenizer(Unigram() ) __lowercase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) __lowercase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) __lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) __lowercase = TemplateProcessing( single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __lowercase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict: """simple docstring""" __lowercase = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase ) self.add_unk_id() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase = json.loads(self._tokenizer.to_str() ) __lowercase = self.special_tokens['unk']['id'] __lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
688
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[float] ) -> bool: if len(SCREAMING_SNAKE_CASE ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowercase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
688
import string from math import logaa def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int: __lowercase = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __lowercase = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]: __lowercase = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __lowercase = corpus_without_punctuation.split('\n' ) __lowercase = term.lower() return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float: if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float: return round(tf * idf , 3 )
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict=28123 ) -> List[Any]: __lowercase = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __lowercase = set() __lowercase = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(SCREAMING_SNAKE_CASE ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
688
from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ = { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json""" ), } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "retribert" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = share_encoders __lowercase = projection_dim
688
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = """T5Config""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : jnp.array , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> jnp.ndarray: __lowercase = jnp.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase = shifted_input_ids.at[:, 0].set(SCREAMING_SNAKE_CASE ) __lowercase = jnp.where(shifted_input_ids == -100 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return shifted_input_ids class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "mt5" lowerCAmelCase__ : List[str] = MTaConfig class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = "mt5" lowerCAmelCase__ : Optional[Any] = MTaConfig class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Dict = "mt5" lowerCAmelCase__ : List[Any] = MTaConfig
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase , __lowercase = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=300 ) -> Any: # docstyle-ignore return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: __lowercase = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowercase = F"""{elt:.6f}""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class A__ : lowerCAmelCase__ : Optional[Any] = 5 lowerCAmelCase__ : List[str] = 0.2 def __init__( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional["NotebookTrainingTracker"] = None , _UpperCAmelCase : int = 3_00 , ) -> Any: """simple docstring""" __lowercase = total __lowercase = '' if prefix is None else prefix __lowercase = leave __lowercase = parent __lowercase = width __lowercase = None __lowercase = None __lowercase = None def a__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : bool = False , _UpperCAmelCase : str = None ) -> List[str]: """simple docstring""" __lowercase = value if comment is not None: __lowercase = comment if self.last_value is None: __lowercase = __lowercase = time.time() __lowercase = __lowercase = value __lowercase = __lowercase = None __lowercase = self.warmup __lowercase = 1 self.update_bar(_UpperCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowercase = time.time() __lowercase = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowercase = self.elapsed_time / (value - self.start_value) else: __lowercase = None if value >= self.total: __lowercase = self.total __lowercase = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowercase = self.average_time_per_item * (self.total - value) self.update_bar(_UpperCAmelCase ) __lowercase = value __lowercase = current_time if self.average_time_per_item is None: __lowercase = 1 else: __lowercase = max(int(self.update_every / self.average_time_per_item ) , 1 ) def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str=None ) -> Union[str, Any]: """simple docstring""" __lowercase = ' ' * (len(str(self.total ) ) - len(str(_UpperCAmelCase ) )) + str(_UpperCAmelCase ) if self.elapsed_time is None: __lowercase = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: __lowercase = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: __lowercase = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def a__ ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowercase = disp.display(disp.HTML(self.html_code ) , display_id=_UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class A__ ( lowerCAmelCase__ ): def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=None ) -> int: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = None if column_names is None else [column_names] __lowercase = None def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowercase = disp.display(disp.HTML(self.html_code ) , display_id=_UpperCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.inner_table is None: __lowercase = [list(values.keys() ), list(values.values() )] else: __lowercase = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_UpperCAmelCase ) __lowercase = columns self.inner_table.append([values[c] for c in columns] ) def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Optional[int]=3_00 ) -> Dict: """simple docstring""" __lowercase = NotebookProgressBar(_UpperCAmelCase , prefix=_UpperCAmelCase , parent=self , width=_UpperCAmelCase ) return self.child_bar def a__ ( self : Any ) -> List[str]: """simple docstring""" __lowercase = None self.display() class A__ ( lowerCAmelCase__ ): def __init__( self : int ) -> str: """simple docstring""" __lowercase = None __lowercase = None __lowercase = False def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __lowercase = 0 __lowercase = 0 __lowercase = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __lowercase = NotebookTrainingTracker(state.max_steps , _UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" __lowercase = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) __lowercase = False def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if not has_length(_UpperCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowercase = self.training_tracker.add_child(len(_UpperCAmelCase ) ) else: __lowercase = NotebookProgressBar(len(_UpperCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Optional[int] ) -> int: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() __lowercase = None def a__ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowercase = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __lowercase = state.global_step self.training_tracker.write_line(_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" if self.training_tracker is not None: __lowercase = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __lowercase = log['loss'] break if self.first_column == "Epoch": __lowercase = int(state.epoch ) else: __lowercase = state.global_step __lowercase = 'eval' for k in metrics: if k.endswith('_loss' ): __lowercase = re.sub(R'\_loss$' , '' , _UpperCAmelCase ) __lowercase = metrics.pop('total_flos' , _UpperCAmelCase ) __lowercase = metrics.pop('epoch' , _UpperCAmelCase ) __lowercase = metrics.pop(f"""{metric_key_prefix}_runtime""" , _UpperCAmelCase ) __lowercase = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , _UpperCAmelCase ) __lowercase = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , _UpperCAmelCase ) __lowercase = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , _UpperCAmelCase ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": __lowercase = v else: __lowercase = k.split('_' ) __lowercase = ' '.join([part.capitalize() for part in splits[1:]] ) __lowercase = v self.training_tracker.write_line(_UpperCAmelCase ) self.training_tracker.remove_child() __lowercase = None # Evaluation takes a long time so we should force the next update. __lowercase = True def a__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[Any] ) -> int: """simple docstring""" self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=_UpperCAmelCase ) __lowercase = None
688
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"] lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor" lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding: """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor __lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) __lowercase = features['words'] __lowercase = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values __lowercase = features.pop('pixel_values' ) if return_overflowing_tokens is True: __lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] ) __lowercase = images return encoded_inputs def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" ) return images_with_overflow def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return ["input_ids", "bbox", "attention_mask", "image"] @property def a__ ( self : str ) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
688
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ : lowerCAmelCase__ : Optional[int] = "dummy_data" lowerCAmelCase__ : str = "datasets" lowerCAmelCase__ : Dict = False def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]: """simple docstring""" __lowercase = 0 __lowercase = dataset_name __lowercase = cache_dir __lowercase = use_local_dummy_data __lowercase = config # download_callbacks take a single url as input __lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __lowercase = str(_UpperCAmelCase ) # to be downloaded __lowercase = None __lowercase = None @property def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: __lowercase = self.download_dummy_data() return self._dummy_file @property def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __lowercase = cached_path( _UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase ) return os.path.join(_UpperCAmelCase , self.dummy_file_name ) @property def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" if self._bucket_url is None: __lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def a__ ( self : List[Any] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested __lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , (list, tuple) ): return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase ) else: return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.download_and_extract(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" return path def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" return {} def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for single_url in single_urls: download_callback(_UpperCAmelCase ) else: __lowercase = single_urls download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls] else: __lowercase = single_urls __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) __lowercase = value # make sure that values are unique if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url ) __lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __lowercase = [data_url[0]] * len(_UpperCAmelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(_UpperCAmelCase ) return dummy_data_list def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(_UpperCAmelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a__ ( self : List[str] ) -> Any: """simple docstring""" pass def a__ ( self : int ) -> str: """simple docstring""" pass def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" def _iter_archive_members(_UpperCAmelCase : Optional[Any] ): # this preserves the order of the members inside the ZIP archive __lowercase = Path(self.dummy_file ).parent __lowercase = path.relative_to(_UpperCAmelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_UpperCAmelCase ) __lowercase = Path(_UpperCAmelCase ) __lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' ) def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = [paths] for path in paths: if os.path.isfile(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ): if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(_UpperCAmelCase ): if filename.startswith(('.', '__') ): continue yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
