code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 10**9 ) -> int:
__lowercase = 1
__lowercase = 2
__lowercase = 0
__lowercase = 0
__lowercase = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__lowercase = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 688 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""")
SCREAMING_SNAKE_CASE__ = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
SCREAMING_SNAKE_CASE__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class A__ :
lowerCAmelCase__ : Optional[str] = field(
default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "The column name of the images in the files. If not set, will try to use 'image' or 'img'."} , )
lowerCAmelCase__ : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the training data."} )
lowerCAmelCase__ : Optional[str] = field(default=lowerCAmelCase__ , metadata={"help": "A folder containing the validation data."} )
lowerCAmelCase__ : Optional[float] = field(
default=0.15 , metadata={"help": "Percent to split off of train for validation."} )
lowerCAmelCase__ : int = field(default=32 , metadata={"help": "The size of the square patches to use for masking."} )
lowerCAmelCase__ : float = field(
default=0.6 , metadata={"help": "Percentage of patches to mask."} , )
lowerCAmelCase__ : Optional[int] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCAmelCase__ : Optional[int] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = {}
if self.train_dir is not None:
__lowercase = self.train_dir
if self.validation_dir is not None:
__lowercase = self.validation_dir
__lowercase = data_files if data_files else None
@dataclass
class A__ :
lowerCAmelCase__ : str = field(
default=lowerCAmelCase__ , metadata={
"help": (
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a "
"checkpoint identifier on the hub. "
"Don't set if you want to train a model from scratch."
)
} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Where do you want to store (cache) the pretrained models/datasets downloaded from the hub"} , )
lowerCAmelCase__ : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCAmelCase__ : str = field(default=lowerCAmelCase__ , metadata={"help": "Name or path of preprocessor config."} )
lowerCAmelCase__ : bool = field(
default=lowerCAmelCase__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
lowerCAmelCase__ : Optional[int] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"The size (resolution) of each image. If not specified, will use `image_size` of the configuration."
)
} , )
lowerCAmelCase__ : Optional[int] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration."
)
} , )
lowerCAmelCase__ : Optional[int] = field(
default=lowerCAmelCase__ , metadata={"help": "Stride to use for the encoder."} , )
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int]=1_92 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[int]=0.6 ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = input_size
__lowercase = mask_patch_size
__lowercase = model_patch_size
__lowercase = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError('Input size must be divisible by mask patch size' )
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError('Mask patch size must be divisible by model patch size' )
__lowercase = self.input_size // self.mask_patch_size
__lowercase = self.mask_patch_size // self.model_patch_size
__lowercase = self.rand_size**2
__lowercase = int(np.ceil(self.token_count * self.mask_ratio ) )
def __call__( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = np.random.permutation(self.token_count )[: self.mask_count]
__lowercase = np.zeros(self.token_count , dtype=_UpperCAmelCase )
__lowercase = 1
__lowercase = mask.reshape((self.rand_size, self.rand_size) )
__lowercase = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 )
return torch.tensor(mask.flatten() )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Optional[int]:
__lowercase = torch.stack([example['pixel_values'] for example in examples] )
__lowercase = torch.stack([example['mask'] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def __SCREAMING_SNAKE_CASE ( ) -> Any:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowercase , __lowercase , __lowercase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mim' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__lowercase = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
__lowercase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowercase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
__lowercase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
__lowercase = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE ) and data_args.train_val_split > 0.0:
__lowercase = ds['train'].train_test_split(data_args.train_val_split )
__lowercase = split['train']
__lowercase = split['test']
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowercase = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
__lowercase = AutoConfig.from_pretrained(model_args.config_name_or_path , **SCREAMING_SNAKE_CASE )
elif model_args.model_name_or_path:
__lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE )
else:
__lowercase = CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(SCREAMING_SNAKE_CASE , 'decoder_type' ):
__lowercase = 'simmim'
# adapt config
__lowercase = model_args.image_size if model_args.image_size is not None else config.image_size
__lowercase = model_args.patch_size if model_args.patch_size is not None else config.patch_size
__lowercase = (
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
'image_size': model_args.image_size,
'patch_size': model_args.patch_size,
'encoder_stride': model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
__lowercase = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **SCREAMING_SNAKE_CASE )
elif model_args.model_name_or_path:
__lowercase = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **SCREAMING_SNAKE_CASE )
else:
__lowercase = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
__lowercase = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
__lowercase = AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
__lowercase = AutoModelForMaskedImageModeling.from_config(SCREAMING_SNAKE_CASE )
if training_args.do_train:
__lowercase = ds['train'].column_names
else:
__lowercase = ds['validation'].column_names
if data_args.image_column_name is not None:
__lowercase = data_args.image_column_name
elif "image" in column_names:
__lowercase = 'image'
elif "img" in column_names:
__lowercase = 'img'
else:
__lowercase = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
__lowercase = Compose(
[
Lambda(lambda SCREAMING_SNAKE_CASE : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
# create mask generator
__lowercase = MaskGenerator(
input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , )
def preprocess_images(SCREAMING_SNAKE_CASE : int ):
__lowercase = [transforms(SCREAMING_SNAKE_CASE ) for image in examples[image_column_name]]
__lowercase = [mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
__lowercase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(SCREAMING_SNAKE_CASE )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
__lowercase = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(SCREAMING_SNAKE_CASE )
# Initialize our trainer
__lowercase = Trainer(
model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
__lowercase = None
if training_args.resume_from_checkpoint is not None:
__lowercase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowercase = last_checkpoint
__lowercase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
__lowercase = trainer.evaluate()
trainer.log_metrics('eval' , SCREAMING_SNAKE_CASE )
trainer.save_metrics('eval' , SCREAMING_SNAKE_CASE )
# Write model card and (optionally) push to hub
__lowercase = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'masked-image-modeling',
'dataset': data_args.dataset_name,
'tags': ['masked-image-modeling'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 688 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 1 |
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
SCREAMING_SNAKE_CASE__ = open # noqa: we just need to have a builtin inside this module to test it properly
| 688 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 1 |
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
SCREAMING_SNAKE_CASE__ = """__DUMMY_TRANSFORMERS_USER__"""
SCREAMING_SNAKE_CASE__ = """Dummy User"""
SCREAMING_SNAKE_CASE__ = """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"""
SCREAMING_SNAKE_CASE__ = """https://hub-ci.huggingface.co"""
SCREAMING_SNAKE_CASE__ = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
SCREAMING_SNAKE_CASE__ = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
SCREAMING_SNAKE_CASE__ = Path("""~/.huggingface/hub_ci_token""").expanduser()
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> int:
monkeypatch.setattr(
'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
monkeypatch.setattr('datasets.config.HF_ENDPOINT' , SCREAMING_SNAKE_CASE )
monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Dict:
monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> List[str]:
HfFolder.save_token(SCREAMING_SNAKE_CASE )
yield
HfFolder.delete_token()
@pytest.fixture(scope='session' )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
return HfApi(endpoint=SCREAMING_SNAKE_CASE )
@pytest.fixture(scope='session' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi ) -> Optional[int]:
__lowercase = HfFolder.get_token()
HfFolder.save_token(SCREAMING_SNAKE_CASE )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
def _cleanup_repo(SCREAMING_SNAKE_CASE : str ):
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
return _cleanup_repo
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]:
@contextmanager
def _temporary_repo(SCREAMING_SNAKE_CASE : Tuple ):
try:
yield repo_id
finally:
cleanup_repo(SCREAMING_SNAKE_CASE )
return _temporary_repo
@pytest.fixture(scope='session' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ) -> Any:
__lowercase = F"""repo_txt_data-{int(time.time() * 10E3 )}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data/text_data.txt' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]:
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope='session' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> str:
__lowercase = F"""repo_zipped_txt_data-{int(time.time() * 10E3 )}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope='session' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : HfApi , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]:
__lowercase = F"""repo_zipped_img_data-{int(time.time() * 10E3 )}"""
__lowercase = F"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' , private=SCREAMING_SNAKE_CASE )
hf_api.upload_file(
token=SCREAMING_SNAKE_CASE , path_or_fileobj=str(SCREAMING_SNAKE_CASE ) , path_in_repo='data.zip' , repo_id=SCREAMING_SNAKE_CASE , repo_type='dataset' , )
yield repo_id
try:
hf_api.delete_repo(SCREAMING_SNAKE_CASE , token=SCREAMING_SNAKE_CASE , repo_type='dataset' )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ) -> List[str]:
return hf_private_dataset_repo_zipped_img_data_
| 688 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 1 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class A__ ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
lowerCAmelCase__ : str = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE , ctypes.byref(SCREAMING_SNAKE_CASE ) )
__lowercase = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE , ctypes.byref(SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write('\033[?25l' )
sys.stdout.flush()
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
if os.name == "nt":
__lowercase = CursorInfo()
__lowercase = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE , ctypes.byref(SCREAMING_SNAKE_CASE ) )
__lowercase = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE , ctypes.byref(SCREAMING_SNAKE_CASE ) )
elif os.name == "posix":
sys.stdout.write('\033[?25h' )
sys.stdout.flush()
@contextmanager
def __SCREAMING_SNAKE_CASE ( ) -> int:
try:
hide_cursor()
yield
finally:
show_cursor()
| 688 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='utf-8' , check=_UpperCAmelCase , )
assert hasattr(self , 'env' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : int ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = f"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}"""
# distributed data settings
__lowercase = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_UpperCAmelCase , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version='py36' , )
def a__ ( self : List[Any] , _UpperCAmelCase : Dict ) -> Optional[Any]:
"""simple docstring"""
TrainingJobAnalytics(_UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(2,)] )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.create_estimator(_UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
__lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] )
__lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__lowercase = (
Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy )
assert all(t <= self.results['eval_loss'] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , 'w' ) as outfile:
json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _UpperCAmelCase )
| 688 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spm_char.model"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""",
"""microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""",
"""microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""",
}
}
SCREAMING_SNAKE_CASE__ = {
"""microsoft/speecht5_asr""": 1024,
"""microsoft/speecht5_tts""": 1024,
"""microsoft/speecht5_vc""": 1024,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES
lowerCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : List[Any] = ["input_ids", "attention_mask"]
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str="<s>" , _UpperCAmelCase : Any="</s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : List[str]="<pad>" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ) -> None:
"""simple docstring"""
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__lowercase = vocab_file
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
@property
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
return self.sp_model.get_piece_size()
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self : Optional[Any] , _UpperCAmelCase : Dict ) -> Any:
"""simple docstring"""
__lowercase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return self.sp_model.piece_to_id(_UpperCAmelCase )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
__lowercase = self.sp_model.IdToPiece(_UpperCAmelCase )
return token
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> int:
"""simple docstring"""
__lowercase = []
__lowercase = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_UpperCAmelCase ) + token
__lowercase = []
else:
current_sub_tokens.append(_UpperCAmelCase )
out_string += self.sp_model.decode(_UpperCAmelCase )
return out_string.strip()
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__lowercase = [1]
if token_ids_a is None:
return ([0] * len(_UpperCAmelCase )) + suffix_ones
return ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 688 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = "ClapFeatureExtractor"
lowerCAmelCase__ : List[str] = ("RobertaTokenizer", "RobertaTokenizerFast")
def __init__( self : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] ) -> int:
"""simple docstring"""
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Any ) -> int:
"""simple docstring"""
__lowercase = kwargs.pop('sampling_rate' , _UpperCAmelCase )
if text is None and audios is None:
raise ValueError('You have to specify either text or audios. Both cannot be none.' )
if text is not None:
__lowercase = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if audios is not None:
__lowercase = self.feature_extractor(
_UpperCAmelCase , sampling_rate=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if text is not None and audios is not None:
__lowercase = audio_features.input_features
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def a__ ( self : Dict , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.tokenizer.model_input_names
__lowercase = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
| 688 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 1 |
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
SCREAMING_SNAKE_CASE__ = {
"""<""": operator.lt,
"""<=""": operator.le,
"""==""": operator.eq,
"""!=""": operator.ne,
""">=""": operator.ge,
""">""": operator.gt,
}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
if got_ver is None or want_ver is None:
raise ValueError(
F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider"""
F""" reinstalling {pkg}.""" )
if not ops[op](version.parse(SCREAMING_SNAKE_CASE ) , version.parse(SCREAMING_SNAKE_CASE ) ):
raise ImportError(
F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> None:
__lowercase = F"""\n{hint}""" if hint is not None else ''
# non-versioned check
if re.match(R'^[\w_\-\d]+$' , SCREAMING_SNAKE_CASE ):
__lowercase , __lowercase , __lowercase = requirement, None, None
else:
__lowercase = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , SCREAMING_SNAKE_CASE )
if not match:
raise ValueError(
'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'
F""" got {requirement}""" )
__lowercase , __lowercase = match[0]
__lowercase = want_full.split(',' ) # there could be multiple requirements
__lowercase = {}
for w in want_range:
__lowercase = re.findall(R'^([\s!=<>]{1,2})(.+)' , SCREAMING_SNAKE_CASE )
if not match:
raise ValueError(
'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'
F""" but got {requirement}""" )
__lowercase , __lowercase = match[0]
__lowercase = want_ver
if op not in ops:
raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" )
# special case
if pkg == "python":
__lowercase = '.'.join([str(SCREAMING_SNAKE_CASE ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return
# check if any version is installed
try:
__lowercase = importlib.metadata.version(SCREAMING_SNAKE_CASE )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Dict:
__lowercase = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'
return require_version(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 1 |
import os
import unittest
from transformers import LxmertTokenizer, LxmertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LxmertTokenizer
lowerCAmelCase__ : Dict = LxmertTokenizerFast
lowerCAmelCase__ : Optional[int] = True
lowerCAmelCase__ : str = True
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : int , _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer()
__lowercase = 'I was born in 92000, and this is falsé.'
__lowercase = tokenizer.tokenize(_UpperCAmelCase )
__lowercase = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
__lowercase = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.get_rust_tokenizer()
__lowercase = tokenizer.encode(_UpperCAmelCase )
__lowercase = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
| 688 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 1 |
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = (KDPMaDiscreteScheduler,)
lowerCAmelCase__ : int = 10
def a__ ( self : Union[str, Any] , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {
'num_train_timesteps': 11_00,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_UpperCAmelCase )
return config
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(prediction_type='v_prediction' )
__lowercase = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowercase = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
__lowercase = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(_UpperCAmelCase ) )
__lowercase = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6_9_3_4e-0_7 ) < 1e-2
assert abs(result_mean.item() - 6.1_1_1_2e-1_0 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2e-0_7 ) < 1e-2
assert abs(result_mean.item() - 0.0_002 ) < 1e-3
def a__ ( self : str ) -> Dict:
"""simple docstring"""
if torch_device == "mps":
return
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma
__lowercase = sample.to(_UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
__lowercase = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(_UpperCAmelCase ) )
__lowercase = torch.mean(torch.abs(_UpperCAmelCase ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if torch_device == "mps":
return
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase )
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
__lowercase = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = output.prev_sample
__lowercase = torch.sum(torch.abs(_UpperCAmelCase ) )
__lowercase = torch.mean(torch.abs(_UpperCAmelCase ) )
if str(_UpperCAmelCase ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1e-2
assert abs(result_mean.item() - 0.0_266 ) < 1e-3
| 688 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 4000000 ) -> int:
__lowercase = []
__lowercase , __lowercase = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = b, a + b
return sum(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 688 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 1 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 1 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 1 |
import unittest
from transformers import RoFormerTokenizer, RoFormerTokenizerFast
from transformers.testing_utils import require_rjieba, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_rjieba
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = RoFormerTokenizer
lowerCAmelCase__ : Tuple = RoFormerTokenizerFast
lowerCAmelCase__ : Any = True
lowerCAmelCase__ : int = True
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().setUp()
def a__ ( self : Any , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_UpperCAmelCase )
def a__ ( self : Dict , **_UpperCAmelCase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **_UpperCAmelCase )
def a__ ( self : str ) -> Any:
"""simple docstring"""
__lowercase = '永和服装饰品有限公司,今天天气非常好'
__lowercase = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好'
return input_text, output_text
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = self.get_tokenizer()
__lowercase , __lowercase = self.get_chinese_input_output_texts()
__lowercase = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , output_text.split() )
__lowercase = tokens + [tokenizer.unk_token]
__lowercase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_rust_tokenizer()
__lowercase , __lowercase = self.get_chinese_input_output_texts()
__lowercase = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , output_text.split() )
__lowercase = tokens + [tokenizer.unk_token]
__lowercase = [2_29_43, 2_13_32, 3_44_31, 4_59_04, 1_17, 3_06, 12_31, 12_31, 26_53, 3_39_94, 12_66, 1_00]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : str ) -> Any:
"""simple docstring"""
pass
def a__ ( self : Optional[int] ) -> int:
"""simple docstring"""
pass
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
pass
| 688 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 1 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""",
"""facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""facebook/esm2_t6_8M_UR50D""": 1024,
"""facebook/esm2_t12_35M_UR50D""": 1024,
}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> int:
with open(SCREAMING_SNAKE_CASE , 'r' ) as f:
__lowercase = f.read().splitlines()
return [l.strip() for l in lines]
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES
lowerCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : Union[str, Any] = ["input_ids", "attention_mask"]
def __init__( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]="<unk>" , _UpperCAmelCase : List[str]="<cls>" , _UpperCAmelCase : Optional[int]="<pad>" , _UpperCAmelCase : Tuple="<mask>" , _UpperCAmelCase : Any="<eos>" , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = load_vocab_file(_UpperCAmelCase )
__lowercase = dict(enumerate(self.all_tokens ) )
__lowercase = {tok: ind for ind, tok in enumerate(self.all_tokens )}
__lowercase = unk_token
__lowercase = cls_token
__lowercase = pad_token
__lowercase = mask_token
__lowercase = eos_token
__lowercase = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
return self._id_to_token.get(_UpperCAmelCase , self.unk_token )
def a__ ( self : int , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def a__ ( self : Any , _UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Any:
"""simple docstring"""
return text.split()
def a__ ( self : List[Any] , _UpperCAmelCase : str=False ) -> Dict:
"""simple docstring"""
return len(self._id_to_token )
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens )}
def a__ ( self : Optional[int] , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
return self._token_to_id.get(_UpperCAmelCase , self._token_to_id.get(self.unk_token ) )
def a__ ( self : Optional[int] , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
return self._id_to_token.get(_UpperCAmelCase , self.unk_token )
def a__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.cls_token_id]
__lowercase = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def a__ ( self : List[Any] , _UpperCAmelCase : List , _UpperCAmelCase : Optional[List] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
__lowercase = [1] + ([0] * len(_UpperCAmelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(_UpperCAmelCase ) + [1]
return mask
def a__ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = os.path.join(_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' )
with open(_UpperCAmelCase , 'w' ) as f:
f.write('\n'.join(self.all_tokens ) )
return (vocab_file,)
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : Union[List[str], List[AddedToken]] , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
return super()._add_tokens(_UpperCAmelCase , special_tokens=_UpperCAmelCase )
| 688 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
"""configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""VivitImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""VivitModel""",
"""VivitPreTrainedModel""",
"""VivitForVideoClassification""",
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 1 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
SCREAMING_SNAKE_CASE__ = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
SCREAMING_SNAKE_CASE__ = """main"""
# Default branch name
SCREAMING_SNAKE_CASE__ = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2"""
# One particular commit (not the top of `main`)
SCREAMING_SNAKE_CASE__ = """aaaaaaa"""
# This commit does not exist, so we should 404.
SCREAMING_SNAKE_CASE__ = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684"""
# Sha-1 of config.json on the top of `main`, for checking purposes
SCREAMING_SNAKE_CASE__ = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3"""
@contextlib.contextmanager
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
print('Welcome!' )
yield
print('Bye!' )
@contextlib.contextmanager
def __SCREAMING_SNAKE_CASE ( ) -> str:
print('Bonjour!' )
yield
print('Au revoir!' )
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> int:
"""simple docstring"""
assert transformers.__spec__ is not None
assert importlib.util.find_spec('transformers' ) is not None
class A__ ( unittest.TestCase ):
@unittest.mock.patch('sys.stdout' , new_callable=io.StringIO )
def a__ ( self : str , _UpperCAmelCase : Optional[Any] ) -> List[str]:
"""simple docstring"""
with ContextManagers([] ):
print('Transformers are awesome!' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' )
@unittest.mock.patch('sys.stdout' , new_callable=io.StringIO )
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Optional[Any]:
"""simple docstring"""
with ContextManagers([context_en()] ):
print('Transformers are awesome!' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' )
@unittest.mock.patch('sys.stdout' , new_callable=io.StringIO )
def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
with ContextManagers([context_fr(), context_en()] ):
print('Transformers are awesome!' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' )
@require_torch
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
self.assertEqual(find_labels(_UpperCAmelCase ) , ['labels'] )
self.assertEqual(find_labels(_UpperCAmelCase ) , ['labels', 'next_sentence_label'] )
self.assertEqual(find_labels(_UpperCAmelCase ) , ['start_positions', 'end_positions'] )
class A__ ( lowerCAmelCase__ ):
pass
self.assertEqual(find_labels(_UpperCAmelCase ) , ['labels'] )
@require_tf
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
self.assertEqual(find_labels(_UpperCAmelCase ) , ['labels'] )
self.assertEqual(find_labels(_UpperCAmelCase ) , ['labels', 'next_sentence_label'] )
self.assertEqual(find_labels(_UpperCAmelCase ) , ['start_positions', 'end_positions'] )
class A__ ( lowerCAmelCase__ ):
pass
self.assertEqual(find_labels(_UpperCAmelCase ) , ['labels'] )
@require_flax
def a__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
self.assertEqual(find_labels(_UpperCAmelCase ) , [] )
self.assertEqual(find_labels(_UpperCAmelCase ) , [] )
self.assertEqual(find_labels(_UpperCAmelCase ) , [] )
class A__ ( lowerCAmelCase__ ):
pass
self.assertEqual(find_labels(_UpperCAmelCase ) , [] )
| 688 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 1 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class A__ ( lowerCAmelCase__ ):
def __lt__( self : Optional[int] , _UpperCAmelCase : Dict ) -> List[Any]:
"""simple docstring"""
return self[-1] < other[-1]
def __eq__( self : Optional[int] , _UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
return self[-1] == other[-1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> list:
__lowercase = []
# sort into stacks
for element in collection:
__lowercase = Stack([element] )
__lowercase = bisect_left(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if i != len(SCREAMING_SNAKE_CASE ):
stacks[i].append(SCREAMING_SNAKE_CASE )
else:
stacks.append(SCREAMING_SNAKE_CASE )
# use a heap-based merge to merge stack efficiently
__lowercase = merge(*(reversed(SCREAMING_SNAKE_CASE ) for stack in stacks) )
return collection
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by a comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item) for item in user_input.split(""",""")]
print(patience_sort(unsorted))
| 688 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 1 |
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
SCREAMING_SNAKE_CASE__ = """."""
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
SCREAMING_SNAKE_CASE__ = [
"""Assert""",
"""AssignVariableOp""",
"""EmptyTensorList""",
"""MergeV2Checkpoints""",
"""ReadVariableOp""",
"""ResourceGather""",
"""RestoreV2""",
"""SaveV2""",
"""ShardedFilename""",
"""StatefulPartitionedCall""",
"""StaticRegexFullMatch""",
"""VarHandleOp""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ) -> List[str]:
__lowercase = SavedModel()
__lowercase = []
with open(os.path.join(SCREAMING_SNAKE_CASE , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f:
__lowercase = json.load(SCREAMING_SNAKE_CASE )['opsets']
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(SCREAMING_SNAKE_CASE )] )
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
saved_model.ParseFromString(f.read() )
__lowercase = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
__lowercase = sorted(SCREAMING_SNAKE_CASE )
__lowercase = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(SCREAMING_SNAKE_CASE )
if strict and len(SCREAMING_SNAKE_CASE ) > 0:
raise Exception(F"""Found the following incompatible ops for the opset {opset}:\n""" + incompatible_ops )
elif len(SCREAMING_SNAKE_CASE ) > 0:
print(F"""Found the following incompatible ops for the opset {opset}:""" )
print(*SCREAMING_SNAKE_CASE , sep='\n' )
else:
print(F"""The saved model {saved_model_path} can properly be converted with ONNX.""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""")
parser.add_argument(
"""--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested."""
)
parser.add_argument(
"""--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model."""
)
parser.add_argument(
"""--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)"""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 688 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 1 |
import json
import os
import unittest
from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast
from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Tuple = OpenAIGPTTokenizer
lowerCAmelCase__ : Optional[int] = OpenAIGPTTokenizerFast
lowerCAmelCase__ : Any = True
lowerCAmelCase__ : Dict = False
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowercase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', '']
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(_UpperCAmelCase ) )
def a__ ( self : Dict , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
return "lower newer", "lower newer"
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file )
__lowercase = 'lower'
__lowercase = ['low', 'er</w>']
__lowercase = tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = tokens + ['<unk>']
__lowercase = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : List[str]=15 ) -> Any:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
# Simple input
__lowercase = 'This is a simple input'
__lowercase = ['This is a simple input 1', 'This is a simple input 2']
__lowercase = ('This is a simple input', 'This is a pair')
__lowercase = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
pass
@require_ftfy
@require_spacy
@require_tokenizers
class A__ ( lowerCAmelCase__ ):
pass
| 688 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 1 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE__ = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple=8 ) -> Tuple:
__lowercase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowercase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A__ ( lowerCAmelCase__ ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ) -> int:
"""simple docstring"""
super().__init__()
self.register_modules(
unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , movq=_UpperCAmelCase , )
__lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def a__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> List[str]:
"""simple docstring"""
if latents is None:
__lowercase = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
__lowercase = latents.to(_UpperCAmelCase )
__lowercase = latents * scheduler.init_noise_sigma
return latents
def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any]=0 ) -> Union[str, Any]:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
__lowercase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : Dict=0 ) -> Dict:
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=_UpperCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowercase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowercase , __lowercase = cpu_offload_with_hook(_UpperCAmelCase , _UpperCAmelCase , prev_module_hook=_UpperCAmelCase )
# We'll offload the last model manually.
__lowercase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_UpperCAmelCase , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(_UpperCAmelCase )
def __call__( self : Any , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self._execution_device
__lowercase = guidance_scale > 1.0
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = torch.cat(_UpperCAmelCase , dim=0 )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = torch.cat(_UpperCAmelCase , dim=0 )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = torch.cat(_UpperCAmelCase , dim=0 )
__lowercase = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
__lowercase = image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = negative_image_embeds.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = hint.repeat_interleave(_UpperCAmelCase , dim=0 )
__lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCAmelCase )
__lowercase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase , device=_UpperCAmelCase )
__lowercase = self.scheduler.timesteps
__lowercase = self.movq.config.latent_channels
__lowercase , __lowercase = downscale_height_and_width(_UpperCAmelCase , _UpperCAmelCase , self.movq_scale_factor )
# create initial latent
__lowercase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.scheduler , )
for i, t in enumerate(self.progress_bar(_UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = {'image_embeds': image_embeds, 'hint': hint}
__lowercase = self.unet(
sample=_UpperCAmelCase , timestep=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , added_cond_kwargs=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0]
if do_classifier_free_guidance:
__lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 )
__lowercase , __lowercase = noise_pred.chunk(2 )
__lowercase , __lowercase = variance_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase , )[0]
# post-processing
__lowercase = self.movq.decode(_UpperCAmelCase , force_not_quantize=_UpperCAmelCase )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
__lowercase = image * 0.5 + 0.5
__lowercase = image.clamp(0 , 1 )
__lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 688 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""EncoderDecoderModel"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""FlaxEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 1 |
from typing import TYPE_CHECKING
from ..utils import _LazyModule
SCREAMING_SNAKE_CASE__ = {
"""config""": [
"""EXTERNAL_DATA_FORMAT_SIZE_LIMIT""",
"""OnnxConfig""",
"""OnnxConfigWithPast""",
"""OnnxSeq2SeqConfigWithPast""",
"""PatchingSpec""",
],
"""convert""": ["""export""", """validate_model_outputs"""],
"""features""": ["""FeaturesManager"""],
"""utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 1 |
from math import isqrt
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict = 10**8 ) -> int:
__lowercase = calculate_prime_numbers(max_number // 2 )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE_ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 700 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""],
"""tokenization_convbert""": ["""ConvBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""ConvBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvBertForMaskedLM""",
"""ConvBertForMultipleChoice""",
"""ConvBertForQuestionAnswering""",
"""ConvBertForSequenceClassification""",
"""ConvBertForTokenClassification""",
"""ConvBertLayer""",
"""ConvBertModel""",
"""ConvBertPreTrainedModel""",
"""load_tf_weights_in_convbert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFConvBertForMaskedLM""",
"""TFConvBertForMultipleChoice""",
"""TFConvBertForQuestionAnswering""",
"""TFConvBertForSequenceClassification""",
"""TFConvBertForTokenClassification""",
"""TFConvBertLayer""",
"""TFConvBertModel""",
"""TFConvBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 701 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 0 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
SCREAMING_SNAKE_CASE__ = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="""relu"""))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="""relu"""))
classifier.add(layers.Dense(units=1, activation="""sigmoid"""))
# Compiling the CNN
classifier.compile(
optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
SCREAMING_SNAKE_CASE__ = train_datagen.flow_from_directory(
"""dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
SCREAMING_SNAKE_CASE__ = test_datagen.flow_from_directory(
"""dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary"""
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("""cnn.h5""")
# Part 3 - Making new predictions
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.load_img(
"""dataset/single_prediction/image.png""", target_size=(64, 64)
)
SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.img_to_array(test_image)
SCREAMING_SNAKE_CASE__ = np.expand_dims(test_image, axis=0)
SCREAMING_SNAKE_CASE__ = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
SCREAMING_SNAKE_CASE__ = 'Normal'
if result[0][0] == 1:
SCREAMING_SNAKE_CASE__ = 'Abnormality detected'
| 702 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 0 |
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( _SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ : Any = ["audio_values", "audio_mask"]
def __init__( self : List[str] , _UpperCAmelCase : str=20_48 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : List[str]=[16, 16] , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : Tuple=4_41_00 , _UpperCAmelCase : int=86 , _UpperCAmelCase : Tuple=20_48 , _UpperCAmelCase : Union[str, Any]=0.0 , **_UpperCAmelCase : int , ) -> List[str]:
"""simple docstring"""
super().__init__(
feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ , )
__lowercase = spectrogram_length
__lowercase = num_channels
__lowercase = patch_size
__lowercase = feature_size // self.patch_size[1]
__lowercase = n_fft
__lowercase = sampling_rate // hop_length_to_sampling_rate
__lowercase = sampling_rate
__lowercase = padding_value
__lowercase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A_ , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=A_ , norm='slaney' , mel_scale='slaney' , ).T
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] ) -> np.ndarray:
"""simple docstring"""
__lowercase = spectrogram(
A_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , )
__lowercase = log_spec[:, :-1]
__lowercase = log_spec - 20.0
__lowercase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Any] = True , _UpperCAmelCase : List[Any] = None , _UpperCAmelCase : Optional[Any] = False , _UpperCAmelCase : Any = False , **_UpperCAmelCase : List[str] , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'This feature extractor is set to support sampling rate'
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
__lowercase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__lowercase = is_batched_numpy or (
isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__lowercase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(A_ , np.ndarray ):
__lowercase = np.asarray(A_ , dtype=np.floataa )
elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__lowercase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__lowercase = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
__lowercase = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , A_ ):
__lowercase = [np.asarray(A_ , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
__lowercase = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
__lowercase = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
__lowercase = np.array(A_ ).astype(np.floataa )
# convert into correct format for padding
__lowercase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
__lowercase = np.ones([len(A_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
__lowercase = padded_audio_features * self.padding_value
for i in range(len(A_ ) ):
__lowercase = audio_features[i]
__lowercase = feature
# return as BatchFeature
if return_attention_mask:
__lowercase = {'audio_values': padded_audio_features, 'audio_mask': audio_mask}
else:
__lowercase = {'audio_values': padded_audio_features}
__lowercase = BatchFeature(data=A_ , tensor_type=A_ )
return encoded_inputs
| 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[Any] = DiTPipeline
lowerCAmelCase__ : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
lowerCAmelCase__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
lowerCAmelCase__ : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
lowerCAmelCase__ : Tuple = False
def a__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCamelCase_ , activation_fn='gelu-approximate' , num_embeds_ada_norm=10_00 , norm_type='ada_norm_zero' , norm_elementwise_affine=UpperCamelCase_ , )
__lowercase = AutoencoderKL()
__lowercase = DDIMScheduler()
__lowercase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler}
return components
def a__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str]=0 ) -> List[str]:
"""simple docstring"""
if str(UpperCamelCase_ ).startswith('mps' ):
__lowercase = torch.manual_seed(UpperCamelCase_ )
else:
__lowercase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
__lowercase = {
'class_labels': [1],
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = 'cpu'
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
__lowercase = self.get_dummy_inputs(UpperCamelCase_ )
__lowercase = pipe(**UpperCamelCase_ ).images
__lowercase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
__lowercase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] )
__lowercase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1e-3 )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=UpperCamelCase_ , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = torch.manual_seed(0 )
__lowercase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
__lowercase = ['vase', 'umbrella', 'white shark', 'white wolf']
__lowercase = pipe.get_label_ids(UpperCamelCase_ )
__lowercase = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=40 , output_type='np' ).images
for word, image in zip(UpperCamelCase_ , UpperCamelCase_ ):
__lowercase = load_numpy(
f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-2
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
__lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
__lowercase = ['vase', 'umbrella']
__lowercase = pipe.get_label_ids(UpperCamelCase_ )
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=25 , output_type='np' ).images
for word, image in zip(UpperCamelCase_ , UpperCamelCase_ ):
__lowercase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
f"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 704 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
SCREAMING_SNAKE_CASE__ = False
try:
SCREAMING_SNAKE_CASE__ = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class A__ :
def __init__( self : Optional[int] , _UpperCAmelCase : str = None , _UpperCAmelCase : list = [] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = choices
__lowercase = prompt
if sys.platform == "win32":
__lowercase = "*"
else:
__lowercase = "➔ "
def a__ ( self : int , _UpperCAmelCase : int , _UpperCAmelCase : str = "" ) -> Optional[int]:
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , __lowerCamelCase )
else:
forceWrite(self.choices[index] , __lowerCamelCase )
def a__ ( self : Dict , _UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
if index == self.position:
forceWrite(f""" {self.arrow_char} """ )
self.write_choice(__lowerCamelCase )
else:
forceWrite(f""" {self.choices[index]}""" )
reset_cursor()
def a__ ( self : Any , _UpperCAmelCase : Direction , _UpperCAmelCase : int = 1 ) -> List[Any]:
"""simple docstring"""
__lowercase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(__lowerCamelCase )
move_cursor(__lowerCamelCase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP['up'] )
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP['down'] )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP['newline'] )
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , 'DOWN' )
return self.position
@input.mark(KEYMAP['interrupt'] )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , 'DOWN' )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(__lowerCamelCase )] for number in range(10 )] )
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
__lowercase = int(chr(self.current_selection ) )
__lowercase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , __lowerCamelCase )
else:
return
else:
return
def a__ ( self : List[str] , _UpperCAmelCase : int = 0 ) -> List[Any]:
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , '\n' )
if in_colab:
forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' )
else:
forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' )
__lowercase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(__lowerCamelCase )
forceWrite('\n' )
move_cursor(len(self.choices ) - self.position , 'UP' )
with cursor.hide():
while True:
if in_colab:
try:
__lowercase = int(builtins.input() )
except ValueError:
__lowercase = default_choice
else:
__lowercase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , 'UP' )
clear_line()
self.write_choice(__lowerCamelCase , '\n' )
return choice
| 705 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 0 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = RobertaPreLayerNormConfig.from_pretrained(
lowerCamelCase_ , architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__lowercase = torch.load(hf_hub_download(repo_id=lowerCamelCase_ , filename='pytorch_model.bin' ) )
__lowercase = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__lowercase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__lowercase = tensor_value
__lowercase = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ )
model.save_pretrained(lowerCamelCase_ )
# convert tokenizer
__lowercase = AutoTokenizer.from_pretrained(lowerCamelCase_ )
tokenizer.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
snake_case_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint-repo""",
default=None,
type=str,
required=True,
help="""Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
snake_case_ = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 706 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 0 |
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCAmelCase_ ):
lowerCAmelCase__ : List[str] = (PNDMScheduler,)
lowerCAmelCase__ : Tuple = (('num_inference_steps', 50),)
def a__ ( self : List[Any] , **_UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'num_train_timesteps': 10_00,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_lowercase )
return config
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = dict(self.forward_default_kwargs )
__lowercase = kwargs.pop('num_inference_steps' , _lowercase )
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
__lowercase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__lowercase = self.get_scheduler_config(**_lowercase )
__lowercase = scheduler_class(**_lowercase )
scheduler.set_timesteps(_lowercase )
# copy over dummy past residuals
__lowercase = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowercase )
__lowercase = scheduler_class.from_pretrained(_lowercase )
new_scheduler.set_timesteps(_lowercase )
# copy over dummy past residuals
__lowercase = dummy_past_residuals[:]
__lowercase = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
__lowercase = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
__lowercase = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
__lowercase = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
pass
def a__ ( self : int , _UpperCAmelCase : int=0 , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = dict(self.forward_default_kwargs )
__lowercase = kwargs.pop('num_inference_steps' , _lowercase )
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
__lowercase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_lowercase )
scheduler.set_timesteps(_lowercase )
# copy over dummy past residuals (must be after setting timesteps)
__lowercase = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_lowercase )
__lowercase = scheduler_class.from_pretrained(_lowercase )
# copy over dummy past residuals
new_scheduler.set_timesteps(_lowercase )
# copy over dummy past residual (must be after setting timesteps)
__lowercase = dummy_past_residuals[:]
__lowercase = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
__lowercase = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
__lowercase = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
__lowercase = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def a__ ( self : str , **_UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(**_lowercase )
__lowercase = scheduler_class(**_lowercase )
__lowercase = 10
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter
scheduler.set_timesteps(_lowercase )
for i, t in enumerate(scheduler.prk_timesteps ):
__lowercase = model(_lowercase , _lowercase )
__lowercase = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
__lowercase = model(_lowercase , _lowercase )
__lowercase = scheduler.step_plms(_lowercase , _lowercase , _lowercase ).prev_sample
return sample
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = dict(self.forward_default_kwargs )
__lowercase = kwargs.pop('num_inference_steps' , _lowercase )
for scheduler_class in self.scheduler_classes:
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_lowercase )
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
if num_inference_steps is not None and hasattr(_lowercase , 'set_timesteps' ):
scheduler.set_timesteps(_lowercase )
elif num_inference_steps is not None and not hasattr(_lowercase , 'set_timesteps' ):
__lowercase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__lowercase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__lowercase = dummy_past_residuals[:]
__lowercase = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample
__lowercase = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__lowercase = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase ).prev_sample
__lowercase = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_lowercase )
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_lowercase )
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(steps_offset=1 )
__lowercase = scheduler_class(**_lowercase )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase )
def a__ ( self : Any ) -> int:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_lowercase )
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_lowercase )
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
for t in [1, 5, 10]:
self.check_over_forward(time_step=_lowercase )
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_lowercase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = 27
for scheduler_class in self.scheduler_classes:
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_lowercase )
scheduler.set_timesteps(_lowercase )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
__lowercase = scheduler.step_prk(_lowercase , _lowercase , _lowercase ).prev_sample
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
with self.assertRaises(_lowercase ):
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_lowercase )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.full_loop()
__lowercase = torch.sum(torch.abs(_lowercase ) )
__lowercase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2
assert abs(result_mean.item() - 0.2_580 ) < 1e-3
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.full_loop(prediction_type='v_prediction' )
__lowercase = torch.sum(torch.abs(_lowercase ) )
__lowercase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 67.3_986 ) < 1e-2
assert abs(result_mean.item() - 0.0_878 ) < 1e-3
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 )
__lowercase = torch.sum(torch.abs(_lowercase ) )
__lowercase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2
assert abs(result_mean.item() - 0.2_995 ) < 1e-3
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01 )
__lowercase = torch.sum(torch.abs(_lowercase ) )
__lowercase = torch.mean(torch.abs(_lowercase ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2
assert abs(result_mean.item() - 0.2_434 ) < 1e-3
| 707 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 0 |
'''simple docstring'''
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
return [
int(1000 * (box[0] / width) ),
int(1000 * (box[1] / height) ),
int(1000 * (box[2] / width) ),
int(1000 * (box[3] / height) ),
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Optional[str] , SCREAMING_SNAKE_CASE : Optional[str] ) -> Optional[Any]:
__lowercase = to_pil_image(__A )
__lowercase = pil_image.size
__lowercase = pytesseract.image_to_data(__A , lang=__A , output_type='dict' , config=__A )
__lowercase = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height''']
# filter empty words and corresponding coordinates
__lowercase = [idx for idx, word in enumerate(__A ) if not word.strip()]
__lowercase = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices]
__lowercase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
__lowercase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
__lowercase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
__lowercase = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
__lowercase = []
for x, y, w, h in zip(__A , __A , __A , __A ):
__lowercase = [x, y, x + w, y + h]
actual_boxes.append(__A )
# finally, normalize the bounding boxes
__lowercase = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(__A , __A , __A ) )
assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class A__ ( __A ):
lowerCAmelCase__ : Optional[Any] = ["pixel_values"]
def __init__( self : List[Any] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : float = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[float, Iterable[float]] = None , _UpperCAmelCase : Union[float, Iterable[float]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = "" , **_UpperCAmelCase : Tuple , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowercase = get_size_dict(_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_value
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD
__lowercase = apply_ocr
__lowercase = ocr_lang
__lowercase = tesseract_config
def a__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" )
__lowercase = (size['''height'''], size['''width'''])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, Iterable[float]] , _UpperCAmelCase : Union[float, Iterable[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : ImageInput , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : bool = None , _UpperCAmelCase : float = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Union[float, Iterable[float]] = None , _UpperCAmelCase : Union[float, Iterable[float]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : List[str] , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase )
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = apply_ocr if apply_ocr is not None else self.apply_ocr
__lowercase = ocr_lang if ocr_lang is not None else self.ocr_lang
__lowercase = tesseract_config if tesseract_config is not None else self.tesseract_config
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' )
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
# Tesseract OCR to get words + normalized bounding boxes
if apply_ocr:
requires_backends(self , 'pytesseract' )
__lowercase = []
__lowercase = []
for image in images:
__lowercase = apply_tesseract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
words_batch.append(_UpperCAmelCase )
boxes_batch.append(_UpperCAmelCase )
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
if apply_ocr:
__lowercase = words_batch
__lowercase = boxes_batch
return data
| 708 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 0 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> Any:
__lowercase = 0
while len(__lowerCAmelCase ) > 1:
__lowercase = 0
# Consider two files with minimum cost to be merged
for _ in range(2 ):
__lowercase = files.index(min(__lowerCAmelCase ) )
temp += files[min_index]
files.pop(__lowerCAmelCase )
files.append(__lowerCAmelCase )
optimal_merge_cost += temp
return optimal_merge_cost
if __name__ == "__main__":
import doctest
doctest.testmod()
| 709 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = dataset
__lowercase = process
__lowercase = params
def __len__( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : Any , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = self.dataset[i]
__lowercase = self.process(UpperCamelCase_ , **self.params )
return processed
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None ) -> List[Any]:
"""simple docstring"""
__lowercase = loader
__lowercase = infer
__lowercase = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
__lowercase = None
__lowercase = loader_batch_size
# Internal bookkeeping
__lowercase = None
__lowercase = None
def __len__( self : Tuple ) -> int:
"""simple docstring"""
return len(self.loader )
def __iter__( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = iter(self.loader )
return self
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
__lowercase = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
__lowercase = {}
for k, element in self._loader_batch_data.items():
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
# Convert ModelOutput to tuple first
__lowercase = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
__lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
__lowercase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase_ , UpperCamelCase_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
__lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
__lowercase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
__lowercase = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
__lowercase = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
__lowercase = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
__lowercase = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
__lowercase = self._loader_batch_data.__class__(UpperCamelCase_ )
self._loader_batch_index += 1
return result
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
__lowercase = next(self.iterator )
__lowercase = self.infer(UpperCamelCase_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(UpperCamelCase_ , torch.Tensor ):
__lowercase = processed
else:
__lowercase = list(processed.keys() )[0]
__lowercase = processed[key]
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowercase = len(UpperCamelCase_ )
else:
__lowercase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
__lowercase = observed_batch_size
# Setting internal index to unwrap the batch
__lowercase = processed
__lowercase = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class A__ ( lowerCAmelCase__ ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=None ) -> List[str]:
"""simple docstring"""
super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __iter__( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = iter(self.loader )
__lowercase = None
return self
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
if self.subiterator is None:
__lowercase = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
__lowercase = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
__lowercase = self.infer(next(self.iterator ) , **self.params )
__lowercase = next(self.subiterator )
return processed
class A__ ( lowerCAmelCase__ ):
def __iter__( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = iter(self.loader )
return self
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = False
__lowercase = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
__lowercase = self.loader_batch_item()
__lowercase = item.pop('is_last' )
accumulator.append(UpperCamelCase_ )
if is_last:
return accumulator
while not is_last:
__lowercase = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(UpperCamelCase_ , torch.Tensor ):
__lowercase = processed
else:
__lowercase = list(processed.keys() )[0]
__lowercase = processed[key]
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
__lowercase = len(UpperCamelCase_ )
else:
__lowercase = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
__lowercase = observed_batch_size
__lowercase = processed
__lowercase = 0
while self._loader_batch_index < self.loader_batch_size:
__lowercase = self.loader_batch_item()
__lowercase = item.pop('is_last' )
accumulator.append(UpperCamelCase_ )
if is_last:
return accumulator
else:
__lowercase = processed
__lowercase = item.pop('is_last' )
accumulator.append(UpperCamelCase_ )
return accumulator
class A__ ( lowerCAmelCase__ ):
def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> Dict:
"""simple docstring"""
__lowercase = dataset
__lowercase = key
def __len__( self : Dict ) -> Any:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : int , _UpperCAmelCase : Optional[int] ) -> List[Any]:
"""simple docstring"""
return self.dataset[i][self.key]
class A__ ( lowerCAmelCase__ ):
def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = dataset
__lowercase = keya
__lowercase = keya
def __len__( self : Optional[Any] ) -> int:
"""simple docstring"""
return len(self.dataset )
def __getitem__( self : Tuple , _UpperCAmelCase : Any ) -> Tuple:
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 710 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 0 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
def __init__( self : Optional[Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ) -> Any:
"""simple docstring"""
warnings.warn(
'The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use DeformableDetrImageProcessor instead.' , __A , )
super().__init__(*__A , **__A )
| 711 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 0 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase_ ):
lowerCAmelCase__ : Tuple = (DEISMultistepScheduler,)
lowerCAmelCase__ : List[Any] = (("""num_inference_steps""", 25),)
def a__ ( self : Any , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
}
config.update(**_a )
return config
def a__ ( self : Any , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : int ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = dict(self.forward_default_kwargs )