688
1
SCREAMING_SNAKE_CASE__ = 256 # Modulus to hash a string SCREAMING_SNAKE_CASE__ = 100_0003 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> bool: __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = len(SCREAMING_SNAKE_CASE ) if p_len > t_len: return False __lowercase = 0 __lowercase = 0 __lowercase = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE ): __lowercase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __lowercase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __lowercase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __lowercase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __SCREAMING_SNAKE_CASE ( ) -> None: __lowercase = 'abc1abc12' __lowercase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __lowercase = 'alskfjaldsk23adsfabcabc' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 2) __lowercase = 'ABABX' __lowercase = 'ABABZABABYABABX' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 3) __lowercase = 'AAAB' __lowercase = 'ABAAAAAB' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 4) __lowercase = 'abcdabcy' __lowercase = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 5) __lowercase = 'Lü' __lowercase = 'Lüsai' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = 'Lue' assert not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
688
import math import sys import cva import numpy as np def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __lowercase = math.sqrt(SCREAMING_SNAKE_CASE ) __lowercase = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: __lowercase = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __lowercase = np.zeros((kernel_size, kernel_size) ) for i in range(0 , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE ): __lowercase = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray: __lowercase = np.zeros(img.shape ) __lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE ) __lowercase = val return imga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple: __lowercase = args[1] if args[1:] else '../image_data/lena.jpg' __lowercase = float(args[2] ) if args[2:] else 1.0 __lowercase = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase = int(args[4] ) __lowercase = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv) SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0) cva.imshow("""input image""", img) SCREAMING_SNAKE_CASE__ = img / 255 SCREAMING_SNAKE_CASE__ = out.astype("""float32""") SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) SCREAMING_SNAKE_CASE__ = out * 255 SCREAMING_SNAKE_CASE__ = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
688
1
import json import sys def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __lowercase = json.load(SCREAMING_SNAKE_CASE ) __lowercase = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(SCREAMING_SNAKE_CASE ): __lowercase = results[benchmark_name] __lowercase = benchmark_name.split('/' )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) __lowercase = '| metric |' __lowercase = '|--------|' __lowercase = '| new / old (diff) |' for metric_name in sorted(SCREAMING_SNAKE_CASE ): __lowercase = benchmark_res[metric_name] __lowercase = metric_vals['new'] __lowercase = metric_vals.get('old' , SCREAMING_SNAKE_CASE ) __lowercase = metric_vals.get('diff' , SCREAMING_SNAKE_CASE ) __lowercase = F""" {new_val:f}""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else 'None' if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(SCREAMING_SNAKE_CASE , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: f.writelines('\n'.join(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = sys.argv[1] SCREAMING_SNAKE_CASE__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
688
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" __lowercase = size if size is not None else {'height': 18, 'width': 18} __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = min_resolution __lowercase = max_resolution __lowercase = do_resize __lowercase = size __lowercase = apply_ocr def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = LayoutLMvaImageProcessingTester(self ) @property def a__ ( self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) ) def a__ ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a__ ( self : int ) -> Tuple: """simple docstring""" pass def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase ) self.assertIsInstance(encoding.boxes , _UpperCAmelCase ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def a__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase ) self.assertListEqual(encoding.boxes , _UpperCAmelCase ) # with apply_OCR = False __lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) __lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
688
1