__lowercase = kwargs.pop('num_inference_steps' , _a )
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
__lowercase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__lowercase = self.get_scheduler_config(**_a )
__lowercase = scheduler_class(**_a )
scheduler.set_timesteps(_a )
# copy over dummy past residuals
__lowercase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_a )
__lowercase = scheduler_class.from_pretrained(_a )
new_scheduler.set_timesteps(_a )
# copy over dummy past residuals
__lowercase = dummy_past_residuals[: new_scheduler.config.solver_order]
__lowercase = sample, sample
for t in range(_a , time_step + scheduler.config.solver_order + 1 ):
__lowercase = scheduler.step(_a , _a , _a , **_a ).prev_sample
__lowercase = new_scheduler.step(_a , _a , _a , **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : Any , _UpperCAmelCase : Dict=0 , **_UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = dict(self.forward_default_kwargs )
__lowercase = kwargs.pop('num_inference_steps' , _a )
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
__lowercase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_a )
scheduler.set_timesteps(_a )
# copy over dummy past residuals (must be after setting timesteps)
__lowercase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_a )
__lowercase = scheduler_class.from_pretrained(_a )
# copy over dummy past residuals
new_scheduler.set_timesteps(_a )
# copy over dummy past residual (must be after setting timesteps)
__lowercase = dummy_past_residuals[: new_scheduler.config.solver_order]
__lowercase = scheduler.step(_a , _a , _a , **_a ).prev_sample
__lowercase = new_scheduler.step(_a , _a , _a , **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if scheduler is None:
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(**_a )
__lowercase = scheduler_class(**_a )
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(**_a )
__lowercase = scheduler_class(**_a )
__lowercase = 10
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter
scheduler.set_timesteps(_a )
for i, t in enumerate(scheduler.timesteps ):
__lowercase = model(_a , _a )
__lowercase = scheduler.step(_a , _a , _a ).prev_sample
return sample
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = dict(self.forward_default_kwargs )
__lowercase = kwargs.pop('num_inference_steps' , _a )
for scheduler_class in self.scheduler_classes:
__lowercase = self.get_scheduler_config()
__lowercase = scheduler_class(**_a )
__lowercase = self.dummy_sample
__lowercase = 0.1 * sample
if num_inference_steps is not None and hasattr(_a , 'set_timesteps' ):
scheduler.set_timesteps(_a )
elif num_inference_steps is not None and not hasattr(_a , 'set_timesteps' ):
__lowercase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__lowercase = [residual + 0.2, residual + 0.15, residual + 0.10]
__lowercase = dummy_past_residuals[: scheduler.config.solver_order]
__lowercase = scheduler.timesteps[5]
__lowercase = scheduler.timesteps[6]
__lowercase = scheduler.step(_a , _a , _a , **_a ).prev_sample
__lowercase = scheduler.step(_a , _a , _a , **_a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__lowercase = DEISMultistepScheduler(**self.get_scheduler_config() )
__lowercase = self.full_loop(scheduler=_a )
__lowercase = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.23_916 ) < 1e-3
__lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
__lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config )
__lowercase = UniPCMultistepScheduler.from_config(scheduler.config )
__lowercase = DEISMultistepScheduler.from_config(scheduler.config )
__lowercase = self.full_loop(scheduler=_a )
__lowercase = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.23_916 ) < 1e-3
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
for timesteps in [25, 50, 1_00, 9_99, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.check_over_configs(thresholding=_a )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , algorithm_type='deis' , solver_order=_a , solver_type=_a , )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def a__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , )
__lowercase = self.full_loop(
solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , )
assert not torch.isnan(_a ).any(), "Samples have nan numbers"
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
self.check_over_configs(lower_order_final=_a )
self.check_over_configs(lower_order_final=_a )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]:
self.check_over_forward(num_inference_steps=_a , time_step=0 )
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
__lowercase = self.full_loop()
__lowercase = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.23_916 ) < 1e-3
def a__ ( self : Optional[int] ) -> int:
"""simple docstring"""
__lowercase = self.full_loop(prediction_type='v_prediction' )
__lowercase = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 0.091 ) < 1e-3
def a__ ( self : str ) -> List[Any]:
"""simple docstring"""
__lowercase = self.scheduler_classes[0]
__lowercase = self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 )
__lowercase = scheduler_class(**_a )
__lowercase = 10
__lowercase = self.dummy_model()
__lowercase = self.dummy_sample_deter.half()
scheduler.set_timesteps(_a )
for i, t in enumerate(scheduler.timesteps ):
__lowercase = model(_a , _a )
__lowercase = scheduler.step(_a , _a , _a ).prev_sample
assert sample.dtype == torch.floataa
| 712 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 0 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str=7 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Tuple=30 , _UpperCAmelCase : int=4_00 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5] , _UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=1 / 2_55 , _UpperCAmelCase : Any=True , ) -> Optional[int]:
"""simple docstring"""
__lowercase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 13_33}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = do_normalize
__lowercase = image_mean
__lowercase = image_std
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_pad
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def a__ ( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=False ) -> List[str]:
"""simple docstring"""
if not batched:
__lowercase = image_inputs[0]
if isinstance(_UpperCAmelCase , Image.Image ):
__lowercase , __lowercase = image.size
else:
__lowercase , __lowercase = image.shape[1], image.shape[2]
if w < h:
__lowercase = int(self.size['shortest_edge'] * h / w )
__lowercase = self.size['shortest_edge']
elif w > h:
__lowercase = self.size['shortest_edge']
__lowercase = int(self.size['shortest_edge'] * w / h )
else:
__lowercase = self.size['shortest_edge']
__lowercase = self.size['shortest_edge']
else:
__lowercase = []
for image in image_inputs:
__lowercase , __lowercase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowercase = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0]
__lowercase = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class A__ ( _snake_case , unittest.TestCase ):
lowerCAmelCase__ : Union[str, Any] = DetaImageProcessor if is_vision_available() else None
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowercase = DetaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_rescale' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_pad' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 13_33} )
self.assertEqual(image_processor.do_pad , _UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
__lowercase = json.loads(f.read() )
__lowercase = {'image_id': 3_97_69, 'annotations': target}
# encode them
__lowercase = DetaImageProcessor()
__lowercase = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt' )
# verify pixel values
__lowercase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase )
__lowercase = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) )
# verify area
__lowercase = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) )
# verify boxes
__lowercase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase )
__lowercase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3 ) )
# verify image_id
__lowercase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) )
# verify is_crowd
__lowercase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) )
# verify class_labels
__lowercase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) )
# verify orig_size
__lowercase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) )
# verify size
__lowercase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) )
@slow
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
__lowercase = json.loads(f.read() )
__lowercase = {'file_name': '000000039769.png', 'image_id': 3_97_69, 'segments_info': target}
__lowercase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
__lowercase = DetaImageProcessor(format='coco_panoptic' )
__lowercase = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt' )
# verify pixel values
__lowercase = torch.Size([1, 3, 8_00, 10_66] )
self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase )
__lowercase = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4 ) )
# verify area
__lowercase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase ) )
# verify boxes
__lowercase = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase )
__lowercase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3 ) )
# verify image_id
__lowercase = torch.tensor([3_97_69] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase ) )
# verify is_crowd
__lowercase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase ) )
# verify class_labels
__lowercase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase ) )
# verify masks
__lowercase = 82_28_73
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase )
# verify orig_size
__lowercase = torch.tensor([4_80, 6_40] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase ) )
# verify size
__lowercase = torch.tensor([8_00, 10_66] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase ) )
| 713 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class A__ ( unittest.TestCase ):
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def a__ ( self : int ) -> Dict:
"""simple docstring"""
__lowercase = 1
__lowercase = 3
__lowercase = (32, 32)
__lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase )
return image
@property
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
return model
@property
def a__ ( self : Any ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
return model
@property
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(_UpperCAmelCase )
@property
def a__ ( self : str ) -> str:
"""simple docstring"""
def extract(*_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ):
class A__ :
def __init__( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = torch.ones([0] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> List[Any]:
"""simple docstring"""
self.pixel_values.to(_UpperCAmelCase )
return self
return Out()
return extract
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowercase = self.dummy_cond_unet
__lowercase = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
__lowercase = self.dummy_vae
__lowercase = self.dummy_text_encoder
__lowercase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
__lowercase = 77
__lowercase = self.dummy_image.to(_UpperCAmelCase )
__lowercase = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
__lowercase = AltDiffusionImgaImgPipeline(
unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase )
__lowercase = alt_pipe.to(_UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__lowercase = 'A painting of a squirrel eating a burger'
__lowercase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
__lowercase = alt_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_UpperCAmelCase , )
__lowercase = output.images
__lowercase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
__lowercase = alt_pipe(
[prompt] , generator=_UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_UpperCAmelCase , return_dict=_UpperCAmelCase , )[0]
__lowercase = image[0, -3:, -3:, -1]
__lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowercase = np.array([0.4_427, 0.3_731, 0.4_249, 0.4_941, 0.4_546, 0.4_148, 0.4_193, 0.4_666, 0.4_499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.dummy_cond_unet
__lowercase = PNDMScheduler(skip_prk_steps=_UpperCAmelCase )
__lowercase = self.dummy_vae
__lowercase = self.dummy_text_encoder
__lowercase = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
__lowercase = 77
__lowercase = self.dummy_image.to(_UpperCAmelCase )
# put models in fp16
__lowercase = unet.half()
__lowercase = vae.half()
__lowercase = bert.half()
# make sure here that pndm scheduler skips prk
__lowercase = AltDiffusionImgaImgPipeline(
unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=self.dummy_extractor , )
__lowercase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_UpperCAmelCase )
__lowercase = alt_pipe.to(_UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__lowercase = 'A painting of a squirrel eating a burger'
__lowercase = torch.manual_seed(0 )
__lowercase = alt_pipe(
[prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , image=_UpperCAmelCase , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' )
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
# resize to resolution that is divisible by 8 but not 16 or 32
__lowercase = init_image.resize((7_60, 5_04) )
__lowercase = 'BAAI/AltDiffusion'
__lowercase = AltDiffusionImgaImgPipeline.from_pretrained(
_UpperCAmelCase , safety_checker=_UpperCAmelCase , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
__lowercase = 'A fantasy landscape, trending on artstation'
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type='np' , )
__lowercase = output.images[0]
__lowercase = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
__lowercase = np.array([0.9_358, 0.9_397, 0.9_599, 0.9_901, 1.0_000, 1.0_000, 0.9_882, 1.0_000, 1.0_000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
__lowercase = init_image.resize((7_68, 5_12) )
__lowercase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' )
__lowercase = 'BAAI/AltDiffusion'
__lowercase = AltDiffusionImgaImgPipeline.from_pretrained(
_UpperCAmelCase , safety_checker=_UpperCAmelCase , )
pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
pipe.enable_attention_slicing()
__lowercase = 'A fantasy landscape, trending on artstation'
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , generator=_UpperCAmelCase , output_type='np' , )
__lowercase = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1e-2
| 714 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 0 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class A__ ( unittest.TestCase ):
@parameterized.expand([(None,), ('foo.json',)] )
def a__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCamelCase , config_name=_UpperCamelCase )
__lowercase = GenerationConfig.from_pretrained(_UpperCamelCase , config_name=_UpperCamelCase )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , _UpperCamelCase )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , _UpperCamelCase )
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase = AutoConfig.from_pretrained('gpt2' )
__lowercase = GenerationConfig.from_model_config(_UpperCamelCase )
__lowercase = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(_UpperCamelCase , _UpperCamelCase )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = GenerationConfig()
__lowercase = {
"""max_new_tokens""": 10_24,
"""foo""": """bar""",
}
__lowercase = copy.deepcopy(_UpperCamelCase )
__lowercase = generation_config.update(**_UpperCamelCase )
# update_kwargs was not modified (no side effects)
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 10_24 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(_UpperCamelCase , {'foo': 'bar'} )
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = GenerationConfig()
__lowercase = """bar"""
with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir:
generation_config.save_pretrained(_UpperCamelCase )
__lowercase = GenerationConfig.from_pretrained(_UpperCamelCase )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , 'bar' )
__lowercase = GenerationConfig.from_model_config(_UpperCamelCase )
assert not hasattr(_UpperCamelCase , 'foo' ) # no new kwargs should be initialized if from config
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , _UpperCamelCase )
self.assertEqual(default_config.num_beams , 1 )
__lowercase = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , _UpperCamelCase )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCamelCase )
__lowercase = GenerationConfig.from_pretrained(_UpperCamelCase , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , _UpperCamelCase )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : Any ) -> str:
"""simple docstring"""
__lowercase = TOKEN
HfFolder.save_token(_UpperCamelCase )
@classmethod
def a__ ( cls : int ) -> Optional[Any]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-generation-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' )
except HTTPError:
pass
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('test-generation-config' , use_auth_token=self._token )
__lowercase = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-generation-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCamelCase , repo_id='test-generation-config' , push_to_hub=_UpperCamelCase , use_auth_token=self._token )
__lowercase = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__lowercase = GenerationConfig(
do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token )
__lowercase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCamelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_UpperCamelCase , use_auth_token=self._token )
__lowercase = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
| 715 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class A__ ( a__ ):
lowerCAmelCase__ : int = 42
lowerCAmelCase__ : int = 42
def __init__( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_A , scheduler=_A )
@torch.no_grad()
def __call__( self : int , _UpperCAmelCase : Dict = 1 , _UpperCAmelCase : Union[str, Any] = 50 , _UpperCAmelCase : int = None , _UpperCAmelCase : List[str] = "pil" , _UpperCAmelCase : str = True , **_UpperCAmelCase : Union[str, Any] , ) -> Dict:
"""simple docstring"""
__lowercase = self.unet.config.sample_size
__lowercase = (batch_size, 3, img_size, img_size)
__lowercase = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
__lowercase = randn_tensor(_A , generator=_A , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_A )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
__lowercase = self.scheduler.schedule[t]
__lowercase = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
__lowercase = self.scheduler.add_noise_to_input(_A , _A , generator=_A )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
__lowercase = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
__lowercase = self.scheduler.step(_A , _A , _A , _A )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
__lowercase = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
__lowercase = self.scheduler.step_correct(
_A , _A , _A , _A , step_output.prev_sample , step_output['derivative'] , )
__lowercase = step_output.prev_sample
__lowercase = (sample / 2 + 0.5).clamp(0 , 1 )
__lowercase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(_A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_A )
| 716 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> List[str]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(__lowerCamelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> List[Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(__lowerCamelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
else:
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> str:
"""simple docstring"""
self.scheduler.load_state_dict(__lowerCamelCase )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return self.scheduler.print_lr(*__lowerCamelCase , **__lowerCamelCase )
| 717 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 0 |
'''simple docstring'''
import gc
import threading
import time
import psutil
import torch
class A__ :
def __init__( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = psutil.Process()
__lowercase = False
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = -1
while True:
__lowercase = max(self.process.memory_info().rss , self.cpu_memory_peak )
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = True
__lowercase = threading.Thread(target=self.peak_monitor )
__lowercase = True
self.thread.start()
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = False
self.thread.join()
return self.cpu_memory_peak
SCREAMING_SNAKE_CASE__ = PeakCPUMemory()
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = {'''time''': time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
__lowercase = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count() ):
__lowercase = torch.cuda.memory_allocated(a_ )
torch.cuda.reset_peak_memory_stats()
return measures
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Any:
__lowercase = {'''time''': time.time() - start_measures['''time''']}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
__lowercase = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20
__lowercase = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20
# GPU mem
for i in range(torch.cuda.device_count() ):
__lowercase = (torch.cuda.memory_allocated(a_ ) - start_measures[str(a_ )]) / 2**20
__lowercase = (torch.cuda.max_memory_allocated(a_ ) - start_measures[str(a_ )]) / 2**20
return measures
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
print(F"""{description}:""" )
print(F"""- Time: {measures["time"]:.2f}s""" )
for i in range(torch.cuda.device_count() ):
print(F"""- GPU {i} allocated: {measures[str(a_ )]:.2f}MiB""" )
__lowercase = measures[F"""{i}-peak"""]
print(F"""- GPU {i} peak: {peak:.2f}MiB""" )
print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" )
print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
| 718 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 0 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class A__ :
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=13 , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : int=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : str=True , _UpperCAmelCase : str=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Tuple="divided_space_time" , _UpperCAmelCase : int=None , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = num_frames
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = attention_type
__lowercase = initializer_range
__lowercase = scope
__lowercase = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__lowercase = (image_size // patch_size) ** 2
__lowercase = (num_frames) * self.num_patches_per_frame + 1
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.num_labels )
__lowercase = self.get_config()
return config, pixel_values, labels
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__lowercase = self.num_labels
return config
def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TimesformerModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
__lowercase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = TimesformerForVideoClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
__lowercase = model(__UpperCamelCase )
# verify the logits shape
__lowercase = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __UpperCamelCase )
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class A__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
lowerCAmelCase__ : Union[str, Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowerCAmelCase__ : Tuple = (
{'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : str = False
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = TimesformerModelTester(self )
__lowercase = ConfigTester(
self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=False ) -> Any:
"""simple docstring"""
__lowercase = copy.deepcopy(__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase )
return inputs_dict
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='TimeSformer does not use inputs_embeds' )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
pass
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__lowercase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(__UpperCamelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ['pixel_values']
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__UpperCamelCase )
@slow
def a__ ( self : Optional[int] ) -> int:
"""simple docstring"""
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TimesformerModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
if not self.has_attentions:
pass
else:
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
for model_class in self.all_model_classes:
__lowercase = self.model_tester.seq_length
__lowercase = self.model_tester.num_frames
__lowercase = True
__lowercase = False
__lowercase = True
__lowercase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
__lowercase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
__lowercase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__lowercase = len(__UpperCamelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(out_len + 1 , len(__UpperCamelCase ) )
__lowercase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
def check_hidden_states_output(_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ):
__lowercase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
__lowercase = outputs.hidden_states
__lowercase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
__lowercase = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' )
__lowercase = np.load(_A )
return list(_A )
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
@cached_property
def a__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to(
__UpperCamelCase )
__lowercase = self.default_image_processor
__lowercase = prepare_video()
__lowercase = image_processor(video[:8] , return_tensors='pt' ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
__lowercase = model(**__UpperCamelCase )
# verify the logits
__lowercase = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
__lowercase = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
| 719 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""",
}
class A__ ( _a ):
lowerCAmelCase__ : Union[str, Any] = """deta"""
lowerCAmelCase__ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[int]=9_00 , _UpperCAmelCase : Tuple=20_48 , _UpperCAmelCase : Dict=6 , _UpperCAmelCase : Union[str, Any]=20_48 , _UpperCAmelCase : Union[str, Any]=8 , _UpperCAmelCase : str=6 , _UpperCAmelCase : Optional[Any]=10_24 , _UpperCAmelCase : Optional[int]=8 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : int=True , _UpperCAmelCase : Any="relu" , _UpperCAmelCase : Union[str, Any]=2_56 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : str=1.0 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Any="sine" , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : int=4 , _UpperCAmelCase : int=True , _UpperCAmelCase : Any=3_00 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : int=5 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : str=5 , _UpperCAmelCase : int=2 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : int=0.25 , **_UpperCAmelCase : int , ) -> List[str]:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' )
__lowercase = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] )
else:
if isinstance(snake_case_ , snake_case_ ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(snake_case_ )
__lowercase = backbone_config
__lowercase = num_queries
__lowercase = max_position_embeddings
__lowercase = d_model
__lowercase = encoder_ffn_dim
__lowercase = encoder_layers
__lowercase = encoder_attention_heads
__lowercase = decoder_ffn_dim
__lowercase = decoder_layers
__lowercase = decoder_attention_heads
__lowercase = dropout
__lowercase = attention_dropout
__lowercase = activation_dropout
__lowercase = activation_function
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = encoder_layerdrop
__lowercase = auxiliary_loss
__lowercase = position_embedding_type
# deformable attributes
__lowercase = num_feature_levels
__lowercase = encoder_n_points
__lowercase = decoder_n_points
__lowercase = two_stage
__lowercase = two_stage_num_proposals
__lowercase = with_box_refine
__lowercase = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError('If two_stage is True, with_box_refine must be True.' )
# Hungarian matcher
__lowercase = class_cost
__lowercase = bbox_cost
__lowercase = giou_cost
# Loss coefficients
__lowercase = mask_loss_coefficient
__lowercase = dice_loss_coefficient
__lowercase = bbox_loss_coefficient
__lowercase = giou_loss_coefficient
__lowercase = eos_coefficient
__lowercase = focal_alpha
super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ )
@property
def a__ ( self : Any ) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.d_model
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output | 720 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 0 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''',
'''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''',
}
class A__ ( SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ : Union[str, Any] = "encodec"
def __init__( self : int , _UpperCAmelCase : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase : List[str]=2_40_00 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : str=32 , _UpperCAmelCase : int=1 , _UpperCAmelCase : Optional[Any]=[8, 5, 4, 2] , _UpperCAmelCase : List[str]="weight_norm" , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=7 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Union[str, Any]="reflect" , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : int=10_24 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Tuple , ) -> Any:
"""simple docstring"""
__lowercase = target_bandwidths
__lowercase = sampling_rate
__lowercase = audio_channels
__lowercase = normalize
__lowercase = chunk_length_s
__lowercase = overlap
__lowercase = hidden_size
__lowercase = num_filters
__lowercase = num_residual_layers
__lowercase = upsampling_ratios
__lowercase = norm_type
__lowercase = kernel_size
__lowercase = last_kernel_size
__lowercase = residual_kernel_size
__lowercase = dilation_growth_rate
__lowercase = use_causal_conv
__lowercase = pad_mode
__lowercase = compress
__lowercase = num_lstm_layers
__lowercase = trim_right_ratio
__lowercase = codebook_size
__lowercase = codebook_dim if codebook_dim is not None else hidden_size
__lowercase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**_lowercase )
@property
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 721 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
__lowercase = {}
with open(snake_case__ , 'r' ) as file:
for line_number, line in enumerate(snake_case__ ):
__lowercase = line.strip()
if line:
__lowercase = line.split()
__lowercase = line_number
__lowercase = words[0]
__lowercase = value
return result
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
for attribute in key.split('.' ):
__lowercase = getattr(snake_case__ , snake_case__ )
__lowercase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case__ ):
__lowercase = PARAM_MAPPING[full_name.split('.' )[-1]]
__lowercase = 'param'
if weight_type is not None and weight_type != "param":
__lowercase = getattr(snake_case__ , snake_case__ ).shape
elif weight_type is not None and weight_type == "param":
__lowercase = hf_pointer
for attribute in hf_param_name.split('.' ):
__lowercase = getattr(snake_case__ , snake_case__ )
__lowercase = shape_pointer.shape
# let's reduce dimension
__lowercase = value[0]
else:
__lowercase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
elif weight_type == "param":
for attribute in hf_param_name.split('.' ):
__lowercase = getattr(snake_case__ , snake_case__ )
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]:
__lowercase = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case__ ):
__lowercase = PARAM_MAPPING[full_name.split('.' )[-1]]
__lowercase = 'param'
if weight_type is not None and weight_type != "param":
__lowercase = '.'.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__lowercase = '.'.join([key, hf_param_name] )
else:
__lowercase = key
__lowercase = value if 'lm_head' in full_key else value[0]
SCREAMING_SNAKE_CASE__ = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : int=None ) -> Any:
__lowercase = False
for key, mapped_key in MAPPING.items():
__lowercase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(snake_case__ )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , snake_case__ )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowercase = 'weight'
else:
__lowercase = None
if hf_dict is not None:
rename_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
else:
set_recursively(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
return is_used
return is_used
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ) -> Dict:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
else:
__lowercase = load_wavaveca_layer(snake_case__ , snake_case__ , snake_case__ )
if not is_used:
unused_weights.append(snake_case__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str] ) -> str:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case__ )
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Optional[int]:
if config_path is not None:
__lowercase = WavaVecaConfig.from_pretrained(snake_case__ )
else:
__lowercase = WavaVecaConfig()
if is_seq_class:
__lowercase = read_txt_into_dict(snake_case__ )
__lowercase = idalabel
__lowercase = WavaVecaForSequenceClassification(snake_case__ )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , )
feature_extractor.save_pretrained(snake_case__ )
elif is_finetuned:
if dict_path:
__lowercase = Dictionary.load(snake_case__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__lowercase = target_dict.pad_index
__lowercase = target_dict.bos_index
__lowercase = target_dict.eos_index
__lowercase = len(target_dict.symbols )
__lowercase = os.path.join(snake_case__ , 'vocab.json' )
if not os.path.isdir(snake_case__ ):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(snake_case__ ) )
return
os.makedirs(snake_case__ , exist_ok=snake_case__ )
__lowercase = target_dict.indices
# fairseq has the <pad> and <s> switched
__lowercase = 0
__lowercase = 1
with open(snake_case__ , 'w' , encoding='utf-8' ) as vocab_handle:
json.dump(snake_case__ , snake_case__ )
__lowercase = WavaVecaCTCTokenizer(
snake_case__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=snake_case__ , )
__lowercase = True if config.feat_extract_norm == 'layer' else False
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=snake_case__ , return_attention_mask=snake_case__ , )
__lowercase = WavaVecaProcessor(feature_extractor=snake_case__ , tokenizer=snake_case__ )
processor.save_pretrained(snake_case__ )
__lowercase = WavaVecaForCTC(snake_case__ )
else:
__lowercase = WavaVecaForPreTraining(snake_case__ )
if is_finetuned or is_seq_class:
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
else:
__lowercase = argparse.Namespace(task='audio_pretraining' )
__lowercase = fairseq.tasks.setup_task(snake_case__ )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=snake_case__ )
__lowercase = model[0].eval()
recursively_load_weights(snake_case__ , snake_case__ , not is_finetuned )
hf_wavavec.save_pretrained(snake_case__ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 700 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 0 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
if not nums:
return 0
__lowercase = nums[0]
__lowercase = 0
for num in nums[1:]:
__lowercase , __lowercase = (
max_excluding + num,
max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
)
return max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 0 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> List[str]:
__lowercase = tmp_path / 'file.csv'
__lowercase = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> List[str]:
__lowercase = tmp_path / 'malformed_file.csv'
__lowercase = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
__lowercase = tmp_path / 'csv_with_image.csv'
__lowercase = textwrap.dedent(
F"""\\n image\n {image_file}\n """ )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str:
__lowercase = tmp_path / 'csv_with_label.csv'
__lowercase = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
__lowercase = tmp_path / 'csv_with_int_list.csv'
__lowercase = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = Csv()
__lowercase = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(SCREAMING_SNAKE_CASE , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(SCREAMING_SNAKE_CASE ) in record.message
for record in caplog.records )
@require_pil
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
__lowercase = f.read().splitlines()[1]
__lowercase = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
__lowercase = csv._generate_tables([[csv_file_with_image]] )
__lowercase = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
__lowercase = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[Any]:
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
__lowercase = f.read().splitlines()[1:]
__lowercase = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
__lowercase = csv._generate_tables([[csv_file_with_label]] )
__lowercase = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
__lowercase = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(SCREAMING_SNAKE_CASE ) for label in labels]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda SCREAMING_SNAKE_CASE : [int(SCREAMING_SNAKE_CASE ) for i in x.split()]} )
__lowercase = csv._generate_tables([[csv_file_with_int_list]] )
__lowercase = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
__lowercase = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 702 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 0 |
from __future__ import annotations
import math
class A__ :
def __init__( self : List[Any] , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = size
# approximate the overall size of segment tree with given value
__lowercase = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
__lowercase = [0 for i in range(0 , 4 * size )]
__lowercase = [0 for i in range(0 , 4 * size )] # flag for lazy update
def a__ ( self : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
return idx * 2
def a__ ( self : str , _UpperCAmelCase : int ) -> Dict:
"""simple docstring"""
return idx * 2 + 1
def a__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[int] ) -> Tuple:
"""simple docstring"""
if left_element == right_element:
__lowercase = a[left_element - 1]
else:
__lowercase = (left_element + right_element) // 2
self.build(self.left(__A ) , __A , __A , __A )
self.build(self.right(__A ) , mid + 1 , __A , __A )
__lowercase = max(
self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] )
def a__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Dict:
"""simple docstring"""
if self.flag[idx] is True:
__lowercase = self.lazy[idx]
__lowercase = False
if left_element != right_element:
__lowercase = self.lazy[idx]
__lowercase = self.lazy[idx]
__lowercase = True
__lowercase = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
__lowercase = val
if left_element != right_element:
__lowercase = val
__lowercase = val
__lowercase = True
__lowercase = True
return True
__lowercase = (left_element + right_element) // 2
self.update(self.left(__A ) , __A , __A , __A , __A , __A )
self.update(self.right(__A ) , mid + 1 , __A , __A , __A , __A )
__lowercase = max(
self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] )
return True
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
if self.flag[idx] is True:
__lowercase = self.lazy[idx]
__lowercase = False
if left_element != right_element:
__lowercase = self.lazy[idx]
__lowercase = self.lazy[idx]
__lowercase = True
__lowercase = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
__lowercase = (left_element + right_element) // 2
__lowercase = self.query(self.left(__A ) , __A , __A , __A , __A )
__lowercase = self.query(self.right(__A ) , mid + 1 , __A , __A , __A )
return max(__A , __A )
def __str__( self : List[str] ) -> str:
"""simple docstring"""
return str([self.query(1 , 1 , self.size , __A , __A ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
SCREAMING_SNAKE_CASE__ = 15
SCREAMING_SNAKE_CASE__ = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
SCREAMING_SNAKE_CASE__ = "base_with_context"
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Tuple:
__lowercase = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) )
__lowercase = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
__lowercase = weights[F"""layers_{lyr_num}"""]
__lowercase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
__lowercase = ly_weight["attention"]
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Dict:
__lowercase = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) )
__lowercase = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase )
for lyr_num, lyr in enumerate(model.encoders ):
__lowercase = weights[F"""layers_{lyr_num}"""]
__lowercase = ly_weight["attention"]
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowercase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
__lowercase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) )
return model
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Dict:
__lowercase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) )
__lowercase = nn.Parameter(
torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=_lowerCamelCase )
__lowercase = nn.Parameter(
torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
__lowercase = weights[F"""layers_{lyr_num}"""]
__lowercase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) )
__lowercase = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) )
__lowercase = ly_weight["self_attention"]
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowercase = ly_weight["MultiHeadDotProductAttention_0"]
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) )
__lowercase = nn.Parameter(
torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) )
__lowercase = nn.Parameter(
torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) )
__lowercase = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) )
__lowercase = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) )
return model
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> List[Any]:
__lowercase = checkpoints.load_tax_checkpoint(args.checkpoint_path )
__lowercase = jnp.tree_util.tree_map(onp.array , _lowerCamelCase )
__lowercase = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
__lowercase = os.path.join(args.checkpoint_path , '..' , 'config.gin' )
__lowercase = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase )
__lowercase = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase )
__lowercase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' )
__lowercase = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , )
__lowercase = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , )
__lowercase = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
__lowercase = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , _lowerCamelCase )
__lowercase = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , _lowerCamelCase )
__lowercase = load_decoder(ta_checkpoint['target']['decoder'] , _lowerCamelCase )
__lowercase = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' )
__lowercase = SpectrogramDiffusionPipeline(
notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=F'''{MODEL}/checkpoint_500000''',
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
main(args)
| 704 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class A__ ( __SCREAMING_SNAKE_CASE ):
lowerCAmelCase__ : int = 42
class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
@register_to_config
def __init__( self : str , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 3 , _UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , _UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , _UpperCAmelCase : Tuple[int] = (64,) , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = "silu" , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 32 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : float = 0.18_215 , _UpperCAmelCase : str = "group" , ) -> Tuple:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
__lowercase = Encoder(
in_channels=_a , out_channels=_a , down_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , double_z=_a , )
__lowercase = vq_embed_dim if vq_embed_dim is not None else latent_channels
__lowercase = nn.Convad(_a , _a , 1 )
__lowercase = VectorQuantizer(_a , _a , beta=0.25 , remap=_a , sane_index_shape=_a )
__lowercase = nn.Convad(_a , _a , 1 )
# pass init params to Decoder
__lowercase = Decoder(
in_channels=_a , out_channels=_a , up_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , norm_type=_a , )
@apply_forward_hook
def a__ ( self : str , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.encoder(_a )
__lowercase = self.quant_conv(_a )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_a )
@apply_forward_hook
def a__ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> str:
"""simple docstring"""
if not force_not_quantize:
__lowercase = self.quantize(_a )
else:
__lowercase = h
__lowercase = self.post_quant_conv(_a )
__lowercase = self.decoder(_a , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_a )
def a__ ( self : Dict , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : bool = True ) -> Optional[int]:
"""simple docstring"""
__lowercase = sample
__lowercase = self.encode(_a ).latents
__lowercase = self.decode(_a ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_a )
| 705 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 0 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
snake_case_ = """true"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any=82 , SCREAMING_SNAKE_CASE : Optional[int]=16 ) -> int:
set_seed(42 )
__lowercase = RegressionModel()
__lowercase = deepcopy(snake_case__ )
__lowercase = RegressionDataset(length=snake_case__ )
__lowercase = DataLoader(snake_case__ , batch_size=snake_case__ )
model.to(accelerator.device )
__lowercase = accelerator.prepare(snake_case__ , snake_case__ )
return model, ddp_model, dataloader
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> Tuple:
__lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
__lowercase = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(SCREAMING_SNAKE_CASE : int ):
__lowercase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case__ , max_length=snake_case__ )
return outputs
with accelerator.main_process_first():
__lowercase = dataset.map(
snake_case__ , batched=snake_case__ , remove_columns=['idx', 'sentence1', 'sentence2'] , )
__lowercase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(SCREAMING_SNAKE_CASE : int ):
if use_longest:
return tokenizer.pad(snake_case__ , padding='longest' , return_tensors='pt' )
return tokenizer.pad(snake_case__ , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(snake_case__ , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=16 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]:
__lowercase = Accelerator(dispatch_batches=snake_case__ , split_batches=snake_case__ )
__lowercase = get_dataloader(snake_case__ , not dispatch_batches )
__lowercase = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case__ )
__lowercase = accelerator.prepare(snake_case__ , snake_case__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]:
__lowercase = []
for batch in dataloader:
__lowercase = batch.values()
with torch.no_grad():
__lowercase = model(snake_case__ )
__lowercase = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
__lowercase = [], []
for logit, targ in logits_and_targets:
logits.append(snake_case__ )
targs.append(snake_case__ )
__lowercase = torch.cat(snake_case__ ), torch.cat(snake_case__ )
return logits, targs
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : Optional[int]=82 , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : List[Any]=False , SCREAMING_SNAKE_CASE : List[Any]=16 ) -> Optional[int]:
__lowercase = get_basic_setup(snake_case__ , snake_case__ , snake_case__ )
__lowercase = generate_predictions(snake_case__ , snake_case__ , snake_case__ )
assert (
len(snake_case__ ) == num_samples
), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case__ )}"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False ) -> List[str]:
__lowercase = evaluate.load('glue' , 'mrpc' )
__lowercase = get_mrpc_setup(snake_case__ , snake_case__ )
# First do baseline
__lowercase = setup["""no"""]
model.to(snake_case__ )
model.eval()
for batch in dataloader:
batch.to(snake_case__ )
with torch.inference_mode():
__lowercase = model(**snake_case__ )
__lowercase = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=snake_case__ , references=batch['labels'] )
__lowercase = metric.compute()
# Then do distributed
__lowercase = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
__lowercase = model(**snake_case__ )
__lowercase = outputs.logits.argmax(dim=-1 )
__lowercase = batch["""labels"""]
__lowercase = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=snake_case__ , references=snake_case__ )
__lowercase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = Accelerator(split_batches=snake_case__ , dispatch_batches=snake_case__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" )
test_mrpc(snake_case__ , snake_case__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
__lowercase = Accelerator(split_batches=snake_case__ , dispatch_batches=snake_case__ )
if accelerator.is_local_main_process:
print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" )
test_torch_metrics(snake_case__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
__lowercase = Accelerator()
test_torch_metrics(snake_case__ , 512 )
accelerator.state._reset_state()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> int:
main()
if __name__ == "__main__":
main()
| 706 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 0 |
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Any:
__lowercase = torch.exp(__snake_case )
__lowercase = torch.sum(__snake_case , dim=1 ) # sum of exp(x_i)
__lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(__snake_case ) - B / A
class A__ ( nn.Module ):
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = config.output_attentions
__lowercase = config.output_hidden_states
__lowercase = nn.ModuleList([BertLayer(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] )
__lowercase = nn.ModuleList([BertHighway(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] )
__lowercase = [-1 for _ in range(config.num_hidden_layers )]
def a__ ( self : List[str] , _UpperCAmelCase : Dict ) -> List[str]:
"""simple docstring"""
if (type(__lowerCAmelCase ) is float) or (type(__lowerCAmelCase ) is int):
for i in range(len(self.early_exit_entropy ) ):
__lowercase = x
else:
__lowercase = x
def a__ ( self : Dict , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def a__ ( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , ) -> Tuple:
"""simple docstring"""
__lowercase = ()
__lowercase = ()
__lowercase = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
__lowercase = all_hidden_states + (hidden_states,)
__lowercase = layer_module(
__lowerCAmelCase , __lowerCAmelCase , head_mask[i] , __lowerCAmelCase , __lowerCAmelCase )
__lowercase = layer_outputs[0]
if self.output_attentions:
__lowercase = all_attentions + (layer_outputs[1],)
__lowercase = (hidden_states,)
if self.output_hidden_states:
__lowercase = current_outputs + (all_hidden_states,)
if self.output_attentions:
__lowercase = current_outputs + (all_attentions,)
__lowercase = self.highway[i](__lowerCAmelCase )
# logits, pooled_output
if not self.training:
__lowercase = highway_exit[0]
__lowercase = entropy(__lowerCAmelCase )
__lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
__lowercase = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
__lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(__lowerCAmelCase , i + 1 )
else:
__lowercase = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
__lowercase = all_hidden_states + (hidden_states,)
__lowercase = (hidden_states,)
if self.output_hidden_states:
__lowercase = outputs + (all_hidden_states,)
if self.output_attentions:
__lowercase = outputs + (all_attentions,)
__lowercase = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"The Bert Model transformer with early exiting (DeeBERT). " , lowerCAmelCase__ , )
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
super().__init__(__lowerCAmelCase )
__lowercase = config
__lowercase = BertEmbeddings(__lowerCAmelCase )
__lowercase = DeeBertEncoder(__lowerCAmelCase )
__lowercase = BertPooler(__lowerCAmelCase )
self.init_weights()
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
self.encoder.init_highway_pooler(self.pooler )
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return self.embeddings.word_embeddings
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = value
def a__ ( self : str , _UpperCAmelCase : Any ) -> Optional[Any]:
"""simple docstring"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(__lowerCAmelCase )
@add_start_docstrings_to_model_forward(__lowerCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Union[str, Any]=None , ) -> Optional[int]:
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
__lowercase = input_ids.size()
elif inputs_embeds is not None:
__lowercase = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
__lowercase = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
__lowercase = torch.ones(__lowerCAmelCase , device=__lowerCAmelCase )
if encoder_attention_mask is None:
__lowercase = torch.ones(__lowerCAmelCase , device=__lowerCAmelCase )
if token_type_ids is None:
__lowercase = torch.zeros(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
__lowercase = self.get_extended_attention_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
__lowercase = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
__lowercase = encoder_attention_mask[:, None, None, :]
__lowercase = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
__lowercase = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
__lowercase = self.get_head_mask(__lowerCAmelCase , self.config.num_hidden_layers )
__lowercase = self.embeddings(
input_ids=__lowerCAmelCase , position_ids=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , inputs_embeds=__lowerCAmelCase )
__lowercase = self.encoder(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(__lowerCAmelCase )
__lowercase = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = message
__lowercase = exit_layer # start from 1!
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : Dict ) -> List[Any]:
"""simple docstring"""
super().__init__()
__lowercase = BertPooler(__lowerCAmelCase )
__lowercase = nn.Dropout(config.hidden_dropout_prob )
__lowercase = nn.Linear(config.hidden_size , config.num_labels )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(__lowerCAmelCase )
# "return" pooler_output
# BertModel
__lowercase = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
__lowercase = bmodel_output[1]
__lowercase = self.dropout(__lowerCAmelCase )
__lowercase = self.classifier(__lowerCAmelCase )
return logits, pooled_output
@add_start_docstrings(
"Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , lowerCAmelCase__ , )
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : List[Any] ) -> str:
"""simple docstring"""
super().__init__(__lowerCAmelCase )
__lowercase = config.num_labels
__lowercase = config.num_hidden_layers
__lowercase = DeeBertModel(__lowerCAmelCase )
__lowercase = nn.Dropout(config.hidden_dropout_prob )
__lowercase = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(__lowerCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , ) -> List[str]:
"""simple docstring"""
__lowercase = self.num_layers
try:
__lowercase = self.bert(
__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , position_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase , inputs_embeds=__lowerCAmelCase , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
__lowercase = outputs[1]
__lowercase = self.dropout(__lowerCAmelCase )
__lowercase = self.classifier(__lowerCAmelCase )
__lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
__lowercase = e.message
__lowercase = e.exit_layer
__lowercase = outputs[0]
if not self.training:
__lowercase = entropy(__lowerCAmelCase )
__lowercase = []
__lowercase = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
__lowercase = MSELoss()
__lowercase = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
__lowercase = []
for highway_exit in outputs[-1]:
__lowercase = highway_exit[0]
if not self.training:
highway_logits_all.append(__lowerCAmelCase )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
__lowercase = MSELoss()
__lowercase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(__lowerCAmelCase )
if train_highway:
__lowercase = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
__lowercase = (loss,) + outputs
if not self.training:
__lowercase = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
__lowercase = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 707 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 0 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json",
}
class A__ ( _UpperCAmelCase ):
lowerCAmelCase__ : List[Any] = "instructblip_vision_model"
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str]=14_08 , _UpperCAmelCase : Dict=61_44 , _UpperCAmelCase : Optional[int]=39 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : Tuple=2_24 , _UpperCAmelCase : int=14 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Dict=1e-6 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Tuple=1e-1_0 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(**lowercase_ )
__lowercase = hidden_size
__lowercase = intermediate_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = patch_size
__lowercase = image_size
__lowercase = initializer_range
__lowercase = attention_dropout
__lowercase = layer_norm_eps
__lowercase = hidden_act
__lowercase = qkv_bias
@classmethod
def a__ ( cls : List[str] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[Any] ) -> List[Any]:
"""simple docstring"""
cls._set_token_in_kwargs(lowercase_ )
__lowercase = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__lowercase = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowercase_ , **lowercase_ )
class A__ ( _UpperCAmelCase ):
lowerCAmelCase__ : int = "instructblip_qformer"
def __init__( self : Any , _UpperCAmelCase : Optional[Any]=3_05_22 , _UpperCAmelCase : List[str]=7_68 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Dict=1e-1_2 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : Union[str, Any]="absolute" , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=14_08 , **_UpperCAmelCase : int , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = position_embedding_type
__lowercase = cross_attention_frequency
__lowercase = encoder_hidden_size
@classmethod
def a__ ( cls : List[str] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
cls._set_token_in_kwargs(lowercase_ )
__lowercase = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
__lowercase = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowercase_ , **lowercase_ )
class A__ ( _UpperCAmelCase ):
lowerCAmelCase__ : Union[str, Any] = "instructblip"
lowerCAmelCase__ : Tuple = True
def __init__( self : Optional[Any] , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Union[str, Any]=32 , **_UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(**lowercase_ )
if vision_config is None:
__lowercase = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
__lowercase = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
__lowercase = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
__lowercase = InstructBlipVisionConfig(**lowercase_ )
__lowercase = InstructBlipQFormerConfig(**lowercase_ )
__lowercase = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
__lowercase = CONFIG_MAPPING[text_model_type](**lowercase_ )
__lowercase = self.text_config.tie_word_embeddings
__lowercase = self.text_config.is_encoder_decoder
__lowercase = num_query_tokens
__lowercase = self.vision_config.hidden_size
__lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__lowercase = 1.0
__lowercase = 0.02
@classmethod
def a__ ( cls : str , _UpperCAmelCase : InstructBlipVisionConfig , _UpperCAmelCase : InstructBlipQFormerConfig , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : int , ) -> Optional[Any]:
"""simple docstring"""
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , )
def a__ ( self : List[Any] ) -> str:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.vision_config.to_dict()
__lowercase = self.qformer_config.to_dict()
__lowercase = self.text_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 708 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE__ = {
'''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
'''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GraphormerForGraphClassification''',
'''GraphormerModel''',
'''GraphormerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 709 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 0 |
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
SCREAMING_SNAKE_CASE__ = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any=None ) -> Dict:
if rng is None:
__lowercase = random.Random()
__lowercase = 1
for dim in shape:
total_dims *= dim
__lowercase = []
for _ in range(UpperCAmelCase__ ):
values.append(rng.randint(0 , vocab_size - 1 ) )
__lowercase = np.array(UpperCAmelCase__ , dtype=jnp.intaa ).reshape(UpperCAmelCase__ )
return output
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict=None ) -> str:
__lowercase = ids_tensor(UpperCAmelCase__ , vocab_size=2 , rng=UpperCAmelCase__ )
# make sure that at least one token is attended to for each batch
__lowercase = 1
return attn_mask
@require_flax
class A__ :
lowerCAmelCase__ : Tuple = None
lowerCAmelCase__ : str = ()
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
__lowercase = 2
__lowercase = inputs['input_ids'].shape[-1] // 2
__lowercase = inputs['input_ids'][:max_batch_size, :sequence_length]
__lowercase = jnp.ones_like(__lowerCAmelCase )
__lowercase = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
__lowercase = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
__lowercase = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = False
__lowercase = max_length
__lowercase = 0
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__lowercase = getattr(__lowerCAmelCase , __lowerCAmelCase )
__lowercase = pt_model_class(__lowerCAmelCase ).eval()
__lowercase = load_flax_weights_in_pytorch_model(__lowerCAmelCase , flax_model.params )
__lowercase = flax_model.generate(__lowerCAmelCase ).sequences
__lowercase = pt_model.generate(torch.tensor(__lowerCAmelCase , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
__lowercase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = False
__lowercase = max_length
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = True
__lowercase = max_length
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = False
__lowercase = max_length
__lowercase = 2
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = False
__lowercase = max_length
__lowercase = 2
__lowercase = 2
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def a__ ( self : str ) -> Any:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = True
__lowercase = max_length
__lowercase = 0.8
__lowercase = 10
__lowercase = 0.3
__lowercase = 1
__lowercase = 8
__lowercase = 9
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = max_length
__lowercase = 1
__lowercase = 8
__lowercase = 9
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
__lowercase = max_length
__lowercase = 2
__lowercase = 1
__lowercase = 8
__lowercase = 9
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
# pad attention mask on the left
__lowercase = attention_mask.at[(0, 0)].set(0 )
__lowercase = False
__lowercase = max_length
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
# pad attention mask on the left
__lowercase = attention_mask.at[(0, 0)].set(0 )
__lowercase = True
__lowercase = max_length
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self._get_input_ids_and_config()
# pad attention mask on the left
__lowercase = attention_mask.at[(0, 0)].set(0 )
__lowercase = 2
__lowercase = max_length
for model_class in self.all_generative_model_classes:
__lowercase = model_class(__lowerCAmelCase )
__lowercase = model.generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __lowerCAmelCase )
__lowercase = jit(model.generate )
__lowercase = jit_generate(__lowerCAmelCase , attention_mask=__lowerCAmelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class A__ ( unittest.TestCase ):
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' )
__lowercase = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' )
__lowercase = 'Hello world'
__lowercase = tokenizer(__lowerCAmelCase , return_tensors='np' ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__lowerCAmelCase , 'do_samples' ):
model.generate(__lowerCAmelCase , do_samples=__lowerCAmelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__lowerCAmelCase , 'foo' ):
__lowercase = {'foo': 'bar'}
model.generate(__lowerCAmelCase , **__lowerCAmelCase )
| 710 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any=False ) -> Tuple:
__lowercase = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
('cls_token', 'vit.embeddings.cls_token'),
('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'),
('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'),
('pos_embed', 'vit.embeddings.position_embeddings'),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
('pre_logits.fc.weight', 'pooler.dense.weight'),
('pre_logits.fc.bias', 'pooler.dense.bias'),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
__lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
('norm.weight', 'vit.layernorm.weight'),
('norm.bias', 'vit.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
] )
return rename_keys
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=False ) -> Tuple:
for i in range(config.num_hidden_layers ):
if base_model:
__lowercase = ''
else:
__lowercase = 'vit.'
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowercase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" )
__lowercase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
__lowercase = in_proj_weight[
: config.hidden_size, :
]
__lowercase = in_proj_bias[: config.hidden_size]
__lowercase = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowercase = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowercase = in_proj_weight[
-config.hidden_size :, :
]
__lowercase = in_proj_bias[-config.hidden_size :]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
__lowercase = ['head.weight', 'head.bias']
for k in ignore_keys:
state_dict.pop(_snake_case , _snake_case )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ) -> int:
__lowercase = dct.pop(_snake_case )
__lowercase = val
def __SCREAMING_SNAKE_CASE ( ) -> str:
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return im
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Tuple:
__lowercase = ViTConfig()
__lowercase = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
__lowercase = True
__lowercase = int(vit_name[-12:-10] )
__lowercase = int(vit_name[-9:-6] )
else:
__lowercase = 1000
__lowercase = 'huggingface/label-files'
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(_snake_case ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = int(vit_name[-6:-4] )
__lowercase = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith('tiny' ):
__lowercase = 192
__lowercase = 768
__lowercase = 12
__lowercase = 3
elif vit_name[9:].startswith('small' ):
__lowercase = 384
__lowercase = 1536
__lowercase = 12
__lowercase = 6
else:
pass
else:
if vit_name[4:].startswith('small' ):
__lowercase = 768
__lowercase = 2304
__lowercase = 8
__lowercase = 8
elif vit_name[4:].startswith('base' ):
pass
elif vit_name[4:].startswith('large' ):
__lowercase = 1024
__lowercase = 4096
__lowercase = 24
__lowercase = 16
elif vit_name[4:].startswith('huge' ):
__lowercase = 1280
__lowercase = 5120
__lowercase = 32
__lowercase = 16
# load original model from timm
__lowercase = timm.create_model(_snake_case , pretrained=_snake_case )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
__lowercase = timm_model.state_dict()
if base_model:
remove_classification_head_(_snake_case )
__lowercase = create_rename_keys(_snake_case , _snake_case )
for src, dest in rename_keys:
rename_key(_snake_case , _snake_case , _snake_case )
read_in_q_k_v(_snake_case , _snake_case , _snake_case )
# load HuggingFace model
if vit_name[-5:] == "in21k":
__lowercase = ViTModel(_snake_case ).eval()
else:
__lowercase = ViTForImageClassification(_snake_case ).eval()
model.load_state_dict(_snake_case )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
__lowercase = DeiTImageProcessor(size=config.image_size )
else:
__lowercase = ViTImageProcessor(size=config.image_size )
__lowercase = image_processor(images=prepare_img() , return_tensors='pt' )
__lowercase = encoding['pixel_values']
__lowercase = model(_snake_case )
if base_model:
__lowercase = timm_model.forward_features(_snake_case )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 )
else:
__lowercase = timm_model(_snake_case )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(F"""Saving model {vit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_snake_case )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--vit_name""",
default="""vit_base_patch16_224""",
type=str,
help="""Name of the ViT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 711 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 0 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class A__ ( UpperCamelCase_ ):
@staticmethod
@abstractmethod
def a__ ( _UpperCAmelCase : ArgumentParser ) -> Tuple:
"""simple docstring"""
raise NotImplementedError()
@abstractmethod
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
raise NotImplementedError()
| 712 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 0 |
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE__ = 2_56
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["melgan"]
def __init__( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , ) -> None:
"""simple docstring"""
super().__init__()
# From MELGAN
__lowercase = math.log(1e-5 ) # Matches MelGAN training.
__lowercase = 4.0 # Largest value for most examples
__lowercase = 1_28
self.register_modules(
notes_encoder=_SCREAMING_SNAKE_CASE , continuous_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , melgan=_SCREAMING_SNAKE_CASE , )
def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=(-1.0, 1.0) , _UpperCAmelCase : Union[str, Any]=False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = output_range
if clip:
__lowercase = torch.clip(_SCREAMING_SNAKE_CASE , self.min_value , self.max_value )
# Scale to [0, 1].
__lowercase = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def a__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=(-1.0, 1.0) , _UpperCAmelCase : Tuple=False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = input_range
__lowercase = torch.clip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if clip else outputs
# Scale to [0, 1].
__lowercase = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def a__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = input_tokens > 0
__lowercase , __lowercase = self.notes_encoder(
encoder_input_tokens=_SCREAMING_SNAKE_CASE , encoder_inputs_mask=_SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = self.continuous_encoder(
encoder_inputs=_SCREAMING_SNAKE_CASE , encoder_inputs_mask=_SCREAMING_SNAKE_CASE )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def a__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = noise_time
if not torch.is_tensor(_SCREAMING_SNAKE_CASE ):
__lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0:
__lowercase = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__lowercase = self.decoder(
encodings_and_masks=_SCREAMING_SNAKE_CASE , decoder_input_tokens=_SCREAMING_SNAKE_CASE , decoder_noise_time=_SCREAMING_SNAKE_CASE )
return logits
@torch.no_grad()
def __call__( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str = None , _UpperCAmelCase : List[Any] = 1_00 , _UpperCAmelCase : List[str] = True , _UpperCAmelCase : int = "numpy" , _UpperCAmelCase : Dict = None , _UpperCAmelCase : Dict = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
"""simple docstring"""
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0)
):
raise ValueError(
f"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
f""" {type(_SCREAMING_SNAKE_CASE )}.""" )
__lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__lowercase = np.zeros([1, 0, self.n_dims] , np.floataa )
__lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_SCREAMING_SNAKE_CASE , device=self.device )
for i, encoder_input_tokens in enumerate(_SCREAMING_SNAKE_CASE ):
if i == 0:
__lowercase = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_SCREAMING_SNAKE_CASE , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__lowercase = ones
__lowercase = self.scale_features(
_SCREAMING_SNAKE_CASE , output_range=[-1.0, 1.0] , clip=_SCREAMING_SNAKE_CASE )
__lowercase = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_SCREAMING_SNAKE_CASE , continuous_mask=_SCREAMING_SNAKE_CASE , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__lowercase = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__lowercase = self.decode(
encodings_and_masks=_SCREAMING_SNAKE_CASE , input_tokens=_SCREAMING_SNAKE_CASE , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__lowercase = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample
__lowercase = self.scale_to_features(_SCREAMING_SNAKE_CASE , input_range=[-1.0, 1.0] )
__lowercase = mel[:1]
__lowercase = mel.cpu().float().numpy()
__lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info('Generated segment' , _SCREAMING_SNAKE_CASE )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
__lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__lowercase = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_SCREAMING_SNAKE_CASE )
| 713 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 0 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False)
parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""")
parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = """cpu"""
SCREAMING_SNAKE_CASE__ = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"""
SCREAMING_SNAKE_CASE__ = """path-to-your-trained-model"""
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
SCREAMING_SNAKE_CASE__ = pipe.to(device)
# to channels last
SCREAMING_SNAKE_CASE__ = pipe.unet.to(memory_format=torch.channels_last)
SCREAMING_SNAKE_CASE__ = pipe.vae.to(memory_format=torch.channels_last)
SCREAMING_SNAKE_CASE__ = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
SCREAMING_SNAKE_CASE__ = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
SCREAMING_SNAKE_CASE__ = torch.randn(2, 4, 64, 64)
SCREAMING_SNAKE_CASE__ = torch.rand(1) * 999
SCREAMING_SNAKE_CASE__ = torch.randn(2, 77, 768)
SCREAMING_SNAKE_CASE__ = (sample, timestep, encoder_hidden_status)
try:
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
SCREAMING_SNAKE_CASE__ = 666
SCREAMING_SNAKE_CASE__ = torch.Generator(device).manual_seed(seed)
SCREAMING_SNAKE_CASE__ = {"""generator""": generator}
if args.steps is not None:
SCREAMING_SNAKE_CASE__ = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
SCREAMING_SNAKE_CASE__ = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("""generated.png""")
| 714 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 0 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
__lowercase = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=__lowercase , cache_dir=__lowercase )
__lowercase = [t[-1] for t in os.walk(os.path.join(__lowercase , os.listdir(__lowercase )[0] , 'snapshots' ) )]
__lowercase = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin' ) for f in files )
@slow
@require_flax
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=__lowercase )
__lowercase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
__lowercase = jax.random.PRNGKey(0 )
__lowercase = 4
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = pipeline.prepare_inputs(__lowercase )
# shard inputs and rng
__lowercase = replicate(__lowercase )
__lowercase = jax.random.split(__lowercase , __lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1e-3
assert np.abs(np.abs(__lowercase , dtype=np.floataa ).sum() - 49_947.875 ) < 5e-1
__lowercase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(__lowercase ) == num_samples
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=__lowercase )
__lowercase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
__lowercase = jax.random.PRNGKey(0 )
__lowercase = 50
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = pipeline.prepare_inputs(__lowercase )
# shard inputs and rng
__lowercase = replicate(__lowercase )
__lowercase = jax.random.split(__lowercase , __lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images.shape == (num_samples, 1, 5_12, 5_12, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1e-3
assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5e-1
def a__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__lowercase )
__lowercase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
__lowercase = jax.random.PRNGKey(0 )
__lowercase = 50
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = pipeline.prepare_inputs(__lowercase )
# shard inputs and rng
__lowercase = replicate(__lowercase )
__lowercase = jax.random.split(__lowercase , __lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images.shape == (num_samples, 1, 5_12, 5_12, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3
assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa )
__lowercase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
__lowercase = jax.random.PRNGKey(0 )
__lowercase = 50
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = pipeline.prepare_inputs(__lowercase )
# shard inputs and rng
__lowercase = replicate(__lowercase )
__lowercase = jax.random.split(__lowercase , __lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images.shape == (num_samples, 1, 5_12, 5_12, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1e-3
assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5e-1
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = FlaxDDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=__lowercase , steps_offset=1 , )
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=__lowercase , safety_checker=__lowercase , )
__lowercase = scheduler.create_state()
__lowercase = scheduler_state
__lowercase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
__lowercase = jax.random.PRNGKey(0 )
__lowercase = 50
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = pipeline.prepare_inputs(__lowercase )
# shard inputs and rng
__lowercase = replicate(__lowercase )
__lowercase = jax.random.split(__lowercase , __lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images.shape == (num_samples, 1, 5_12, 5_12, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1e-3
assert np.abs((np.abs(__lowercase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5e-1
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = jax.random.split(jax.random.PRNGKey(0 ) , __lowercase )
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__lowercase , )
__lowercase = replicate(__lowercase )
__lowercase = pipeline.prepare_inputs(__lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images.shape == (num_samples, 1, 5_12, 5_12, 3)
__lowercase = images[2, 0, 2_56, 10:17, 1]
# With memory efficient attention
__lowercase , __lowercase = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=__lowercase , use_memory_efficient_attention=__lowercase , )
__lowercase = replicate(__lowercase )
__lowercase = pipeline.prepare_inputs(__lowercase )
__lowercase = shard(__lowercase )
__lowercase = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase ).images
assert images_eff.shape == (num_samples, 1, 5_12, 5_12, 3)
__lowercase = images[2, 0, 2_56, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2
| 715 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 0 |
from __future__ import annotations
SCREAMING_SNAKE_CASE__ = """Muhammad Umer Farooq"""
SCREAMING_SNAKE_CASE__ = """MIT"""
SCREAMING_SNAKE_CASE__ = """1.0.0"""
SCREAMING_SNAKE_CASE__ = """Muhammad Umer Farooq"""
SCREAMING_SNAKE_CASE__ = """[email protected]"""
SCREAMING_SNAKE_CASE__ = """Alpha"""
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class A__ ( __snake_case ):
def __init__( self : Dict , _UpperCAmelCase : Any ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = []
__lowercase = domain
def a__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> Any:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
__lowercase = parse.urljoin(self.domain , A_ )
self.urls.append(A_ )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str:
return ".".join(get_sub_domain_name(_lowerCAmelCase ).split('.' )[-2:] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> str:
return parse.urlparse(_lowerCAmelCase ).netloc
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = "https://github.com" ) -> list[str]:
__lowercase = get_domain_name(_lowerCAmelCase )
# Initialize the parser
__lowercase = Parser(_lowerCAmelCase )
try:
# Open URL
__lowercase = requests.get(_lowerCAmelCase )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
__lowercase = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
__lowercase = requests.get(_lowerCAmelCase )
# Get the valid email.
__lowercase = re.findall('[a-zA-Z0-9]+@' + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(_lowerCAmelCase )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(_lowerCAmelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = emails_from_url("""https://github.com""")
print(F'''{len(emails)} emails found:''')
print("""\n""".join(sorted(emails)))
| 716 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''',
# See all BioGPT models at https://huggingface.co/models?filter=biogpt
}
class A__ ( UpperCamelCase__ ):
lowerCAmelCase__ : str = """biogpt"""
def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[int]=4_23_84 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : List[Any]=24 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : str=40_96 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : List[str]=2 , **_UpperCAmelCase : List[Any] , ) -> Any:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = max_position_embeddings
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = scale_embedding
__lowercase = use_cache
__lowercase = layerdrop
__lowercase = activation_dropout
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
| 717 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ) -> Dict:
if depth < 0:
raise ValueError('Depth cannot be less than 0' )
if len(__lowerCAmelCase ) == 0:
raise ValueError('Scores cannot be empty' )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , )
return min(
minimax(depth + 1 , node_index * 2 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , )
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
__lowercase = [90, 23, 6, 33, 21, 65, 123, 34423]
__lowercase = math.log(len(__lowerCAmelCase ) , 2 )
print('Optimal value : ' , end='' )
print(minimax(0 , 0 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 718 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 0 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class A__ :
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
__lowercase = len(lowerCAmelCase_ ) - 1
def a__ ( self : Any , _UpperCAmelCase : Tuple ) -> list[float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__lowercase = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , lowerCAmelCase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(lowerCAmelCase_ ) , 5 ) == 1
return output_values
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> tuple[float, float]:
"""simple docstring"""
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__lowercase = self.basis_function(lowerCAmelCase_ )
__lowercase = 0.0
__lowercase = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def a__ ( self : str , _UpperCAmelCase : Dict = 0.01 ) -> Optional[int]:
"""simple docstring"""
from matplotlib import pyplot as plt # type: ignore
__lowercase = [] # x coordinates of points to plot
__lowercase = [] # y coordinates of points to plot
__lowercase = 0.0
while t <= 1:
__lowercase = self.bezier_curve_function(lowerCAmelCase_ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
__lowercase = [i[0] for i in self.list_of_points]
__lowercase = [i[1] for i in self.list_of_points]
plt.plot(
lowerCAmelCase_ , lowerCAmelCase_ , color='blue' , label='Curve of Degree ' + str(self.degree ) , )
plt.scatter(lowerCAmelCase_ , lowerCAmelCase_ , color='red' , label='Control Points' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 719 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 0 |
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class A__ :
@property
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
return self.get_dummy_input()
@property
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f"""\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.""" )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=False , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 4
__lowercase = 32
__lowercase = (32, 32)
__lowercase = torch.manual_seed(0 )
__lowercase = torch.device(__a )
__lowercase = (batch_size, num_channels) + sizes
__lowercase = randn_tensor(__a , generator=__a , device=__a )
__lowercase = {"""hidden_states""": hidden_states}
if include_temb:
__lowercase = 1_28
__lowercase = randn_tensor((batch_size, temb_channels) , generator=__a , device=__a )
if include_res_hidden_states_tuple:
__lowercase = torch.manual_seed(1 )
__lowercase = (randn_tensor(__a , generator=__a , device=__a ),)
if include_encoder_hidden_states:
__lowercase = floats_tensor((batch_size, 32, 32) ).to(__a )
if include_skip_sample:
__lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=__a , device=__a )
return dummy_input
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
__lowercase = {
"""in_channels""": 32,
"""out_channels""": 32,
"""temb_channels""": 1_28,
}
if self.block_type == "up":
__lowercase = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
__lowercase = self.dummy_input
return init_dict, inputs_dict
def a__ ( self : str , _UpperCAmelCase : Dict ) -> Any:
"""simple docstring"""
__lowercase = self.prepare_init_args_and_inputs_for_common()
__lowercase = self.block_class(**__a )
unet_block.to(__a )
unet_block.eval()
with torch.no_grad():
__lowercase = unet_block(**__a )
if isinstance(__a , __a ):
__lowercase = output[0]
self.assertEqual(output.shape , self.output_shape )
__lowercase = output[0, -1, -3:, -3:]
__lowercase = torch.tensor(__a ).to(__a )
assert torch_all_close(output_slice.flatten() , __a , atol=5e-3 )
@unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' )
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.prepare_init_args_and_inputs_for_common()
__lowercase = self.block_class(**__a )
model.to(__a )
model.train()
__lowercase = model(**__a )
if isinstance(__a , __a ):
__lowercase = output[0]
__lowercase = torch.device(__a )
__lowercase = randn_tensor(output.shape , device=__a )
__lowercase = torch.nn.functional.mse_loss(__a , __a )
loss.backward() | 720 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 0 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class A__ ( unittest.TestCase ):
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/sd2-inpaint/init_image.png' )
__lowercase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' )
__lowercase = 'xvjiarui/stable-diffusion-2-inpainting'
__lowercase , __lowercase = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__ )
__lowercase = 'Face of a yellow cat, high resolution, sitting on a park bench'
__lowercase = jax.random.PRNGKey(0 )
__lowercase = 50
__lowercase = jax.device_count()
__lowercase = num_samples * [prompt]
__lowercase = num_samples * [init_image]
__lowercase = num_samples * [mask_image]
__lowercase , __lowercase , __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# shard inputs and rng
__lowercase = replicate(UpperCAmelCase__ )
__lowercase = jax.random.split(UpperCAmelCase__ , jax.device_count() )
__lowercase = shard(UpperCAmelCase__ )
__lowercase = shard(UpperCAmelCase__ )
__lowercase = shard(UpperCAmelCase__ )
__lowercase = pipeline(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ )
__lowercase = output.images.reshape(UpperCAmelCase__ , 5_12 , 5_12 , 3 )
__lowercase = images[0, 2_53:2_56, 2_53:2_56, -1]
__lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) )
__lowercase = jnp.array(
[0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 721 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 0 |
from numpy import exp, pi, sqrt
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 ) -> int:
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 700 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_barthez import BarthezTokenizer
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""",
"""moussaKam/barthez-orangesum-title""": (
"""https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json"""
),
},
}
SCREAMING_SNAKE_CASE__ = {
"""moussaKam/mbarthez""": 1024,
"""moussaKam/barthez""": 1024,
"""moussaKam/barthez-orangesum-title""": 1024,
}
SCREAMING_SNAKE_CASE__ = """▁"""
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = VOCAB_FILES_NAMES
lowerCAmelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : Optional[Any] = ['input_ids', 'attention_mask']
lowerCAmelCase__ : int = BarthezTokenizer
def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Dict="<s>" , _UpperCAmelCase : Union[str, Any]="</s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : str="<pad>" , _UpperCAmelCase : Optional[int]="<mask>" , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_file
__lowercase = False if not self.vocab_file else True
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__lowercase = [self.cls_token_id]
__lowercase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 701 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 0 |
import argparse
import intel_extension_for_pytorch as ipex
import torch
from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False)
parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""")
parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = """cpu"""
SCREAMING_SNAKE_CASE__ = """a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"""
SCREAMING_SNAKE_CASE__ = """path-to-your-trained-model"""
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(model_id)
if args.dpm:
SCREAMING_SNAKE_CASE__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
SCREAMING_SNAKE_CASE__ = pipe.to(device)
# to channels last
SCREAMING_SNAKE_CASE__ = pipe.unet.to(memory_format=torch.channels_last)
SCREAMING_SNAKE_CASE__ = pipe.vae.to(memory_format=torch.channels_last)
SCREAMING_SNAKE_CASE__ = pipe.text_encoder.to(memory_format=torch.channels_last)
if pipe.requires_safety_checker:
SCREAMING_SNAKE_CASE__ = pipe.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
SCREAMING_SNAKE_CASE__ = torch.randn(2, 4, 64, 64)
SCREAMING_SNAKE_CASE__ = torch.rand(1) * 999
SCREAMING_SNAKE_CASE__ = torch.randn(2, 77, 768)
SCREAMING_SNAKE_CASE__ = (sample, timestep, encoder_hidden_status)
try:
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example)
except Exception:
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True)
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True)
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True)
if pipe.requires_safety_checker:
SCREAMING_SNAKE_CASE__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True)
# compute
SCREAMING_SNAKE_CASE__ = 666
SCREAMING_SNAKE_CASE__ = torch.Generator(device).manual_seed(seed)
SCREAMING_SNAKE_CASE__ = {"""generator""": generator}
if args.steps is not None:
SCREAMING_SNAKE_CASE__ = args.steps
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa):
SCREAMING_SNAKE_CASE__ = pipe(prompt, **generate_kwargs).images[0]
# save image
image.save("""generated.png""")
| 702 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 0 |
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( a__ ):
lowerCAmelCase__ : int = ["""pixel_values"""]
def __init__( self : Optional[int] , _UpperCAmelCase : Dict = True , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Dict = PILImageResampling.BICUBIC , _UpperCAmelCase : Union[str, Any] = True , _UpperCAmelCase : Any = None , _UpperCAmelCase : str = True , _UpperCAmelCase : str = 1 / 2_55 , _UpperCAmelCase : List[Any] = True , _UpperCAmelCase : Optional[int] = IMAGENET_DEFAULT_MEAN , _UpperCAmelCase : Union[str, Any] = IMAGENET_DEFAULT_STD , **_UpperCAmelCase : Union[str, Any] , ) -> None:
"""simple docstring"""
super().__init__(**lowercase__ )
__lowercase = size if size is not None else {'''shortest_edge''': 2_24}
__lowercase = get_size_dict(lowercase__ , default_to_square=lowercase__ )
__lowercase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24}
__lowercase = get_size_dict(lowercase__ , param_name='crop_size' )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_center_crop
__lowercase = crop_size
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
__lowercase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def a__ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict = PILImageResampling.BICUBIC , _UpperCAmelCase : List[Any] = None , **_UpperCAmelCase : Any , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(lowercase__ , default_to_square=lowercase__ )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
__lowercase = int((2_56 / 2_24) * size['shortest_edge'] )
__lowercase = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ )
__lowercase = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"""Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}""" )
return resize(
lowercase__ , size=(size_dict['height'], size_dict['width']) , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def a__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size dict must have keys \'height\' and \'width\'. Got {size.keys()}""" )
return center_crop(lowercase__ , size=(size['height'], size['width']) , data_format=lowercase__ , **lowercase__ )
def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] = None , **_UpperCAmelCase : Tuple , ) -> np.ndarray:
"""simple docstring"""
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] = None , **_UpperCAmelCase : Union[str, Any] , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any = None , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Optional[Any] = None , _UpperCAmelCase : List[Any] = None , _UpperCAmelCase : List[Any] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Any = None , _UpperCAmelCase : Any = None , _UpperCAmelCase : str = None , _UpperCAmelCase : int = None , _UpperCAmelCase : str = None , _UpperCAmelCase : Union[str, Any] = ChannelDimension.FIRST , **_UpperCAmelCase : Optional[int] , ) -> BatchFeature:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(lowercase__ , default_to_square=lowercase__ )
__lowercase = crop_size if crop_size is not None else self.crop_size
__lowercase = get_size_dict(lowercase__ , param_name='crop_size' )
__lowercase = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(lowercase__ ) for image in images]
if do_resize:
__lowercase = [self.resize(lowercase__ , lowercase__ , lowercase__ ) for image in images]
if do_center_crop:
__lowercase = [self.center_crop(lowercase__ , lowercase__ ) for image in images]
if do_rescale:
__lowercase = [self.rescale(lowercase__ , lowercase__ ) for image in images]
if do_normalize:
__lowercase = [self.normalize(lowercase__ , lowercase__ , lowercase__ ) for image in images]
__lowercase = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
__lowercase = {'''pixel_values''': images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
__lowercase = int(SCREAMING_SNAKE_CASE__ )
if decimal in (0, 1): # Exit cases for the recursion
return str(SCREAMING_SNAKE_CASE__ )
__lowercase = divmod(SCREAMING_SNAKE_CASE__ , 2 )
return binary_recursive(SCREAMING_SNAKE_CASE__ ) + str(SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Optional[int]:
__lowercase = str(SCREAMING_SNAKE_CASE__ ).strip()
if not number:
raise ValueError('No input value was provided' )
__lowercase = """-""" if number.startswith('-' ) else """"""
__lowercase = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return F"""{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE__ ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 704 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
"""--original_config_file""",
default=None,
type=str,
help="""The YAML config file corresponding to the original architecture.""",
)
parser.add_argument(
"""--num_in_channels""",
default=None,
type=int,
help="""The number of input channels. If `None` number of input channels will be automatically inferred.""",
)
parser.add_argument(
"""--scheduler_type""",
default="""pndm""",
type=str,
help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""",
)
parser.add_argument(
"""--pipeline_type""",
default=None,
type=str,
help=(
"""The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'"""
""". If `None` pipeline will be automatically inferred."""
),
)
parser.add_argument(
"""--image_size""",
default=None,
type=int,
help=(
"""The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"""
""" Base. Use 768 for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--prediction_type""",
default=None,
type=str,
help=(
"""The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"""
""" Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2."""
),
)
parser.add_argument(
"""--extract_ema""",
action="""store_true""",
help=(
"""Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"""
""" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"""
""" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."""
),
)
parser.add_argument(
"""--upcast_attention""",
action="""store_true""",
help=(
"""Whether the attention computation should always be upcasted. This is necessary when running stable"""
""" diffusion 2.1."""
),
)
parser.add_argument(
"""--from_safetensors""",
action="""store_true""",
help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""",
)
parser.add_argument(
"""--to_safetensors""",
action="""store_true""",
help="""Whether to store pipeline in safetensors format or not.""",
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
parser.add_argument(
"""--stable_unclip""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""",
)
parser.add_argument(
"""--stable_unclip_prior""",
type=str,
default=None,
required=False,
help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""",
)
parser.add_argument(
"""--clip_stats_path""",
type=str,
help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""",
required=False,
)
parser.add_argument(
"""--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint."""
)
parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""")
parser.add_argument(
"""--vae_path""",
type=str,
default=None,
required=False,
help="""Set to a path, hub id to an already converted vae to not convert it again.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 705 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 0 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ) -> int:
return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 706 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 0 |
import random
from .binary_exp_mod import bin_exp_mod
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]=1000 ) -> Union[str, Any]:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
__lowercase = n - 1
__lowercase = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
__lowercase = 0
while count < prec:
__lowercase = random.randint(2 , n - 1 )
__lowercase = bin_exp_mod(lowercase_ , lowercase_ , lowercase_ )
if b != 1:
__lowercase = True
for _ in range(lowercase_ ):
if b == n - 1:
__lowercase = False
break
__lowercase = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = abs(int(input("""Enter bound : """).strip()))
print("""Here's the list of primes:""")
print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 707 |
from __future__ import annotations
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ) -> float:
__lowercase = u
for i in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = temp * (u - i)
return temp
def __SCREAMING_SNAKE_CASE ( ) -> None:
__lowercase = int(input('enter the numbers of values: ' ) )
__lowercase = []
for _ in range(SCREAMING_SNAKE_CASE ):
y.append([] )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
y[i].append(SCREAMING_SNAKE_CASE )
__lowercase = 0
print('enter the values of parameters in a list: ' )
__lowercase = list(map(SCREAMING_SNAKE_CASE , input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = float(input() )
__lowercase = int(input('enter the value to interpolate: ' ) )
__lowercase = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , SCREAMING_SNAKE_CASE ):
for j in range(n - i ):
__lowercase = y[j + 1][i - 1] - y[j][i - 1]
__lowercase = y[0][0]
for i in range(1 , SCREAMING_SNAKE_CASE ):
summ += (ucal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) * y[0][i]) / math.factorial(SCREAMING_SNAKE_CASE )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 688 | 0 |
'''simple docstring'''
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = """▁"""
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class A__ ( UpperCAmelCase_ , unittest.TestCase ):
lowerCAmelCase__ : str = BigBirdTokenizer
lowerCAmelCase__ : Any = BigBirdTokenizerFast
lowerCAmelCase__ : List[str] = True
lowerCAmelCase__ : Dict = True
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = self.tokenizer_class(_snake_case , keep_accents=_snake_case )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = '<s>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case )
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , '[MASK]' )
self.assertEqual(len(_snake_case ) , 10_04 )
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_00 )
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer()
__lowercase = 'I was born in 92000, and this is falsé.'
__lowercase = tokenizer.tokenize(_snake_case )
__lowercase = rust_tokenizer.tokenize(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
__lowercase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
__lowercase = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case )
self.assertListEqual(_snake_case , _snake_case )
__lowercase = self.get_rust_tokenizer()
__lowercase = tokenizer.encode(_snake_case )
__lowercase = rust_tokenizer.encode(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = BigBirdTokenizer(_snake_case , keep_accents=_snake_case )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_snake_case ) , [2_85, 46, 10, 1_70, 3_82] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_snake_case , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__lowercase = tokenizer.convert_tokens_to_ids(_snake_case )
self.assertListEqual(
_snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
__lowercase = tokenizer.convert_ids_to_tokens(_snake_case )
self.assertListEqual(
_snake_case , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def a__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' )
@slow
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = 'Hello World!'
__lowercase = [65, 1_85_36, 22_60, 1_01, 66]
self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) )
@slow
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
__lowercase = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
# fmt: off
__lowercase = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231
# fmt: on
self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) )
@require_torch
@slow
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
__lowercase = list(self.big_tokenizer.get_vocab().keys() )[:10]
__lowercase = ' '.join(_snake_case )
__lowercase = self.big_tokenizer.encode_plus(_snake_case , return_tensors='pt' , return_token_type_ids=_snake_case )
__lowercase = self.big_tokenizer.batch_encode_plus(
[sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=_snake_case )
__lowercase = BigBirdConfig(attention_type='original_full' )
__lowercase = BigBirdModel(_snake_case )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_snake_case )
model(**_snake_case )
@slow
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base' )
__lowercase = tokenizer.decode(tokenizer('Paris is the [MASK].' ).input_ids )
self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]' )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = {'input_ids': [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_snake_case , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
| 708 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if number < 1:
__lowercase = F"""Input value of [number={number}] must be > 0"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = 1
for i in range(1 , SCREAMING_SNAKE_CASE ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 688 | 0 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
SCREAMING_SNAKE_CASE__ = False
class A__ ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = 'A painting of a squirrel eating a burger '
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_lowerCAmelCase )
__lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowerCAmelCase )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = generator.manual_seed(0 )
__lowercase = pipe(
prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = VersatileDiffusionTextToImagePipeline.from_pretrained(
'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa )
pipe.to(_lowerCAmelCase )
pipe.set_progress_bar_config(disable=_lowerCAmelCase )
__lowercase = 'A painting of a squirrel eating a burger '
__lowercase = torch.manual_seed(0 )
__lowercase = pipe(
prompt=_lowerCAmelCase , generator=_lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images
__lowercase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__lowercase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 709 |
from argparse import ArgumentParser
from .env import EnvironmentCommand
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
__lowercase = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
__lowercase = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE )
# Let's go
__lowercase = parser.parse_args()
if not hasattr(SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
__lowercase = args.func(SCREAMING_SNAKE_CASE )
service.run()
if __name__ == "__main__":
main()
| 688 | 0 |
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
SCREAMING_SNAKE_CASE__ = None
try:
import msvcrt
except ImportError:
SCREAMING_SNAKE_CASE__ = None
try:
import fcntl
except ImportError:
SCREAMING_SNAKE_CASE__ = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
SCREAMING_SNAKE_CASE__ = OSError
# Data
# ------------------------------------------------
SCREAMING_SNAKE_CASE__ = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
SCREAMING_SNAKE_CASE__ = """3.0.12"""
SCREAMING_SNAKE_CASE__ = None
def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
global _logger
__lowercase = _logger or logging.getLogger(__name__ )
return _logger
class A__ ( UpperCamelCase__ ):
def __init__( self : Any , _UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
__lowercase = lock_file
return None
def __str__( self : str ) -> str:
"""simple docstring"""
__lowercase = f"""The file lock \'{self.lock_file}\' could not be acquired."""
return temp
class A__ :
def __init__( self : List[str] , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = lock
return None
def __enter__( self : Tuple ) -> List[Any]:
"""simple docstring"""
return self.lock
def __exit__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ) -> List[Any]:
"""simple docstring"""
self.lock.release()
return None
class A__ :
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=-1 , _UpperCAmelCase : Union[str, Any]=None ) -> List[Any]:
"""simple docstring"""
__lowercase = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
__lowercase = self.hash_filename_if_too_long(_a , _a )
# The path to the lock file.
__lowercase = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__lowercase = None
# The default timeout value.
__lowercase = timeout
# We use this lock primarily for the lock counter.
__lowercase = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__lowercase = 0
return None
@property
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return self._lock_file
@property
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
return self._timeout
@timeout.setter
def a__ ( self : Dict , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = float(_a )
return None
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
raise NotImplementedError()
@property
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return self._lock_file_fd is not None
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=0.05 ) -> Dict:
"""simple docstring"""
if timeout is None:
__lowercase = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__lowercase = id(self )
__lowercase = self._lock_file
__lowercase = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(_a )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__lowercase = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[int]=False ) -> Optional[int]:
"""simple docstring"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__lowercase = id(self )
__lowercase = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
__lowercase = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__( self : str ) -> Any:
"""simple docstring"""
self.acquire()
return self
def __exit__( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
self.release()
return None
def __del__( self : Dict ) -> List[Any]:
"""simple docstring"""
self.release(force=_a )
return None
def a__ ( self : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = os.path.basename(_a )
if len(_a ) > max_length and max_length > 0:
__lowercase = os.path.dirname(_a )
__lowercase = str(hash(_a ) )
__lowercase = filename[: max_length - len(_a ) - 8] + """...""" + hashed_filename + """.lock"""
return os.path.join(_a , _a )
else:
return path
class A__ ( UpperCamelCase__ ):
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any]=-1 , _UpperCAmelCase : Tuple=None ) -> Union[str, Any]:
"""simple docstring"""
from .file_utils import relative_to_absolute_path
super().__init__(_a , timeout=_a , max_filename_length=_a )
__lowercase = """\\\\?\\""" + relative_to_absolute_path(self.lock_file )
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__lowercase = os.open(self._lock_file , _a )
except OSError:
pass
else:
try:
msvcrt.locking(_a , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(_a )
else:
__lowercase = fd
return None
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__lowercase = self._lock_file_fd
__lowercase = None
msvcrt.locking(_a , msvcrt.LK_UNLCK , 1 )
os.close(_a )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class A__ ( UpperCamelCase__ ):
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str=-1 , _UpperCAmelCase : Tuple=None ) -> Optional[int]:
"""simple docstring"""
__lowercase = os.statvfs(os.path.dirname(_a ) ).f_namemax
super().__init__(_a , timeout=_a , max_filename_length=_a )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__lowercase = os.open(self._lock_file , _a )
try:
fcntl.flock(_a , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(_a )
else:
__lowercase = fd
return None
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = self._lock_file_fd
__lowercase = None
fcntl.flock(_a , fcntl.LOCK_UN )
os.close(_a )
return None
class A__ ( UpperCamelCase__ ):
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
__lowercase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__lowercase = os.open(self._lock_file , _a )
except OSError:
pass
else:
__lowercase = fd
return None
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
os.close(self._lock_file_fd )
__lowercase = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
SCREAMING_SNAKE_CASE__ = None
if msvcrt:
SCREAMING_SNAKE_CASE__ = WindowsFileLock
elif fcntl:
SCREAMING_SNAKE_CASE__ = UnixFileLock
else:
SCREAMING_SNAKE_CASE__ = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 710 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = ProphetNetTokenizer
lowerCAmelCase__ : str = False
def a__ ( self : str ) -> Tuple:
"""simple docstring"""
super().setUp()
__lowercase = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = 'UNwant\u00E9d,running'
__lowercase = 'unwanted, running'
return input_text, output_text
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = self.tokenizer_class(self.vocab_file )
__lowercase = tokenizer.tokenize('UNwant\u00E9d,running' )
self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [9, 6, 7, 12, 10, 11] )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] )
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , strip_accents=_UpperCAmelCase )
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = BasicTokenizer(do_lower_case=_UpperCAmelCase , never_split=['[UNK]'] )
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] )
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
__lowercase = {}
for i, token in enumerate(_UpperCAmelCase ):
__lowercase = i
__lowercase = WordpieceTokenizer(vocab=_UpperCAmelCase , unk_token='[UNK]' )
self.assertListEqual(tokenizer.tokenize('' ) , [] )
self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] )
self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] )
@require_torch
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
__lowercase = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02]
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' )
self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = list(batch.input_ids.numpy()[0] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
def a__ ( self : int ) -> Dict:
"""simple docstring"""
self.assertTrue(_is_whitespace(' ' ) )
self.assertTrue(_is_whitespace('\t' ) )
self.assertTrue(_is_whitespace('\r' ) )
self.assertTrue(_is_whitespace('\n' ) )
self.assertTrue(_is_whitespace('\u00A0' ) )
self.assertFalse(_is_whitespace('A' ) )
self.assertFalse(_is_whitespace('-' ) )
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
self.assertTrue(_is_control('\u0005' ) )
self.assertFalse(_is_control('A' ) )
self.assertFalse(_is_control(' ' ) )
self.assertFalse(_is_control('\t' ) )
self.assertFalse(_is_control('\r' ) )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
self.assertTrue(_is_punctuation('-' ) )
self.assertTrue(_is_punctuation('$' ) )
self.assertTrue(_is_punctuation('`' ) )
self.assertTrue(_is_punctuation('.' ) )
self.assertFalse(_is_punctuation('A' ) )
self.assertFalse(_is_punctuation(' ' ) )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' )
__lowercase = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase )
__lowercase = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase )
assert encoded_sentence == text + [1_02]
assert encoded_pair == text + [1_02] + text_a + [1_02]
| 688 | 0 |
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( SCREAMING_SNAKE_CASE_ ):
lowerCAmelCase__ : List[Any] = CLIPConfig
lowerCAmelCase__ : Union[str, Any] = ["CLIPEncoderLayer"]
def __init__( self : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCamelCase__ )
__lowercase = CLIPVisionModelWithProjection(config.vision_config )
__lowercase = nn.Linear(config.vision_config.projection_dim , 1 )
__lowercase = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def a__ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=0.5 , _UpperCAmelCase : List[str]=0.5 ) -> List[str]:
"""simple docstring"""
__lowercase = self.vision_model(UpperCamelCase__ )[0]
__lowercase = self.p_head(UpperCamelCase__ )
__lowercase = nsfw_detected.flatten()
__lowercase = nsfw_detected > p_threshold
__lowercase = nsfw_detected.tolist()
if any(UpperCamelCase__ ):
logger.warning(
'Potential NSFW content was detected in one or more images. A black image will be returned instead.'
' Try again with a different prompt and/or seed.' )
for idx, nsfw_detected_ in enumerate(UpperCamelCase__ ):
if nsfw_detected_:
__lowercase = np.zeros(images[idx].shape )
__lowercase = self.w_head(UpperCamelCase__ )
__lowercase = watermark_detected.flatten()
__lowercase = watermark_detected > w_threshold
__lowercase = watermark_detected.tolist()
if any(UpperCamelCase__ ):
logger.warning(
'Potential watermarked content was detected in one or more images. A black image will be returned instead.'
' Try again with a different prompt and/or seed.' )
for idx, watermark_detected_ in enumerate(UpperCamelCase__ ):
if watermark_detected_:
__lowercase = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 711 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
SCREAMING_SNAKE_CASE__ = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""jukebox""": 512,
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Optional[Any] = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase__ : Any = ["input_ids", "attention_mask"]
def __init__( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=["v3", "v2", "v2"] , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Union[str, Any]="<|endoftext|>" , **_UpperCAmelCase : Tuple , ) -> List[Any]:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = version
__lowercase = max_n_lyric_tokens
__lowercase = n_genres
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle:
__lowercase = json.load(_UpperCAmelCase )
__lowercase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
__lowercase = oov.replace(R'\-\'' , R'\-+\'' )
__lowercase = regex.compile(_UpperCAmelCase )
__lowercase = {v: k for k, v in self.artists_encoder.items()}
__lowercase = {v: k for k, v in self.genres_encoder.items()}
__lowercase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
__lowercase = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
__lowercase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
__lowercase = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self : str , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def a__ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
__lowercase = artists[idx].lower()
__lowercase = [genres[idx].lower()]
else:
__lowercase = self._normalize(artists[idx] ) + '.v2'
__lowercase = [
self._normalize(_UpperCAmelCase ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
__lowercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
__lowercase = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
__lowercase = 0
__lowercase = len(_UpperCAmelCase ) + 1
__lowercase = self.vocab
__lowercase = {v: k for k, v in self.vocab.items()}
__lowercase = ''
else:
__lowercase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
__lowercase = self._run_strip_accents(_UpperCAmelCase )
__lowercase = lyrics.replace('\\' , '\n' )
__lowercase = self.out_of_vocab.sub('' , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def a__ ( self : Tuple , _UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = unicodedata.normalize('NFD' , _UpperCAmelCase )
__lowercase = []
for char in text:
__lowercase = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = (
[chr(_UpperCAmelCase ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
__lowercase = frozenset(_UpperCAmelCase )
__lowercase = re.compile(R'_+' )
__lowercase = ''.join([c if c in accepted else '_' for c in text.lower()] )
__lowercase = pattern.sub('_' , _UpperCAmelCase ).strip('_' )
return text
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = False ) -> int:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
__lowercase = tf.constant
__lowercase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
__lowercase = torch.tensor
__lowercase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
__lowercase = jnp.array
__lowercase = _is_jax
else:
__lowercase = np.asarray
__lowercase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
__lowercase = [inputs]
if not is_tensor(_UpperCAmelCase ):
__lowercase = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int="" , _UpperCAmelCase : Tuple="pt" ) -> BatchEncoding:
"""simple docstring"""
__lowercase = [0, 0, 0]
__lowercase = [artist] * len(self.version )
__lowercase = [genres] * len(self.version )
__lowercase , __lowercase , __lowercase = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase , __lowercase , __lowercase = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = [-INFINITY] * len(full_tokens[-1] )
__lowercase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.artists_decoder.get(_UpperCAmelCase )
__lowercase = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
__lowercase = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 688 | 0 |
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
SCREAMING_SNAKE_CASE__ = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""])
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> str:
__lowercase = test_results.split(' ' )
__lowercase = 0
__lowercase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
__lowercase = expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(lowerCamelCase_ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]:
__lowercase = {}
__lowercase = None
__lowercase = False
for line in failures_short_lines.split('\n' ):
if re.search(R'_ \[doctest\]' , lowerCamelCase_ ):
__lowercase = True
__lowercase = line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
__lowercase = line
__lowercase = False
return failures
class A__ :
def __init__( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> Any:
"""simple docstring"""
__lowercase = title
__lowercase = doc_test_results['time_spent'].split(',' )[0]
__lowercase = doc_test_results['success']
__lowercase = doc_test_results['failures']
__lowercase = self.n_success + self.n_failures
# Failures and success of the modeling tests
__lowercase = doc_test_results
@property
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__lowercase = [self._time_spent]
__lowercase = 0
for time in time_spent:
__lowercase = time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(_lowerCamelCase ) == 1:
__lowercase = [0, 0, time_parts[0]]
__lowercase , __lowercase , __lowercase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
__lowercase , __lowercase , __lowercase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f"""{int(_lowerCamelCase )}h{int(_lowerCamelCase )}m{int(_lowerCamelCase )}s"""
@property
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
f""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__lowercase = 40
__lowercase = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(_lowerCamelCase , _lowerCamelCase )}
__lowercase = ''
for category, failures in category_failures.items():
if len(_lowerCamelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(_lowerCamelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
__lowercase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(_lowerCamelCase )
@staticmethod
def a__ ( ) -> List[str]:
"""simple docstring"""
__lowercase = [
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(_lowerCamelCase )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=_lowerCamelCase , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