from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: __lowercase = ksize + 1 __lowercase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(SCREAMING_SNAKE_CASE ): for x in range(SCREAMING_SNAKE_CASE ): # distance from center __lowercase = x - ksize // 2 __lowercase = y - ksize // 2 # degree to radiant __lowercase = theta / 180 * np.pi __lowercase = np.cos(_theta ) __lowercase = np.sin(_theta ) # get kernel x __lowercase = cos_theta * px + sin_theta * py # get kernel y __lowercase = -sin_theta * px + cos_theta * py # fill kernel __lowercase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image SCREAMING_SNAKE_CASE__ = imread("""../image_data/lena.jpg""") # turn image in gray scale value SCREAMING_SNAKE_CASE__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges SCREAMING_SNAKE_CASE__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: SCREAMING_SNAKE_CASE__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) SCREAMING_SNAKE_CASE__ = out / out.max() * 255 SCREAMING_SNAKE_CASE__ = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
688
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = version.parse("1.12" ) @property def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : Any ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : Dict ) -> int: """simple docstring""" return 12 def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
688
1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 0 ) -> list: __lowercase = length or len(SCREAMING_SNAKE_CASE ) __lowercase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowercase , __lowercase = list_data[i + 1], list_data[i] __lowercase = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
688
from pathlib import Path import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: return (gray > 127) & (gray <= 255) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray: __lowercase = np.zeros_like(SCREAMING_SNAKE_CASE ) __lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
688
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A__ ( unittest.TestCase ): def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Optional[Any]=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=5_12 , _UpperCAmelCase : str=16 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[int]=4 , ) -> List[str]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def a__ ( self : int ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self : str ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = FlaxAlbertModelTester(self ) @slow def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('albert-base-v2' ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Dict: """simple docstring""" __lowercase = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowercase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = (1, 11, 7_68) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
688
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = ["pixel_values"] def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None: """simple docstring""" super().__init__(**_UpperCAmelCase ) __lowercase = size if size is not None else {'height': 3_84, 'width': 3_84} __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase = do_convert_rgb def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray: """simple docstring""" __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __lowercase = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str: """simple docstring""" return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = resample if resample is not None else self.resample __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = size if size is not None else self.size __lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __lowercase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
688
1
import logging from transformers.configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = "masked_bert" def __init__( self : Tuple , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=5_12 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : str=1e-1_2 , _UpperCAmelCase : List[Any]=0 , _UpperCAmelCase : Tuple="topK" , _UpperCAmelCase : Dict="constant" , _UpperCAmelCase : Tuple=0.0 , **_UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = pruning_method __lowercase = mask_init __lowercase = mask_scale
688
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
688
1
import os import pytest from attr import dataclass SCREAMING_SNAKE_CASE__ = """us-east-1""" # defaults region @dataclass class A__ : lowerCAmelCase__ : str lowerCAmelCase__ : Optional[Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" lowerCAmelCase__ : Union[str, Any] = { "task_name": "mnli", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 500, "save_steps": 5500, } lowerCAmelCase__ : Any = {**hyperparameters, "max_steps": 1000} @property def a__ ( self : List[str] ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def a__ ( self : Optional[int] ) -> str: """simple docstring""" return f"""{self.framework}-transfromers-test""" @property def a__ ( self : List[Any] ) -> str: """simple docstring""" return f"""./tests/sagemaker/scripts/{self.framework}""" @property def a__ ( self : Dict ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: __lowercase = SageMakerTestEnvironment(framework=request.cls.framework )
688
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE ) # set absolute/relative position embeddings parameter __lowercase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WTQ": # run_task_main.py hparams __lowercase = 4 __lowercase = True # hparam_utils.py hparams __lowercase = 0.664_694 __lowercase = 0.207_951 __lowercase = 0.121_194 __lowercase = True __lowercase = True __lowercase = False __lowercase = 0.0_352_513 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __lowercase = 4 __lowercase = False # hparam_utils.py hparams __lowercase = 36.4_519 __lowercase = 0.903_421 __lowercase = 222.088 __lowercase = True __lowercase = True __lowercase = True __lowercase = 0.763_141 __lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE ) elif task == "TABFACT": __lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE ) elif task == "MLM": __lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE ) elif task == "INTERMEDIATE_PRETRAINING": __lowercase = TapasModel(config=SCREAMING_SNAKE_CASE ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) __lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
688
1