__lowercase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.'
__lowercase = client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=_lowerCamelCase , )
def a__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = ''
for key, value in failures.items():
__lowercase = value[:2_00] + ' [Truncated]' if len(_lowerCamelCase ) > 2_50 else value
failures_text += f"""*{key}*\n_{value}_\n\n"""
__lowercase = job_name
__lowercase = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
__lowercase = {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
__lowercase = self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
__lowercase = sorted(self.doc_test_results.items() , key=lambda _UpperCAmelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
__lowercase = f"""*Num failures* :{len(job_result["failed"] )} \n"""
__lowercase = job_result['failures']
__lowercase = self.get_reply_blocks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , text=_lowerCamelCase )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=f"""Results for {job}""" , blocks=_lowerCamelCase , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = os.environ['GITHUB_RUN_ID']
__lowercase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
__lowercase = requests.get(lowerCamelCase_ ).json()
__lowercase = {}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
__lowercase = math.ceil((result['total_count'] - 100) / 100 )
for i in range(lowerCamelCase_ ):
__lowercase = requests.get(url + F"""&page={i + 2}""" ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.' , lowerCamelCase_ )
return {}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
__lowercase = {}
if os.path.exists(lowerCamelCase_ ):
__lowercase = os.listdir(lowerCamelCase_ )
for file in files:
try:
with open(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) , encoding='utf-8' ) as f:
__lowercase = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(lowerCamelCase_ , lowerCamelCase_ )}.""" ) from e
return _artifact
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
class A__ :
def __init__( self : List[str] , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = name
__lowercase = []
def __str__( self : Any ) -> List[str]:
"""simple docstring"""
return self.name
def a__ ( self : int , _UpperCAmelCase : Dict ) -> Dict:
"""simple docstring"""
self.paths.append({'name': self.name, 'path': path} )
__lowercase = {}
__lowercase = filter(os.path.isdir , os.listdir() )
for directory in directories:
__lowercase = directory
if artifact_name not in _available_artifacts:
__lowercase = Artifact(lowerCamelCase_ )
_available_artifacts[artifact_name].add_path(lowerCamelCase_ )
return _available_artifacts
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = get_job_links()
SCREAMING_SNAKE_CASE__ = retrieve_available_artifacts()
SCREAMING_SNAKE_CASE__ = collections.OrderedDict(
[
("""*.py""", """API Examples"""),
("""*.md""", """MD Examples"""),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
SCREAMING_SNAKE_CASE__ = {
v: {
"""failed""": [],
"""failures""": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
SCREAMING_SNAKE_CASE__ = github_actions_job_links.get("""run_doctests""")
SCREAMING_SNAKE_CASE__ = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0]
SCREAMING_SNAKE_CASE__ = retrieve_artifact(artifact_path["""name"""])
if "stats" in artifact:
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = handle_test_results(artifact["""stats"""])
SCREAMING_SNAKE_CASE__ = failed
SCREAMING_SNAKE_CASE__ = success
SCREAMING_SNAKE_CASE__ = time_spent[1:-1] + """, """
SCREAMING_SNAKE_CASE__ = extract_first_line_failure(artifact["""failures_short"""])
for line in artifact["summary_short"].split("""\n"""):
if re.search("""FAILED""", line):
SCREAMING_SNAKE_CASE__ = line.replace("""FAILED """, """""")
SCREAMING_SNAKE_CASE__ = line.split()[0].replace("""\n""", """""")
if "::" in line:
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = line.split("""::""")
else:
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
SCREAMING_SNAKE_CASE__ = docs[file_regex]
doc_test_results[category]["failed"].append(test)
SCREAMING_SNAKE_CASE__ = all_failures[test] if test in all_failures else """N/A"""
SCREAMING_SNAKE_CASE__ = failure
break
SCREAMING_SNAKE_CASE__ = Message("""🤗 Results of the doc tests.""", doc_test_results)
message.post()
message.post_reply()
| 712 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
def __init__( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=36 , _UpperCAmelCase : Optional[Any]=6 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Any=6 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Dict=5_12 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : Any=None , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = embedding_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_hidden_groups
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def a__ ( self : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = AlbertModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AlbertForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , sentence_order_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AlbertForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> int:
"""simple docstring"""
__lowercase = AlbertForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = AlbertForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = AlbertForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : Dict = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Optional[Any] = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int=False ) -> Tuple:
"""simple docstring"""
__lowercase = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
__lowercase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
__lowercase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = AlbertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = AlbertModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = AlbertModel.from_pretrained('albert-base-v2' )
__lowercase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
| 688 | 0 |
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class A__ ( _A ):
lowerCAmelCase__ : str = 42
lowerCAmelCase__ : Tuple = 42
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 713 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[str] , _UpperCAmelCase : str = "▁" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[str, AddedToken] = "<unk>" , _UpperCAmelCase : Union[str, AddedToken] = "</s>" , _UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {
'pad': {'id': 0, 'token': pad_token},
'eos': {'id': 1, 'token': eos_token},
'unk': {'id': 2, 'token': unk_token},
}
__lowercase = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
__lowercase = token_dict['token']
__lowercase = Tokenizer(Unigram() )
__lowercase = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(' {2,}' ) , ' ' ),
normalizers.Lowercase(),
] )
__lowercase = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=_UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
__lowercase = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = TemplateProcessing(
single=f"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , )
__lowercase = {
'model': 'SentencePieceUnigram',
'replacement': replacement,
'add_prefix_space': add_prefix_space,
}
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> str:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [files]
self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : int , _UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _UpperCAmelCase : int = 80_00 , _UpperCAmelCase : bool = True , ) -> Dict:
"""simple docstring"""
__lowercase = trainers.UnigramTrainer(
vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , )
self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase )
self.add_unk_id()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = json.loads(self._tokenizer.to_str() )
__lowercase = self.special_tokens['unk']['id']
__lowercase = Tokenizer.from_str(json.dumps(_UpperCAmelCase ) )
| 688 | 0 |
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class A__ ( __lowercase ):
lowerCAmelCase__ : int = 0
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : float = 3.0
class A__ ( unittest.TestCase ):
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=__A ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a__ ( self : Dict ) -> int:
"""simple docstring"""
__lowercase = GradScalerKwargs(init_scale=10_24 , growth_factor=2 )
AcceleratorState._reset_state()
__lowercase = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__lowercase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 10_24.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 20_00 )
self.assertEqual(scaler._enabled , __A )
@require_multi_gpu
def a__ ( self : Any ) -> List[str]:
"""simple docstring"""
__lowercase = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
execute_subprocess_async(__A , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
SCREAMING_SNAKE_CASE__ = Accelerator(kwargs_handlers=[ddp_scaler])
SCREAMING_SNAKE_CASE__ = torch.nn.Linear(100, 200)
SCREAMING_SNAKE_CASE__ = accelerator.prepare(model)
# Check the values changed in kwargs
SCREAMING_SNAKE_CASE__ = """"""
SCREAMING_SNAKE_CASE__ = model.bucket_bytes_cap // (1024 * 1024)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 714 |
import string
from math import logaa
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = document.translate(
str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' )
__lowercase = document_without_punctuation.split(' ' ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> tuple[int, int]:
__lowercase = corpus.lower().translate(
str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with ''
__lowercase = corpus_without_punctuation.split('\n' )
__lowercase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(SCREAMING_SNAKE_CASE ))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str]=False ) -> float:
if smoothing:
if n == 0:
raise ValueError('log10(0) is undefined.' )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError('df must be > 0' )
elif n == 0:
raise ValueError('log10(0) is undefined.' )
return round(logaa(n / df ) , 3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return round(tf * idf , 3 )
| 688 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""",
},
"""tokenizer_file""": {
"""unc-nlp/lxmert-base-uncased""": (
"""https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json"""
),
},
}
SCREAMING_SNAKE_CASE__ = {
"""unc-nlp/lxmert-base-uncased""": 512,
}
SCREAMING_SNAKE_CASE__ = {
"""unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True},
}
class A__ ( UpperCamelCase__ ):
lowerCAmelCase__ : str = VOCAB_FILES_NAMES
lowerCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
lowerCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : Optional[Any] = LxmertTokenizer
def __init__( self : List[str] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]="[UNK]" , _UpperCAmelCase : Union[str, Any]="[SEP]" , _UpperCAmelCase : str="[PAD]" , _UpperCAmelCase : Optional[Any]="[CLS]" , _UpperCAmelCase : Tuple="[MASK]" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] , ) -> Optional[int]:
"""simple docstring"""
super().__init__(
__A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , )
__lowercase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , __A ) != do_lower_case
or normalizer_state.get('strip_accents' , __A ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , __A ) != tokenize_chinese_chars
):
__lowercase = getattr(__A , normalizer_state.pop('type' ) )
__lowercase = do_lower_case
__lowercase = strip_accents
__lowercase = tokenize_chinese_chars
__lowercase = normalizer_class(**__A )
__lowercase = do_lower_case
def a__ ( self : str , _UpperCAmelCase : Dict , _UpperCAmelCase : str=None ) -> List[Any]:
"""simple docstring"""
__lowercase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a__ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
__lowercase = self._tokenizer.model.save(__A , name=__A )
return tuple(__A )
| 715 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# TODO: upload to AWS
SCREAMING_SNAKE_CASE__ = {
"""yjernite/retribert-base-uncased""": (
"""https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "retribert"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Union[str, Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Optional[int]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = share_encoders
__lowercase = projection_dim
| 688 | 0 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE__ = '''
Examples:
```py
>>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")
>>> pipe_prior.to("cuda")
>>> prompt = "red cat, 4k photo"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> zero_image_emb = out.negative_image_embeds
>>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")
>>> pipe.to("cuda")
>>> image = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=50,
... ).images
>>> image[0].save("cat.png")
```
'''
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any=8 ) -> List[str]:
__lowercase = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
__lowercase = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class A__ ( __UpperCAmelCase ):
def __init__( self : Dict , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : DDPMScheduler , _UpperCAmelCase : VQModel , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
self.register_modules(
unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , movq=__SCREAMING_SNAKE_CASE , )
__lowercase = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def a__ ( self : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
if latents is None:
__lowercase = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
__lowercase = latents.to(__SCREAMING_SNAKE_CASE )
__lowercase = latents * scheduler.init_noise_sigma
return latents
def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any]=0 ) -> List[Any]:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
__lowercase = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def a__ ( self : int , _UpperCAmelCase : str=0 ) -> List[Any]:
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
__lowercase = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=__SCREAMING_SNAKE_CASE )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__lowercase = None
for cpu_offloaded_model in [self.unet, self.movq]:
__lowercase , __lowercase = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prev_module_hook=__SCREAMING_SNAKE_CASE )
# We'll offload the last model manually.
__lowercase = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(__SCREAMING_SNAKE_CASE , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__SCREAMING_SNAKE_CASE )
def __call__( self : str , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 4.0 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , ) -> int:
"""simple docstring"""
__lowercase = self._execution_device
__lowercase = guidance_scale > 1.0
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__lowercase = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
__lowercase = image_embeds.shape[0] * num_images_per_prompt
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__lowercase = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
if do_classifier_free_guidance:
__lowercase = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
__lowercase = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
__lowercase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__SCREAMING_SNAKE_CASE )
self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE )
__lowercase = self.scheduler.timesteps
__lowercase = self.unet.config.in_channels
__lowercase , __lowercase = downscale_height_and_width(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.movq_scale_factor )
# create initial latent
__lowercase = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler , )
for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ):
# expand the latents if we are doing classifier free guidance
__lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__lowercase = {'image_embeds': image_embeds}
__lowercase = self.unet(
sample=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , added_cond_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0]
if do_classifier_free_guidance:
__lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 )
__lowercase , __lowercase = noise_pred.chunk(2 )
__lowercase , __lowercase = variance_pred.chunk(2 )
__lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__lowercase = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__lowercase , __lowercase = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
__lowercase = self.scheduler.step(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , )[0]
# post-processing
__lowercase = self.movq.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
__lowercase = image * 0.5 + 0.5
__lowercase = image.clamp(0 , 1 )
__lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__lowercase = self.numpy_to_pil(__SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
| 716 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FalconForCausalLM""",
"""FalconModel""",
"""FalconPreTrainedModel""",
"""FalconForSequenceClassification""",
"""FalconForTokenClassification""",
"""FalconForQuestionAnswering""",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> bool:
return not any(
neighbour == 1 and colored_vertices[i] == color
for i, neighbour in enumerate(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> bool:
# Base Case
if index == len(SCREAMING_SNAKE_CASE ):
return True
# Recursive Step
for i in range(SCREAMING_SNAKE_CASE ):
if valid_coloring(graph[index] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
# Color current vertex
__lowercase = i
# Validate coloring
if util_color(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ):
return True
# Backtrack
__lowercase = -1
return False
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [-1] * len(SCREAMING_SNAKE_CASE )
if util_color(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 ):
return colored_vertices
return []
| 717 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : Union[str, Any] = "LayoutLMv2ImageProcessor"
lowerCAmelCase__ : Union[str, Any] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
def __call__( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , _UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Dict , ) -> BatchEncoding:
"""simple docstring"""
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
__lowercase = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension)
__lowercase = features['words']
__lowercase = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
# add pixel values
__lowercase = features.pop('pixel_values' )
if return_overflowing_tokens is True:
__lowercase = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['overflow_to_sample_mapping'] )
__lowercase = images
return encoded_inputs
def a__ ( self : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
f""" {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}""" )
return images_with_overflow
def a__ ( self : Dict , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 688 | 0 |
'''simple docstring'''
import io
import json
import fsspec
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.json import JsonDatasetReader, JsonDatasetWriter
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> str:
assert isinstance(_lowercase , _lowercase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowercase = JsonDatasetReader(_lowercase , cache_dir=_lowercase , keep_in_memory=_lowercase ).read()
_check_json_dataset(_lowercase , _lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowercase = features.copy() if features else default_expected_features
__lowercase = (
Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowercase = JsonDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read()
_check_json_dataset(_lowercase , _lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'},
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}
__lowercase = features.copy() if features else default_expected_features
__lowercase = (
Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowercase = JsonDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read()
assert isinstance(_lowercase , _lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_3", "col_1", "col_2"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
__lowercase = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'}
__lowercase = features.copy()
__lowercase = (
Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowercase = tmp_path / 'cache'
__lowercase = JsonDatasetReader(_lowercase , features=_lowercase , cache_dir=_lowercase ).read()
assert isinstance(_lowercase , _lowercase )
assert dataset.num_rows == 2
assert dataset.num_columns == 3
assert dataset.column_names == ["col_2", "col_3", "col_1"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ) -> Tuple:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowercase = JsonDatasetReader(_lowercase , cache_dir=_lowercase , split=_lowercase ).read()
_check_json_dataset(_lowercase , _lowercase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ) -> Dict:
if issubclass(_lowercase , _lowercase ):
__lowercase = jsonl_path
elif issubclass(_lowercase , _lowercase ):
__lowercase = [jsonl_path]
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowercase = JsonDatasetReader(_lowercase , cache_dir=_lowercase ).read()
_check_json_dataset(_lowercase , _lowercase )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=("train",) ) -> Dict:
assert isinstance(_lowercase , _lowercase )
for split in splits:
__lowercase = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowercase = JsonDatasetReader({'train': jsonl_path} , cache_dir=_lowercase , keep_in_memory=_lowercase ).read()
_check_json_datasetdict(_lowercase , _lowercase )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]:
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowercase = features.copy() if features else default_expected_features
__lowercase = (
Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowercase = JsonDatasetReader({'train': jsonl_path} , features=_lowercase , cache_dir=_lowercase ).read()
_check_json_datasetdict(_lowercase , _lowercase )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ) -> Tuple:
if split:
__lowercase = {split: jsonl_path}
else:
__lowercase = 'train'
__lowercase = {'train': jsonl_path, 'test': jsonl_path}
__lowercase = tmp_path / 'cache'
__lowercase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowercase = JsonDatasetReader(_lowercase , cache_dir=_lowercase ).read()
_check_json_datasetdict(_lowercase , _lowercase , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
return json.load(_lowercase )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
return [json.loads(_lowercase ) for line in buffer]
class A__ :
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
with io.BytesIO() as buffer:
JsonDatasetWriter(__A , __A , lines=__A ).write()
buffer.seek(0 )
__lowercase = load_json_function(__A )
assert isinstance(__A , __A )
assert isinstance(exported_content[0] , __A )
assert len(__A ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
with io.BytesIO() as buffer:
JsonDatasetWriter(__A , __A , lines=__A , orient=__A ).write()
buffer.seek(0 )
__lowercase = load_json(__A )
assert isinstance(__A , __A )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__A , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__A ) == 10
@pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] )
def a__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
with io.BytesIO() as buffer:
JsonDatasetWriter(__A , __A , lines=__A , num_proc=2 ).write()
buffer.seek(0 )
__lowercase = load_json_function(__A )
assert isinstance(__A , __A )
assert isinstance(exported_content[0] , __A )
assert len(__A ) == 10
@pytest.mark.parametrize(
'orient, container, keys, len_at' , [
('records', list, {'tokens', 'labels', 'answers', 'id'}, None),
('split', dict, {'columns', 'data'}, 'data'),
('index', dict, set('0123456789' ), None),
('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'),
('values', list, None, None),
('table', dict, {'schema', 'data'}, 'data'),
] , )
def a__ ( self : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
with io.BytesIO() as buffer:
JsonDatasetWriter(__A , __A , lines=__A , orient=__A , num_proc=2 ).write()
buffer.seek(0 )
__lowercase = load_json(__A )
assert isinstance(__A , __A )
if keys:
if container is dict:
assert exported_content.keys() == keys
else:
assert exported_content[0].keys() == keys
else:
assert not hasattr(__A , 'keys' ) and not hasattr(exported_content[0] , 'keys' )
if len_at:
assert len(exported_content[len_at] ) == 10
else:
assert len(__A ) == 10
def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] ) -> Optional[int]:
"""simple docstring"""
with pytest.raises(__A ):
with io.BytesIO() as buffer:
JsonDatasetWriter(__A , __A , num_proc=0 )
@pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
__lowercase = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}"""
__lowercase = str(shared_datadir / f"""test_file.json.{extension}""" )
JsonDatasetWriter(__A , __A , compression=__A ).write()
with fsspec.open(__A , 'rb' , compression='infer' ) as f:
__lowercase = f.read()
with fsspec.open(__A , 'rb' , compression='infer' ) as f:
__lowercase = f.read()
assert exported_content == original_content
| 718 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ :
lowerCAmelCase__ : Optional[int] = "dummy_data"
lowerCAmelCase__ : str = "datasets"
lowerCAmelCase__ : Dict = False
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Union[Version, str] , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[List[Callable]] = None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 0
__lowercase = dataset_name
__lowercase = cache_dir
__lowercase = use_local_dummy_data
__lowercase = config
# download_callbacks take a single url as input
__lowercase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__lowercase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__lowercase = str(_UpperCAmelCase )
# to be downloaded
__lowercase = None
__lowercase = None
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self._dummy_file is None:
__lowercase = self.download_dummy_data()
return self._dummy_file
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__lowercase = cached_path(
_UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=_UpperCAmelCase , force_extract=_UpperCAmelCase )
return os.path.join(_UpperCAmelCase , self.dummy_file_name )
@property
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
if self._bucket_url is None:
__lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , *_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__lowercase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__lowercase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
return self.create_dummy_data_dict(_UpperCAmelCase , _UpperCAmelCase )
elif isinstance(_UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(_UpperCAmelCase , _UpperCAmelCase )
else:
return self.create_dummy_data_single(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , *_UpperCAmelCase : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.download_and_extract(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return path
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return {}
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
for single_url in single_urls:
download_callback(_UpperCAmelCase )
else:
__lowercase = single_urls
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) ) for x in single_urls]
else:
__lowercase = single_urls
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(Path(_UpperCAmelCase ).name ) )
__lowercase = value
# make sure that values are unique
if all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__lowercase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , _UpperCAmelCase ) ) for url in data_url )
__lowercase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__lowercase = [data_url[0]] * len(_UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(_UpperCAmelCase )
return dummy_data_list
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(_UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__lowercase = os.path.join(_UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(_UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : int ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
def _iter_archive_members(_UpperCAmelCase : Optional[Any] ):
# this preserves the order of the members inside the ZIP archive
__lowercase = Path(self.dummy_file ).parent
__lowercase = path.relative_to(_UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__lowercase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(_UpperCAmelCase )
__lowercase = Path(_UpperCAmelCase )
__lowercase = _iter_archive_members(_UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(_UpperCAmelCase ).as_posix(), file_path.open('rb' )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = [paths]
for path in paths:
if os.path.isfile(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(_UpperCAmelCase ):
if os.path.basename(_UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(_UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase )
| 688 | 0 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
SCREAMING_SNAKE_CASE__ = _symbol_database.Default()
SCREAMING_SNAKE_CASE__ = _descriptor_pool.Default().AddSerializedFile(
B"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
SCREAMING_SNAKE_CASE__ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = B"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
SCREAMING_SNAKE_CASE__ = 45
SCREAMING_SNAKE_CASE__ = 1581
SCREAMING_SNAKE_CASE__ = 1517
SCREAMING_SNAKE_CASE__ = 1570
SCREAMING_SNAKE_CASE__ = 1584
SCREAMING_SNAKE_CASE__ = 1793
SCREAMING_SNAKE_CASE__ = 1795
SCREAMING_SNAKE_CASE__ = 1916
SCREAMING_SNAKE_CASE__ = 1864
SCREAMING_SNAKE_CASE__ = 1905
SCREAMING_SNAKE_CASE__ = 1919
SCREAMING_SNAKE_CASE__ = 2429
SCREAMING_SNAKE_CASE__ = 2208
SCREAMING_SNAKE_CASE__ = 2418
SCREAMING_SNAKE_CASE__ = 2323
SCREAMING_SNAKE_CASE__ = 2407
# @@protoc_insertion_point(module_scope)
| 719 |
import math
import sys
import cva
import numpy as np
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__lowercase = math.sqrt(SCREAMING_SNAKE_CASE )
__lowercase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> np.ndarray:
__lowercase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__lowercase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , SCREAMING_SNAKE_CASE ):
for j in range(0 , SCREAMING_SNAKE_CASE ):
__lowercase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int , ) -> np.ndarray:
__lowercase = np.zeros(img.shape )
__lowercase = get_gauss_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__lowercase = get_slice(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = img_s - img_s[kernel_size // 2, kernel_size // 2]
__lowercase = vec_gaussian(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.multiply(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = np.sum(SCREAMING_SNAKE_CASE ) / np.sum(SCREAMING_SNAKE_CASE )
__lowercase = val
return imga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list ) -> tuple:
__lowercase = args[1] if args[1:] else '../image_data/lena.jpg'
__lowercase = float(args[2] ) if args[2:] else 1.0
__lowercase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__lowercase = int(args[4] )
__lowercase = kernel_size + abs(kernel_size % 2 - 1 )
else:
__lowercase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parse_args(sys.argv)
SCREAMING_SNAKE_CASE__ = cva.imread(filename, 0)
cva.imshow("""input image""", img)
SCREAMING_SNAKE_CASE__ = img / 255
SCREAMING_SNAKE_CASE__ = out.astype("""float32""")
SCREAMING_SNAKE_CASE__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
SCREAMING_SNAKE_CASE__ = out * 255
SCREAMING_SNAKE_CASE__ = np.uinta(out)
cva.imshow("""output image""", out)
cva.waitKey(0)
cva.destroyAllWindows()
| 688 | 0 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]:
__lowercase = XCLIPTextConfig()
# derive patch size from model name
__lowercase = model_name.find('patch' )
__lowercase = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] )
__lowercase = XCLIPVisionConfig(patch_size=lowercase_ , num_frames=lowercase_ )
if "large" in model_name:
__lowercase = 768
__lowercase = 3072
__lowercase = 12
__lowercase = 1024
__lowercase = 4096
__lowercase = 16
__lowercase = 24
__lowercase = 768
__lowercase = 3072
if model_name == "xclip-large-patch14-16-frames":
__lowercase = 336
__lowercase = XCLIPConfig.from_text_vision_configs(lowercase_ , lowercase_ )
if "large" in model_name:
__lowercase = 768
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
# text encoder
if name == "token_embedding.weight":
__lowercase = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' )
if name == "positional_embedding":
__lowercase = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' )
if "ln_1" in name:
__lowercase = name.replace('ln_1' , 'layer_norm1' )
if "ln_2" in name:
__lowercase = name.replace('ln_2' , 'layer_norm2' )
if "c_fc" in name:
__lowercase = name.replace('c_fc' , 'fc1' )
if "c_proj" in name:
__lowercase = name.replace('c_proj' , 'fc2' )
if name.startswith('transformer.resblocks' ):
__lowercase = name.replace('transformer.resblocks' , 'text_model.encoder.layers' )
if "attn.out_proj" in name and "message" not in name:
__lowercase = name.replace('attn.out_proj' , 'self_attn.out_proj' )
if "ln_final" in name:
__lowercase = name.replace('ln_final' , 'text_model.final_layer_norm' )
# visual encoder
if name == "visual.class_embedding":
__lowercase = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' )
if name == "visual.positional_embedding":
__lowercase = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' )
if name.startswith('visual.transformer.resblocks' ):
__lowercase = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' )
if "visual.conv1" in name:
__lowercase = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' )
if "visual.ln_pre" in name:
__lowercase = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' )
if "visual.ln_post" in name:
__lowercase = name.replace('visual.ln_post' , 'vision_model.post_layernorm' )
if "visual.proj" in name:
__lowercase = name.replace('visual.proj' , 'visual_projection.weight' )
if "text_projection" in name:
__lowercase = name.replace('text_projection' , 'text_projection.weight' )
# things on top
if "prompts_visual_proj" in name:
__lowercase = name.replace('prompts_visual_proj' , 'prompts_visual_projection' )
if "prompts_visual_ln" in name:
__lowercase = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' )
# mit
if name == "mit.positional_embedding":
__lowercase = name.replace('positional' , 'position' )
if name.startswith('mit.resblocks' ):
__lowercase = name.replace('mit.resblocks' , 'mit.encoder.layers' )
# prompts generator
if name.startswith('prompts_generator.norm' ):
__lowercase = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' )
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
for key in orig_state_dict.copy().keys():
__lowercase = orig_state_dict.pop(lowercase_ )
if "attn.in_proj" in key:
__lowercase = key.split('.' )
if key.startswith('visual' ):
__lowercase = key_split[3]
__lowercase = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__lowercase = val[
:dim, :
]
__lowercase = val[
dim : dim * 2, :
]
__lowercase = val[
-dim:, :
]
else:
__lowercase = val[
:dim
]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[
-dim:
]
else:
if "weight" in key:
__lowercase = val[
:dim, :
]
__lowercase = val[
dim : dim * 2, :
]
__lowercase = val[
-dim:, :
]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
elif key.startswith('mit' ):
__lowercase = key_split[2]
__lowercase = config.vision_config.mit_hidden_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[dim : dim * 2, :]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[dim : dim * 2]
__lowercase = val[-dim:]
else:
__lowercase = key_split[2]
__lowercase = config.text_config.hidden_size
if "weight" in key:
__lowercase = val[:dim, :]
__lowercase = val[
dim : dim * 2, :
]
__lowercase = val[-dim:, :]
else:
__lowercase = val[:dim]
__lowercase = val[
dim : dim * 2
]
__lowercase = val[-dim:]
else:
__lowercase = rename_key(lowercase_ )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__lowercase = val.T
__lowercase = val
return orig_state_dict
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
if num_frames == 8:
__lowercase = """eating_spaghetti_8_frames.npy"""
elif num_frames == 16:
__lowercase = """eating_spaghetti.npy"""
elif num_frames == 32:
__lowercase = """eating_spaghetti_32_frames.npy"""
__lowercase = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=lowercase_ , repo_type='dataset' , )
__lowercase = np.load(lowercase_ )
return list(lowercase_ )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Union[str, Any]:
__lowercase = {
# fully supervised kinetics-400 checkpoints
"""xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""",
"""xclip-base-patch32-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth"""
),
"""xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""",
"""xclip-base-patch16-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth"""
),
"""xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb""",
"""xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f""",
# fully supervised kinetics-600 checkpoints
"""xclip-base-patch16-kinetics-600""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth"""
),
"""xclip-base-patch16-kinetics-600-16-frames""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth"""
),
"""xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be""",
# few shot
"""xclip-base-patch16-hmdb-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth"""
),
"""xclip-base-patch16-hmdb-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth"""
),
"""xclip-base-patch16-hmdb-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth"""
),
"""xclip-base-patch16-hmdb-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth"""
),
"""xclip-base-patch16-ucf-2-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth"""
),
"""xclip-base-patch16-ucf-4-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth"""
),
"""xclip-base-patch16-ucf-8-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth"""
),
"""xclip-base-patch16-ucf-16-shot""": (
"""https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth"""
),
# zero shot
"""xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""",
}
__lowercase = model_to_url[model_name]
__lowercase = 8
if "16-frames" in model_name:
__lowercase = 16
elif "shot" in model_name:
__lowercase = 32
__lowercase = get_xclip_config(lowercase_ , lowercase_ )
__lowercase = XCLIPModel(lowercase_ )
model.eval()
if "drive" in checkpoint_url:
__lowercase = """pytorch_model.bin"""
gdown.cached_download(lowercase_ , lowercase_ , quiet=lowercase_ )
__lowercase = torch.load(lowercase_ , map_location='cpu' )["""model"""]
else:
__lowercase = torch.hub.load_state_dict_from_url(lowercase_ )["""model"""]
__lowercase = convert_state_dict(lowercase_ , lowercase_ )
__lowercase = XCLIPModel(lowercase_ )
__lowercase = model.load_state_dict(lowercase_ , strict=lowercase_ )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__lowercase = 336 if model_name == """xclip-large-patch14-16-frames""" else 224
__lowercase = VideoMAEImageProcessor(size=lowercase_ )
__lowercase = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' )
__lowercase = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' )
__lowercase = XCLIPProcessor(image_processor=lowercase_ , tokenizer=lowercase_ )
__lowercase = prepare_video(lowercase_ )
__lowercase = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=lowercase_ , return_tensors='pt' , padding=lowercase_ )
print('Shape of pixel values:' , inputs.pixel_values.shape )
with torch.no_grad():
__lowercase = model(**lowercase_ )
# Verify outputs
__lowercase = outputs.logits_per_video
__lowercase = logits_per_video.softmax(dim=1 )
print('Probs:' , lowercase_ )
# kinetics-400
if model_name == "xclip-base-patch32":
__lowercase = torch.tensor([[0.0_019, 0.9_951, 0.0_030]] )
elif model_name == "xclip-base-patch32-16-frames":
__lowercase = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] )
elif model_name == "xclip-base-patch16":
__lowercase = torch.tensor([[0.0_083, 0.9_681, 0.0_236]] )
elif model_name == "xclip-base-patch16-16-frames":
__lowercase = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] )
elif model_name == "xclip-large-patch14":
__lowercase = torch.tensor([[0.0_062, 0.9_864, 0.0_075]] )
elif model_name == "xclip-large-patch14-16-frames":
__lowercase = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__lowercase = torch.tensor([[0.0_555, 0.8_914, 0.0_531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__lowercase = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__lowercase = torch.tensor([[0.0_036, 0.9_920, 0.0_045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__lowercase = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__lowercase = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__lowercase = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__lowercase = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__lowercase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__lowercase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__lowercase = torch.tensor([[0.0_027, 0.9_904, 0.0_070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__lowercase = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__lowercase = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] )
else:
raise ValueError(F"""Model name {model_name} not supported""" )
assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(lowercase_ )
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...' )
model.push_to_hub(lowercase_ , organization='nielsr' )
processor.push_to_hub(lowercase_ , organization='nielsr' )
slow_tokenizer.push_to_hub(lowercase_ , organization='nielsr' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 720 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Any=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Tuple=4_00 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=True , ) -> Dict:
"""simple docstring"""
__lowercase = size if size is not None else {'height': 18, 'width': 18}
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = size
__lowercase = apply_ocr
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr' ) )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 18} )
__lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
self.assertIsInstance(encoding.words , _UpperCAmelCase )
self.assertIsInstance(encoding.boxes , _UpperCAmelCase )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = LayoutLMvaImageProcessor()
from datasets import load_dataset
__lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' )
__lowercase = Image.open(ds[0]['file'] ).convert('RGB' )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
__lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231
__lowercase = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _UpperCAmelCase )
self.assertListEqual(encoding.boxes , _UpperCAmelCase )
# with apply_OCR = False
__lowercase = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase )
__lowercase = image_processing(_UpperCAmelCase , return_tensors='pt' )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_24, 2_24) )
| 688 | 0 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : list[str] ) -> str:
__lowercase = ''
for word_or_phrase in separated:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise Exception('join() accepts only strings to be joined' )
joined += word_or_phrase + separator
return joined.strip(lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 721 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""",
# See all umt5 models at https://huggingface.co/models?filter=umt5
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "umt5"
lowerCAmelCase__ : Tuple = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = vocab_size
__lowercase = d_model
__lowercase = d_kv
__lowercase = d_ff
__lowercase = num_layers
__lowercase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__lowercase = num_heads
__lowercase = relative_attention_num_buckets
__lowercase = relative_attention_max_distance
__lowercase = dropout_rate
__lowercase = layer_norm_epsilon
__lowercase = initializer_factor
__lowercase = feed_forward_proj
__lowercase = use_cache
__lowercase = self.feed_forward_proj.split('-' )
__lowercase = act_info[-1]
__lowercase = act_info[0] == 'gated'
if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '
'\'gated-gelu\' or \'relu\'' )
if feed_forward_proj == "gated-gelu":
__lowercase = 'gelu_new'
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
return self.d_model
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
return self.num_heads
@property
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self.num_layers
class A__ ( lowerCAmelCase__ ):
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs
def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
__lowercase = {
'input_ids': {0: 'batch', 1: 'encoder_sequence'},
'attention_mask': {0: 'batch', 1: 'encoder_sequence'},
}
if self.use_past:
__lowercase = 'past_encoder_sequence + sequence'
__lowercase = {0: 'batch'}
__lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
__lowercase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' )
return common_inputs
@property
# Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
return 13
@property
def a__ ( self : Dict ) -> float:
"""simple docstring"""
return 5e-4
| 688 | 0 |
import math
SCREAMING_SNAKE_CASE__ = 10
SCREAMING_SNAKE_CASE__ = 7
SCREAMING_SNAKE_CASE__ = BALLS_PER_COLOUR * NUM_COLOURS
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 20 ) -> List[Any]:
__lowercase = math.comb(_lowerCamelCase , _lowerCamelCase )
__lowercase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowerCamelCase )
__lowercase = NUM_COLOURS * (1 - missing_colour / total)
return F"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 700 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : int=5_02_65 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[str]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : str=2 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[Any]=1_28 , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : int=64 , _UpperCAmelCase : List[str]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Any , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = version.parse("1.12" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : Any ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return 12
def a__ ( self : Tuple , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 688 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class A__ ( snake_case_ , snake_case_ ):
@register_to_config
def __init__( self : Union[str, Any] , _UpperCAmelCase : str = 7_68 , ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) )
__lowercase = nn.Parameter(torch.ones(1 , _UpperCAmelCase ) )
def a__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Any = None , ) -> Dict:
"""simple docstring"""
__lowercase = nn.Parameter(self.mean.to(_UpperCAmelCase ).to(_UpperCAmelCase ) )
__lowercase = nn.Parameter(self.std.to(_UpperCAmelCase ).to(_UpperCAmelCase ) )
return self
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = (embeds - self.mean) * 1.0 / self.std
return embeds
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
__lowercase = (embeds * self.std) + self.mean
return embeds
| 701 |
from pathlib import Path
import numpy as np
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase , __lowercase , __lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
return (gray > 127) & (gray <= 255)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ) -> np.ndarray:
__lowercase = np.zeros_like(SCREAMING_SNAKE_CASE )
__lowercase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowercase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowercase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowercase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
SCREAMING_SNAKE_CASE__ = np.array(Image.open(lena_path))
# kernel to be applied
SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
SCREAMING_SNAKE_CASE__ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
SCREAMING_SNAKE_CASE__ = Image.fromarray(output).convert("""RGB""")
pil_img.save("""result_dilation.png""")
| 688 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""],
"""processing_speech_to_text""": ["""Speech2TextProcessor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""Speech2TextTokenizer"""]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""Speech2TextFeatureExtractor"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFSpeech2TextForConditionalGeneration""",
"""TFSpeech2TextModel""",
"""TFSpeech2TextPreTrainedModel""",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Speech2TextForConditionalGeneration""",
"""Speech2TextModel""",
"""Speech2TextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 702 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : int , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Any , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : int , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 688 | 0 |
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class A__ :
lowerCAmelCase__ : Tuple = 42 # [batch_size x 3]
lowerCAmelCase__ : List[Any] = 42 # [batch_size x 3]
lowerCAmelCase__ : List[str] = 42 # [batch_size x 3]
lowerCAmelCase__ : Dict = 42 # [batch_size x 3]
lowerCAmelCase__ : Dict = 42
lowerCAmelCase__ : Optional[int] = 42
lowerCAmelCase__ : int = 42
lowerCAmelCase__ : Optional[Any] = 42
lowerCAmelCase__ : Tuple = 42
def a__ ( self : str ) -> int:
"""simple docstring"""
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def a__ ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
__lowercase = torch.arange(self.height * self.width )
__lowercase = torch.stack(
[
pixel_indices % self.width,
torch.div(_UpperCAmelCase , self.width , rounding_mode='trunc' ),
] , axis=1 , )
return coords
@property
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = self.shape
__lowercase = int(np.prod(_UpperCAmelCase ) )
__lowercase = self.get_image_coords()
__lowercase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
__lowercase = self.get_camera_rays(_UpperCAmelCase )
__lowercase = rays.view(_UpperCAmelCase , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def a__ ( self : Optional[int] , _UpperCAmelCase : torch.Tensor ) -> Optional[int]:
"""simple docstring"""
__lowercase = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
__lowercase = coords.view(_UpperCAmelCase , -1 , 2 )
__lowercase = self.resolution()
__lowercase = self.fov()
__lowercase = (flat.float() / (res - 1)) * 2 - 1
__lowercase = fracs * torch.tan(fov / 2 )
__lowercase = fracs.view(_UpperCAmelCase , -1 , 2 )
__lowercase = (
self.z.view(_UpperCAmelCase , 1 , 3 )
+ self.x.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(_UpperCAmelCase , 1 , 3 ) * fracs[:, :, 1:]
)
__lowercase = directions / directions.norm(dim=-1 , keepdim=_UpperCAmelCase )
__lowercase = torch.stack(
[
torch.broadcast_to(self.origin.view(_UpperCAmelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(_UpperCAmelCase , *_UpperCAmelCase , 2 , 3 )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=_UpperCAmelCase , height=_UpperCAmelCase , x_fov=self.x_fov , y_fov=self.y_fov , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> DifferentiableProjectiveCamera:
__lowercase = []
__lowercase = []
__lowercase = []
__lowercase = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
__lowercase = np.array([np.sin(SCREAMING_SNAKE_CASE_ ), np.cos(SCREAMING_SNAKE_CASE_ ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
__lowercase = -z * 4
__lowercase = np.array([np.cos(SCREAMING_SNAKE_CASE_ ), -np.sin(SCREAMING_SNAKE_CASE_ ), 0.0] )
__lowercase = np.cross(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
origins.append(SCREAMING_SNAKE_CASE_ )
xs.append(SCREAMING_SNAKE_CASE_ )
ys.append(SCREAMING_SNAKE_CASE_ )
zs.append(SCREAMING_SNAKE_CASE_ )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(SCREAMING_SNAKE_CASE_ , axis=0 ) ).float() , width=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(SCREAMING_SNAKE_CASE_ )) , )
| 703 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 688 | 0 |
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Any=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=99 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[Any]=37 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=5_12 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : List[str]=None , ) -> Dict:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
__lowercase = vocab_size - 1
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = self.get_config()
return config, input_ids, input_mask, token_labels
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase = True
return config, input_ids, input_mask, token_labels
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Any:
"""simple docstring"""
__lowercase = GPTNeoXModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = True
__lowercase = GPTNeoXModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> Any:
"""simple docstring"""
__lowercase = GPTNeoXForCausalLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = GPTNeoXForQuestionAnswering(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = GPTNeoXForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ) -> Any:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = GPTNeoXForTokenClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = True
__lowercase = GPTNeoXForCausalLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
# first forward pass
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
__lowercase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__lowercase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowercase = torch.cat([input_mask, next_mask] , dim=-1 )
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase )
__lowercase = output_from_no_past['hidden_states'][0]
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0]
# select random slice
__lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowercase = output_from_no_past[:, -3:, random_slice_idx].detach()
__lowercase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase = config_and_inputs
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( __A , __A , __A , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCAmelCase__ : str = (GPTNeoXForCausalLM,) if is_torch_available() else ()
lowerCAmelCase__ : Tuple = (
{
"feature-extraction": GPTNeoXModel,
"question-answering": GPTNeoXForQuestionAnswering,
"text-classification": GPTNeoXForSequenceClassification,
"text-generation": GPTNeoXForCausalLM,
"token-classification": GPTNeoXForTokenClassification,
"zero-shot": GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase__ : int = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : Union[str, Any] = False
lowerCAmelCase__ : Optional[Any] = False
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = GPTNeoXModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=64 , num_attention_heads=8 )
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowercase = None
self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@unittest.skip(reason='Feed forward chunking is not implemented' )
def a__ ( self : Optional[Any] ) -> int:
"""simple docstring"""
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def a__ ( self : List[str] , _UpperCAmelCase : Dict ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = ids_tensor([1, 10] , config.vocab_size )
__lowercase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__lowercase = GPTNeoXModel(_UpperCAmelCase )
original_model.to(_UpperCAmelCase )
original_model.eval()
__lowercase = original_model(_UpperCAmelCase ).last_hidden_state
__lowercase = original_model(_UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__lowercase = {'type': scaling_type, 'factor': 10.0}
__lowercase = GPTNeoXModel(_UpperCAmelCase )
scaled_model.to(_UpperCAmelCase )
scaled_model.eval()
__lowercase = scaled_model(_UpperCAmelCase ).last_hidden_state
__lowercase = scaled_model(_UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5 ) )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' )
for checkpointing in [True, False]:
__lowercase = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(_UpperCAmelCase )
__lowercase = tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
__lowercase = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure'
__lowercase = model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 )
__lowercase = tokenizer.batch_decode(_UpperCAmelCase )[0]
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
| 704 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__lowercase = TapasConfig.from_json_file(SCREAMING_SNAKE_CASE )
# set absolute/relative position embeddings parameter
__lowercase = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WTQ":
# run_task_main.py hparams
__lowercase = 4
__lowercase = True
# hparam_utils.py hparams
__lowercase = 0.664_694
__lowercase = 0.207_951
__lowercase = 0.121_194
__lowercase = True
__lowercase = True
__lowercase = False
__lowercase = 0.0_352_513
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__lowercase = 4
__lowercase = False
# hparam_utils.py hparams
__lowercase = 36.4_519
__lowercase = 0.903_421
__lowercase = 222.088
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 0.763_141
__lowercase = TapasForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
elif task == "TABFACT":
__lowercase = TapasForSequenceClassification(config=SCREAMING_SNAKE_CASE )
elif task == "MLM":
__lowercase = TapasForMaskedLM(config=SCREAMING_SNAKE_CASE )
elif task == "INTERMEDIATE_PRETRAINING":
__lowercase = TapasModel(config=SCREAMING_SNAKE_CASE )
else:
raise ValueError(F"""Task {task} not supported.""" )
print(F"""Building PyTorch model from configuration: {config}""" )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Save pytorch-model (weights and configuration)
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
# Save tokenizer files
print(F"""Save tokenizer files to {pytorch_dump_path}""" )
__lowercase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA."""
)
parser.add_argument(
"""--reset_position_index_per_cell""",
default=False,
action="""store_true""",
help="""Whether to use relative position embeddings or not. Defaults to True.""",
)
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--tapas_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained TAPAS model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 688 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import TensorType, logging
if TYPE_CHECKING:
from ...onnx.config import PatchingSpec
from ...tokenization_utils_base import PreTrainedTokenizerBase
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""",
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json"""
),
}
class A__ ( __lowercase ):
lowerCAmelCase__ : Any = "longformer"
def __init__( self : Dict , _UpperCAmelCase : Union[List[int], int] = 5_12 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 3_05_22 , _UpperCAmelCase : int = 7_68 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 30_72 , _UpperCAmelCase : str = "gelu" , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : int = 5_12 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1e-1_2 , _UpperCAmelCase : bool = False , **_UpperCAmelCase : str , ) -> List[str]:
"""simple docstring"""
super().__init__(pad_token_id=_A , **_A )
__lowercase = attention_window
__lowercase = sep_token_id
__lowercase = bos_token_id
__lowercase = eos_token_id
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = onnx_export
class A__ ( __lowercase ):
def __init__( self : Optional[Any] , _UpperCAmelCase : "PretrainedConfig" , _UpperCAmelCase : str = "default" , _UpperCAmelCase : "List[PatchingSpec]" = None ) -> str:
"""simple docstring"""
super().__init__(_A , _A , _A )
__lowercase = True
@property
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
if self.task == "multiple-choice":
__lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowercase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('global_attention_mask', dynamic_axis),
] )
@property
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = super().outputs
if self.task == "default":
__lowercase = {0: 'batch'}
return outputs
@property
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
return 1e-4
@property
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
return max(super().default_onnx_opset , 14 )
def a__ ( self : Optional[Any] , _UpperCAmelCase : "PreTrainedTokenizerBase" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[TensorType] = None , ) -> Any:
"""simple docstring"""
__lowercase = super().generate_dummy_inputs(
preprocessor=_A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A )
import torch
# for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64)
# makes the export fail randomly
__lowercase = torch.zeros_like(inputs['input_ids'] )
# make every second token global
__lowercase = 1
return inputs
| 705 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 688 | 0 |
# using dfs for finding eulerian path traversal
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=None ) -> int:
__lowercase = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
__lowercase , __lowercase = True, True
__lowercase = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return path
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ) -> Any:
__lowercase = 0
__lowercase = -1
for i in range(lowerCAmelCase__ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
__lowercase = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
__lowercase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
__lowercase , __lowercase = check_circuit_or_path(lowerCAmelCase__ , lowerCAmelCase__ )
if check == 3:
print('graph is not Eulerian' )
print('no path' )
return
__lowercase = 1
if check == 2:
__lowercase = odd_node
print('graph has a Euler path' )
if check == 1:
print('graph has a Euler cycle' )
__lowercase = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
print(lowerCAmelCase__ )
def __SCREAMING_SNAKE_CASE ( ) -> str:
__lowercase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
__lowercase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
__lowercase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
__lowercase = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
__lowercase = {
1: [],
2: []
# all degree is zero
}
__lowercase = 10
check_euler(lowerCAmelCase__ , lowerCAmelCase__ )
check_euler(lowerCAmelCase__ , lowerCAmelCase__ )
check_euler(lowerCAmelCase__ , lowerCAmelCase__ )
check_euler(lowerCAmelCase__ , lowerCAmelCase__ )
check_euler(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 706 |
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("""0.12.2"""):
raise Exception("""requires fairseq >= 0.12.2""")
if version.parse(fairseq.__version__) > version.parse("""2"""):
raise Exception("""requires fairseq < v2""")
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """Hello, World!"""
SCREAMING_SNAKE_CASE__ = """en_XX"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> Optional[int]:
__lowercase = Path('data_bin' )
__lowercase = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(SCREAMING_SNAKE_CASE ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , )
xmod.eval() # disable dropout
print(SCREAMING_SNAKE_CASE )
__lowercase = xmod.model.encoder.sentence_encoder
__lowercase = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our X-MOD config:' , SCREAMING_SNAKE_CASE )
__lowercase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE )
model.eval()
# Now let's copy all the weights.
# Embeddings
__lowercase = xmod_sent_encoder.embed_tokens.weight
__lowercase = xmod_sent_encoder.embed_positions.weight
__lowercase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them.
__lowercase = xmod_sent_encoder.layernorm_embedding.weight
__lowercase = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__lowercase = model.roberta.encoder.layer[i]
__lowercase = xmod_sent_encoder.layers[i]
# self attention
__lowercase = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
):
raise AssertionError('Dimensions of self-attention weights do not match.' )
__lowercase = xmod_layer.self_attn.q_proj.weight
__lowercase = xmod_layer.self_attn.q_proj.bias
__lowercase = xmod_layer.self_attn.k_proj.weight
__lowercase = xmod_layer.self_attn.k_proj.bias
__lowercase = xmod_layer.self_attn.v_proj.weight
__lowercase = xmod_layer.self_attn.v_proj.bias
# self-attention output
__lowercase = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError('Dimensions of self-attention output weights do not match.' )
__lowercase = xmod_layer.self_attn.out_proj.weight
__lowercase = xmod_layer.self_attn.out_proj.bias
__lowercase = xmod_layer.self_attn_layer_norm.weight
__lowercase = xmod_layer.self_attn_layer_norm.bias
# intermediate
__lowercase = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of intermediate weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
# output
__lowercase = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError('Dimensions of feed-forward weights do not match.' )
__lowercase = xmod_layer.fca.weight
__lowercase = xmod_layer.fca.bias
__lowercase = xmod_layer.final_layer_norm.weight
__lowercase = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
__lowercase = xmod_layer.adapter_layer_norm.weight
__lowercase = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ):
raise AssertionError('Lists of language adapters do not match.' )
for lang_code, adapter in xmod_layer.adapter_modules.items():
__lowercase = bert_output.adapter_modules[lang_code]
__lowercase = xmod_layer.adapter_modules[lang_code]
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
__lowercase = from_adapter.fca.weight
__lowercase = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
__lowercase = xmod_sent_encoder.layer_norm.weight
__lowercase = xmod_sent_encoder.layer_norm.bias
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'].dense.weight
__lowercase = xmod.model.classification_heads['mnli'].dense.bias
__lowercase = xmod.model.classification_heads['mnli'].out_proj.weight
__lowercase = xmod.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__lowercase = xmod.model.encoder.lm_head.dense.weight
__lowercase = xmod.model.encoder.lm_head.dense.bias
__lowercase = xmod.model.encoder.lm_head.layer_norm.weight
__lowercase = xmod.model.encoder.lm_head.layer_norm.bias
__lowercase = xmod.model.encoder.lm_head.weight
__lowercase = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
__lowercase = xmod.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1
model.roberta.set_default_language(SCREAMING_SNAKE_CASE )
__lowercase = model(SCREAMING_SNAKE_CASE )[0]
if classification_head:
__lowercase = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE ) )
else:
__lowercase = xmod.model(SCREAMING_SNAKE_CASE , lang_id=[SAMPLE_LANGUAGE] )[0]
print(our_output.shape , their_output.shape )
__lowercase = torch.max(torch.abs(our_output - their_output ) ).item()
print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7
__lowercase = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--classification_head""", action="""store_true""", help="""Whether to convert a final classification head."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 688 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.